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Abstract
Weperformed calculations of the in-plane infrared response of underdoped cuprate superconductors
to clarify the origin of a characteristic dip feature which occurs in the published experimental spectra
of the real part of the in-plane conductivity below an onset temperatureT ons considerably higher than
Tc.We provide several arguments, based on a detailed comparison of our results with the published
experimental data, confirming that the dip feature and the related features of thememory function

ω ω ω= +M M M( ) ( ) i ( )1 2 (a peak inM1 and a kink inM2) are due to superconducting pairing
correlations that develop belowT ons. In particular, we show that (i) the dip feature, the peak and the
kink of the low-temperature experimental data can be almost quantitatively reproduced by
calculations based on amodel of a d-wave superconductor. The formation of the dip feature in the
experimental data belowT ons is shown to be analogous to the one occurring in themodel spetra below
Tc. (ii) Calculations based on simplemodels, for which the dip in the temperature range fromTc to
T ons is unrelated to superconducting pairing, predict a shift of the onset of the dip at the high-energy
side upon entering the superconducting state, that is not observed in the experimental data; (iii) the
conductivity data in conjunctionwith the recent photoemission data (Reber et al 2012Nat. Phys. 8
606, Reber et al 2013 Phys. Rev.B 87 060506) imply the persistence of the coherence factor
characteristic of superconducting pairing correlations in a range of temperatures aboveTc.

1. Introduction

The possible persistence of some formof superconductivity, at least pairing correlations,many tens of K above
the bulk superconducting transition temperature Tc in underdoped (UD) cuprate superconductors belongs to
themost vividly discussed topics in the field of high-Tc superconductivity, for representative examples of related
experimental studies, see [1–15]. Surprisingly high (up to about 100 K aboveTc) values of the temperatureT ons

of the onset of an increase of coherence, presumably due to an onset of precursor superconducting pairing
correlations, have been deduced from the data of the c-axis infrared response ofUDYBa2Cu3O δ−7 (Y-123) [6].
More recently, the interpretation of theT ons scale in terms of a precursor superconductivity has been supported
by results obtained byUykur and coworkers [7]. They address the persistence of the superfluid density aboveTc

and the impact of Zn doping onT ons (T p in the notation of [7]). This interpretation, however, has not yet been
commonly accepted. Two reasons are: (i) the c-axis response of Y-123 is a fairly complex quantity due to the
specific bilayer structure of this compound. Its interpretation therefore requires a detailed understanding of the
c-axis electrodynamics of the bilayer compounds [16–23]. (ii) UD cuprates are known to exhibit ordered phases
distinct from superconductivity, in particular, chargemodulations have been reported [24, 25], that set in at
temperatures comparable toT ons. This has fueled speculations that theT ons scale is determined by an order
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different from and possibly competingwith superconductivity rather than by pairing correlations themselves. In
this context, it is of high importance to identifymanifestations of the increase of coherence belowT ons in the in-
plane response, a quantity revealing aspects of the electronic structure complementary to thosemanifesting
themselves in the c-axis response, and to ascertain their relation to superconducting pairing correlations.

It has been already shown [6] that the real part of the in-plane infrared conductivity ofUDY-123 changes at
T ons in away similar to that of an optimally doped (OPD) superconductor atTc: a dip-like featurewith a

minimumaround −400 cm 1begins to form and this is accompanied by a pronounced spectral weight shift from
the dip region to very low frequencies (below ca −200 cm 1). The focus, however, has been on qualitative aspects
of the relevant spectral weight shifts, and the related spectral structures have not been addressed. Herewe
concentrate on three prominent spectral features that develop below T ons: the onset of the dip at the high energy
side, the corresponding peak in the spectra of the real part of thememory function and the corresponding kink
in the spectra of the imaginary part of thememory function.Our analysis involves comparisons of the data of
two representativeUD cuprates with those ofOPDones andwith results of our calculations employing
approaches ranging from theAllen’s theory to the fully selfconsistent generalized Eliashberg theory. It provides
evidence that the features are due to superconducting pairing correlations, and the scale T ons due to a precursor
superconducting pairing phase rather than to an ordered state unrelated to superconductivity.

