1,624 research outputs found

    Hypervelocity impact facility for simulating materials exposure to impact by space debris

    Get PDF
    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry

    Using Strategy Improvement to Stay Alive

    Full text link
    We design a novel algorithm for solving Mean-Payoff Games (MPGs). Besides solving an MPG in the usual sense, our algorithm computes more information about the game, information that is important with respect to applications. The weights of the edges of an MPG can be thought of as a gained/consumed energy -- depending on the sign. For each vertex, our algorithm computes the minimum amount of initial energy that is sufficient for player Max to ensure that in a play starting from the vertex, the energy level never goes below zero. Our algorithm is not the first algorithm that computes the minimum sufficient initial energies, but according to our experimental study it is the fastest algorithm that computes them. The reason is that it utilizes the strategy improvement technique which is very efficient in practice

    Evaluating trends in abundance of immature green turtles, Chelonia mydas, in the Greater Caribbean

    Get PDF
    Many long-lived marine species exhibit life history traits. that make them more vulnerable to overexploitation. Accurate population trend analysis is essential for development and assessment of management plans for these species. However, because many of these species disperse over large geographic areas, have life stages inaccessible to human surveyors, and/or undergo complex developmental migrations, data on trends in abundance are often available for only one stage of the population, usually breeding adults. The green turtle (Chelonia mydas) is one of these long-lived species for which population trends are based almost exclusively on either numbers of females that emerge to nest or numbers of nests deposited each year on geographically restricted beaches. In this study, we generated estimates of annual abundance for juvenile green turtles at two foraging grounds in the Bahamas based on long-term capture-mark-recapture (CMR) studies at Union Creek (24 years) and Conception Creek (13 years), using a two-stage approach. First, we estimated recapture probabilities from CMR data using the Cormack-Jolly-Seber models in the software program MARK; second, we estimated annual abundance of green turtles. at both study sites using the recapture probabilities in a Horvitz-Thompson type estimation procedure. Green turtle abundance did not change significantly in Conception Creek, but, in Union Creek, green turtle abundance had successive phases of significant increase, significant decrease, and stability. These changes in abundance resulted from changes in immigration, not survival or emigration. The trends in abundance on the foraging grounds did not conform to the significantly increasing trend for the major nesting population at Tortuguero, Costa Rica. This disparity highlights the challenges of assessing population-wide trends of green turtles and other long-lived species. The best approach for monitoring population trends may be a combination of (1) extensive surveys to provide data for large-scale trends in relative population abundance, and (2) intensive surveys, using CMR techniques, to estimate absolute abundance and evaluate the demographic processes' driving the trends

    Evidence for precursor superconducting pairing above T c in underdoped cuprates from an analysis of the in-plane infrared response

    Get PDF
    We performed calculations of the in-plane infrared response of underdoped cuprate superconductors to clarify the origin of a characteristic dip feature which occurs in the published experimental spectra of the real part of the in-plane conductivity below an onset temperature Tons{{T}^{{\rm ons}}} considerably higher than Tc{{T}_{{\rm c}}}. We provide several arguments, based on a detailed comparison of our results with the published experimental data, confirming that the dip feature and the related features of the memory function M(ω)=M1(ω)+iM2(ω)M(\omega )={{M}_{1}}(\omega )+{\rm i}{{M}_{2}}(\omega ) (a peak in M1 and a kink in M2) are due to superconducting pairing correlations that develop below Tons{{T}^{{\rm ons}}}. In particular, we show that (i) the dip feature, the peak and the kink of the low-temperature experimental data can be almost quantitatively reproduced by calculations based on a model of a d-wave superconductor. The formation of the dip feature in the experimental data below Tons{{T}^{{\rm ons}}} is shown to be analogous to the one occurring in the model spetra below Tc{{T}_{{\rm c}}}. (ii) Calculations based on simple models, for which the dip in the temperature range from Tc{{T}_{{\rm c}}} to Tons{{T}^{{\rm ons}}} is unrelated to superconducting pairing, predict a shift of the onset of the dip at the high-energy side upon entering the superconducting state, that is not observed in the experimental data; (iii) the conductivity data in conjunction with the recent photoemission data (Reber et al 2012 Nat. Phys. 8 606, Reber et al 2013 Phys. Rev. B 87 060506) imply the persistence of the coherence factor characteristic of superconducting pairing correlations in a range of temperatures above Tc{{T}_{{\rm c}}}

    Higgs mode and its decay in a two dimensional antiferromagnet

    Full text link
    Condensed-matter analogs of the Higgs boson in particle physics allow insights into its behavior in different symmetries and dimensionalities. Evidence for the Higgs mode has been reported in a number of different settings, including ultracold atomic gases, disordered superconductors, and dimerized quantum magnets. However, decay processes of the Higgs mode (which are eminently important in particle physics) have not yet been studied in condensed matter due to the lack of a suitable material system coupled to a direct experimental probe. A quantitative understanding of these processes is particularly important for low-dimensional systems where the Higgs mode decays rapidly and has remained elusive to most experimental probes. Here, we discover and study the Higgs mode in a two-dimensional antiferromagnet using spin-polarized inelastic neutron scattering. Our spin-wave spectra of Ca2_2RuO4_4 directly reveal a well-defined, dispersive Higgs mode, which quickly decays into transverse Goldstone modes at the antiferromagnetic ordering wavevector. Through a complete mapping of the transverse modes in the reciprocal space, we uniquely specify the minimal model Hamiltonian and describe the decay process. We thus establish a novel condensed matter platform for research on the dynamics of the Higgs mode.Comment: original submitted version, Nature Physics (2017). arXiv admin note: substantial text overlap with arXiv:1510.0701

    Spectroscopic distinction between the normal state pseudogap and the superconducting gap of cuprate high T_{c} superconductors

    Get PDF
    We report on broad-band infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-d} (R=Y, Nd, and La) single crystals. Our data provide a detailed account of the spectral weight (SW) redistributions due to the normal state pseudogap (PG) and the superconducting (SC) gap. They show that these phenomena involve different energy scales, exhibit distinct doping dependencies and thus are likely of different origin. In particular, the SW redistribution in the PG state closely resembles the one of a conventional charge- or spin density wave (CDW or SDW) system.Comment: 4 pages, 4 figure

    Manifestation of pseudogap in ab-plane optical characteristics

    Full text link
    A model in which a gap forms in the renormalized electronic density of state (DOS) with missing states recovered just above the pseudogap Δpg\Delta_{pg}, is able to give a robust description of the striking, triangular like, peak seen in the real part of the optical self-energy of underdoped cuprates. We use this model to explore the effect of the pseudogap on the real part of the optical conductivity and on the partial sum rule associated with it. An important result is that the optical spectral weight redistributes over a much larger frequency window than it does in the DOS.Comment: 12 pages, 3 figures. Submitted to Journal of Physics: Condensed Matte
    • …
    corecore