11,341 research outputs found
Practice-centred approach to research in design
This paper gives an overview of practice-centred research programmes at Sheffield Hallam University and discusses the principles behind practice-centred research, its place in the Design School, its effect on the regional economy and the community and the resources and methods employed. Implications for research degrees are discussed and developments in the form of the PhD are described.</p
Run Time Approximation of Non-blocking Service Rates for Streaming Systems
Stream processing is a compute paradigm that promises safe and efficient
parallelism. Modern big-data problems are often well suited for stream
processing's throughput-oriented nature. Realization of efficient stream
processing requires monitoring and optimization of multiple communications
links. Most techniques to optimize these links use queueing network models or
network flow models, which require some idea of the actual execution rate of
each independent compute kernel within the system. What we want to know is how
fast can each kernel process data independent of other communicating kernels.
This is known as the "service rate" of the kernel within the queueing
literature. Current approaches to divining service rates are static. Modern
workloads, however, are often dynamic. Shared cloud systems also present
applications with highly dynamic execution environments (multiple users,
hardware migration, etc.). It is therefore desirable to continuously re-tune an
application during run time (online) in response to changing conditions. Our
approach enables online service rate monitoring under most conditions,
obviating the need for reliance on steady state predictions for what are
probably non-steady state phenomena. First, some of the difficulties associated
with online service rate determination are examined. Second, the algorithm to
approximate the online non-blocking service rate is described. Lastly, the
algorithm is implemented within the open source RaftLib framework for
validation using a simple microbenchmark as well as two full streaming
applications.Comment: technical repor
Viscous vortex flows
Several computational studies are currently being pursued that focus on various aspects of representing the entire lifetime of the viscous trailing vortex wakes generated by an aircraft. The formulation and subsequent near-wing development of the leading-edge vortices formed by a delta wing are being calculated at modest Reynolds numbers using a three-dimensional, time-dependent Navier-Stokes code. Another computational code was developed to focus on the roll-up, trajectory, and mutual interaction of trailing vortices further downstream from the wing using a two-dimensional, time-dependent, Navier-Stokes algorithm. To investigate the effect of a cross-wind ground shear flow on the drift and decay of the far-field trailing vortices, a code was developed that employs Euler equations along with matched asymptotic solutions for the decaying vortex filaments. And finally, to simulate the conditions far down stream after the onset of the Crow instability in the vortex wake, a full three-dimensional, time-dependent Navier-Stokes code was developed to study the behavior of interacting vortex rings
Influence network linkages across implementation strategy conditions in a randomized controlled trial of two strategies for scaling up evidence-based practices in public youth-serving systems.
BackgroundGiven the importance of influence networks in the implementation of evidence-based practices and interventions, it is unclear whether such networks continue to operate as sources of information and advice when they are segmented and disrupted by randomization to different implementation strategy conditions. The present study examines the linkages across implementation strategy conditions of social influence networks of leaders of youth-serving systems in 12 California counties participating in a randomized controlled trial of community development teams (CDTs) to scale up use of an evidence-based practice.MethodsSemi-structured interviews were conducted with 38 directors, assistant directors, and program managers of county probation, mental health, and child welfare departments. A web-based survey collected additional quantitative data on information and advice networks of study participants. A mixed-methods approach to data analysis was used to create a sociometric data set (n = 176) to examine linkages between treatment and standard conditions.ResultsOf those network members who were affiliated with a county (n = 137), only 6 (4.4%) were directly connected to a member of the opposite implementation strategy condition; 19 (13.9%) were connected by two steps or fewer to a member of the opposite implementation strategy condition; 64 (46.7%) were connected by three or fewer steps to a member of the opposite implementation strategy condition. Most of the indirect steps between individuals who were in different implementation strategy conditions were connections involving a third non-county organizational entity that had an important role in the trial in keeping the implementation strategy conditions separate. When these entities were excluded, the CDT network exhibited fewer components and significantly higher betweenness centralization than did the standard condition network.ConclusionAlthough the integrity of the RCT in this instance was not compromised by study participant influence networks, RCT designs should consider how influence networks may extend beyond boundaries established by the randomization process in implementation studies.Trial registrationNCT00880126
Rethinking False Spring Risk
Temperate plants are at risk of being exposed to late spring freezes. These freeze events - often called false springs - are one of the strongest factors determining temperate plants species range limits and can impose high ecological and economic damage. As climate change may alter the prevalence and severity of false springs, our ability to forecast such events has become more critical, and it has led to a growing body of research. Many false spring studies largely simplify the myriad complexities involved in assessing false spring risks and damage. While these studies have helped advance the field and may provide useful estimates at large scales, studies at the individual to community levels must integrate more complexity for accurate predictions of plant damage from late spring freezes. Here we review current metrics of false spring, and how, when and where plants are most at risk of freeze damage. We highlight how life stage, functional group, species differences in morphology and phenology, and regional climatic differences contribute to the damage potential of false springs. More studies aimed at understanding relationships among species tolerance and avoidance strategies, climatic regimes, and the environmental cues that underlie spring phenology would improve predictions at all biological levels. An integrated approach to assessing past and future spring freeze damage would provide novel insights into fundamental plant biology, and offer more robust predictions as climate change progresses, which is essential for mitigating the adverse ecological and economic effects of false springs
- …