Recall thatT ons is significantly lower thanT*, the temperature of the onset of the pseudogap as seen, e.g., in
the planar copper Knight shift [26], in the c-axis conductivity [27–30], in the intrinsic tunnelling [31, 32], in the
angular resolved photoemission spectra of the antinodal region of the Brillouin zone [33] etc. ForUDY-123

with 10%doping >T* 300 K [6, 7, 28, 29, 34], while ≈T 170 Kons [6, 7]. The pseudogap region of the phase
diagramof the cuprates located between theTc line and theT* line involves two distinct types of electronic
correlations: the correlations setting on atT*, on the one hand, cause a depletion of the electronic density of
states at low energies and they seem to compete with superconductivity [30]. The correlations setting on atT ons,
on the other hand, bring about an increase of coherence of the electronic statesmanifesting themselves both in
the out-of plane and in the in-plane response [6].

The paper is organized as follows. In section 2we summarize the relevant aspects of the experimental
infrared data. As examples we use the published data ofUDHgBa2CuO δ+4 (Hg-1201) [35] andY-123 [6, 36]. At
the end of the section, the data are comparedwith the published ones ofOPD cuprates. In section 3we present
and discuss results of our calculations aiming to clarify the origin of the spectral structures. First (in
subsection 3.1), we focus on the spectra calculated using the Eliashberg theory.We put emphasis on the
similarity between the low-temperature (T) data and the low-T calculated spectra and on the similarity between
the onset of the spectral structures below T ons inUD cuprates and that belowTc in the calculated spectra. In
subsection 3.2, the data are discussed in terms of the frequently used extendedAllen’s theory (EAT) [36–39]. It is
highlighted that the assumption of a superconductivity unrelated gap in the density of states in the temperature
range < <T T Tc

ons leads to inconsistencies with the data. In particular, we show that it leads to a clear shift of
the high energy onset of the dip upon entering the superconducting state, that is not observed in the
experimental data. This applies also to simplemodels, where the dip in the temperature range < <T T Tc

ons is
attributed solely to an electron–boson coupling and the temperature dependence of the Fermi andBose factors.
Finally, in subsection 3.3, we present and discuss results of our calculations of the optical spectra, using as inputs
recently published properties of the quasiparticle spectral function obtained from the photoemission data by
means of analyzing the tomographic density of states [10]. A short summary and conclusions are given in
section 4.

2. Relevant aspects of the published experimental data

The dip feature in the spectra of the real part σ1 of the infrared conductivity σwill be illustratedwith the recently
published data ofUDHgBa2CuO δ+4 (Hg-1201)with 10%doping and =T 67 Kc [35]. Also discussedwill be the
related structures of thememory function ω ω ω= +M M M( ) ( ) ( )1 2 , defined by

σ ω ε ω ω ω= +M( ) i [ ( ) ]0 pl
2 [40] and connected to the so called optical selfenergy ω∑ ( )opt by

ω ω∑ = −M( ) ( ) 2opt . Here ωpl is the plasma frequency. The data ofUDHg-1201 of [35] are similar to the
earlier published ones ofUDY-123 [6, 36], but amuchmore detailed temperature dependence is reported and
some spectral features are sharper than in Y-123.

Figure 1 shows, in part (a), a selection of the spectra of σ1 ofHg-1201 fromfigure 1 of [35], and, in parts (b)
and (c), the corresponding spectra ofM1 andM2 fromfigure 4 of [35]. The low-temperature spectra of σ1

contain the δ-peak at ω = 0 (not shown in thefigure) corresponding to the loss-free contribution of the
superconducting condensate, a narrow low-energy component corresponding to residual quasiparticles, and a
deep and broadminimumaround 30 meV (see, e.g., the10 K line infigure 1(a)). This is followed by a broad
region of an approximately linear increase terminating at ≈E 140 meVg , where the slope of the spectrum

2
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changes, see the arrow in figures 1(a) and figure 2 . This change of slopewill be called the high energy onset of the
dip (HEOD). It is associatedwith a localmaximumat a slightly higher energy. TheHEOD is further
accompanied by a characteristic peak in the spectra ofM1 with an onset feature at the high energy side (around
Eg), and a kink in those ofM2, see the arrows infigures 1(b) and (c). All the three features arewell known from

earlier infrared studies [28, 36, 38, 39, 41].What has, however,—to the best of our knowledge—not yet been
recognized, is the fact that they start to form close to the temperatureT ons of [6].

Figure 1. (a) Real part of the in-plane infrared conductivity ofHg-1201with 10%doping and =T 67 Kc for five selected temperatures
(data obtained byMirzaei and coworkers, published infigure 1 of [35]). (b), (c): the corresponding spectra ofM1 andM2, respectively
(data fromfigure 4 of [35]). The arrows indicate the features discussed in the text: the one in (a) the change of slope of σ1, the left
(right) one in (b) themaximum(the onset feature at the high energy side) of the characteristic peak ofM1, and that in (c) indicates the
kink ofM2. (d), (e), (f): The spectra of σ1,M1 andM2 calculated using themodel of charged quasiparticles coupled to spinfluctuations
and the fully selfconsistent generalized Eliashberg equations. (g), (h), (i): The normal (green) and superconducting state (violet)
spectra of σ1,M1 andM2 calculated using the hybrid approach. The dotted lines in (h) and (i) represent the derivatives ofM1 andM2.
They are shown to highlight the shift of the structures due to ΔSC. The vertical lines are guides to the eye.

Figure 2.Real part of the in-plane infrared conductivity ofHg-1201with 10%doping and =T 67 Kc for eight selected temperatures
(data obtained byMirzaei and coworkers published infigure 1 of [35]). The dotted lines represent linear extrapolations and are shown
to highlight the high-energy onset of the dip discussed in the text.

3
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This will be discussed below.We focus on σ1first. The 70 K and120 K spectra infigure 1(a) display a clear
HEODat an energy close to Eg, see alsofigure 2 . The 250 K spectrum, on the other hand, does not display any
such feature in the relevant spectral range. It can be seen infigure 1 of [35], see alsofigure 2 , that the dip feature
vanishes at a temperature higher than 160 K but ⩽200 K, close to themaximumT ons of [6] (180 K). Based on
thisfinding and the earlier observations of [6]we assume that the temperature scale of the dip coincides with the
earlier establishedT ons of [6] andTp of [7] and denote it byT ons. TheT-dependence of the characteristic peak in
the spectra ofM1 is similar: at 70 K and 120 K it is still very pronounced and almost at the same location as at low
temperatures, at 250 K a clearmaximum is not evident (see alsofigure 4 of [35]; the remaining veryweak band
in the 90–130 meV range seems to be of different origin, perhaps related to the sharp structure at ca 80 meV).
Note that the onset feature at the high energy side of a similar peak occurring in the case ofUDY-123 has already
been reported to vanish around 170 K [36], see discussion offigure 7 in [36].Next we address theT-dependence
of the kink in the spectra ofM2. At low temperatures the feature is very sharp (note that the 10 K spectrum
overshoots the 70 K one). It gets less sharp aroundTc but persists, at approximately the same energy, up tomuch
higher temperatures, see figure 4 of [35]. In the 120–200 K range, it transforms into a smoother onset at a lower
energy due to the presence of the relatively narrow low energy component of σ1, that can be seen infigure 2 ,
rather than to theHEOD.Notefinally that the onset of the features is very likely connectedwith a transition to a
purely quadraticT-dependence of the dc resistivity occurring slightly above 200 K [35] andwith the appearance
below about 200 K of a Fermi-liquid like scaling of ωM ( ) [35].

InOPDmaterials, a dip feature in σ ω( )1 terminated by a localmaximum, a peak in ωM ( )1 and a kink in
ωM ( )2 , similar to those discussed above, set in atTc (or very slightly aboveTc). For representative examples, see

[42–45]. These features ofOPDmaterials are clearly caused by superconductivity, since they develop in parallel
with the formation of the loss-free contribution to σ ω( )of the superconducting condensate, involving the
δ-peak at ω = 0 in σ ω( )1 : the δ-peak collects the spectral weight lost by the formation of the dip. It appears, that
the three features ofOPDmaterials, that set in atTc and are due to superconductivity, continuously transform
into those of theUDones, setting in atT ons. This is a strong phenomenological argument in favor of the
superconducting pairing-based interpretation of the three features and the precursor superconducting pairing
based interpretation of theT ons scale.

3. Results and discussion

3.1. Response functions calculated using the Eliashberg theory, comparisonwith the data
Recall thatmany properties ofOPD cuprate superconductors, including superconductivity, can be (at least
qualitatively) understood in terms of (various versions of) themodel, where charged planar quasiparticles are
coupled to spin fluctuations. For reviews, see [46–51]. In particular, the low-T spectra of σ1 in the
superconducting state have beenwell reproduced [52–55] using a phenomenological version of themodel,
where the spin fluctuation spectrum χ ν q( , ) is approximated by a narrow (in ν)mode centered at the frequency
of themagnetic resonance. By including a continuum contribution to χ ν q( , ) and performing the calculations
at the fully selfconsistent generalized Eliashberg level, almost quantitative agreementwith the data can be
achieved [56], see also [57]. In the followingwe demonstrate that even the low-T experimental spectra ofUD
Hg-1201 can be approximately reproduced using the generalized Eliashberg approach formulated in [56]. In
order to avoid anymisunderstanding, we emphasize here that it is not the purpose of the present paper to
advocate a very specificmodel. There are only two ingredients of themodel, that are really essential for our
conclusions: the superconducting order of d-wave symmetry and the relatively strong coupling between charge
carriers and bosonic excitations (not necessarily spin fluctuations), whose spectral density is peaked around
40–50 meV.Other ingredients—the presence of a tail of the spectrumof the bosonic excitations ranging to high
energies, the full selfconsistency etc.—help to reproduce the low temperature data quantitatively.

We beginwith a brief description of the computational approach, details can be found in appendix A. The
generalized Eliashberg equations (see, e.g., [58]) can bewritten as

∑Σ ω
β

χ ν ω ν= − −( ) ( ) ( )g

N
Gk q k qˆ i , i , ˆ i i , , (1)n

m

m n m

q

2

,

where Σ̂ is thematrix selfenergy that can be expressed in terms of the Paulimatrices as
Σ Σ τ Σ τ Σ τ= + +ˆ ˆ ˆ ˆ(0)

0
(3)

3
(1)

1, τ τ τ= + +G G G Gˆ ˆ ˆ ˆ(0)
0

(3)
3

(1)
1 is the renormalized quasiparticle propagator,

ω ω τ ϵ μ τ Σ ω= − − −− ( ) ( )G k k kˆ i , i ˆ [ ( ) ] ˆ ˆ i , , (2)n n n
1

0 3

χ ν q(i , )m is theMatsubara counterpart of the the spin susceptibility, g is the coupling constant, ωi n and νi m are
the fermionic and bosonicMatsubara energies, respectively. The equations have been solved on the real axis
using spectral representations of Ĝ and χ.We have used the same formof the input spin susceptibility as in our
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previous studies [55] and [56]. It contains a narrow (in frequency)mode centered at the frequency of the
magnetic resonance and a component approximating the spin-fluctuation continuum. The corresponding
formulas, the values of all input parameters, providing the values ofTc and Δmax of 133 K and 45 meV,
respectively, and some intermediate results are given in appendix A.Here Δmax is themaximumvalue of the
superconducting gap of −dx y2 2 symmetry. The high value ofTc is not surprising considering the observation of
[59] that the value of the spin-fermion coupling constant providing the bestfit of the nodal kink inUDY-123
yields a highTc value of175 K.

Finally, after obtaining the selfconsistent solution of the generalized Eliashberg equations, the optical
conductivity was calculated using the formula


σ ω

Π ω

ω
=

− +

+
N

d

K
( )

ie ( )

i0
. (3)xx

p xx xx
2 ⎡⎣ ⎤⎦

Here d is the c-axis lattice parameter (d=9.52 Å forHg-1201, d=11.65 Å for Y-123),Np is the number of CuO2

planeswithin a unit cell (Np=1 forHg-1201,Np=2 for Y-123) andω is here in units of energy. The expressions
Kxx and Π ω( )xx in the numerator provide the diamagnetic and paramagnetic contributions to the optical
conductivity, respectively. Both can be expressed in terms of thematrix quasiparticle spectral function

τ τ τ= + +A A A Aˆ ˆ ˆ ˆ(0)
0

(3)
3

(1)
1defined by ω ω= − +A Gk kˆ ( , ) 2 Im{ ˆ ( i0, )}. The diamagnetic term is given by

the following formula (exact)

∫∑ ϵ
π

β= − ∂

∂
−

−∞

∞

( )
K

N k a

E
A E

Ek
k

1 ( )
1

d

2
( , )tanh

2
. (4)xx

xk

2

2
(3)

⎡
⎣⎢

⎤
⎦⎥

The paramagnetic term is given by the current–current correlation function and can be expressed (in terms of
Â) only approximately. Themost frequently used approximation, employed also in our calculations, completely
neglects vertex corrections and leads to the following formula for the imaginary part Π″xx of Πxx :

∫

∑Π ω
ϵ

ν
π

ν ν ω ν ν ω

″ = − ∂
∂

× + − +
−∞

∞
{ }

N k a

A A

k

k k

( )
1

2

( )

d

2
Tr ˆ ( , ) ˆ ( , ) [f( ) f( )]. (5)

xx
xk

2⎛
⎝⎜

⎞
⎠⎟

The real part Π′xx of Πxx was obtained using theKramers–Kronig transformation.Note that the expression on
the right hand side of equation (3) includes the contribution of the condensate, the superfluid plasma energy
ωpl,sc is given by

 ω
ϵ

Π= ′ −
N

d
K

e
(0) . (6)

p
xx xx

2
pl,sc
2

2

0

⎡⎣ ⎤⎦

In order to assess the validity of the approximation of equation (5), we have also evaluated Πxx using the
gauge invariant approach of [56], where an important class of vertex corrections is included. The corrections
modify the spectra of Π″xx only slightly, the only significant problemof the approximation being an
underestimation of the total spectral weight at finite frequencies and Π∣ ′ ∣(0)xx by ca 8%. For the normal state, this
leads to the presence of a small unphysical singular component. In order to avoid the problem,we have replaced
Kxxwith Π′ (0)xx in the normal state calculations. For temperatures belowTc, we have set Π= ′K (0)[140 K]xx xx .
The corresponding value of the (total) plasma energy ωpl is 1.95 eV.

For future reference, we provide here also the formula for the real part σ ω( )1 of σ ω( )xx resulting from
equation (5):

 ∫∑σ ω
ω

ϵ ν
π

ν ν ω

ν ν ω ν ν ω

= ∂
∂

+

+ + − +

−∞

∞

}
( )

N

d N k a
A A

A A

k k

k k

( )
e 1 d

2
{ ( , ) ( , )

( , ) ( , ) [f( ) f( )], (7)

p

xk

1

2
2

(1) (1)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

where ν ν ν= +A A Ak k k( , ) ( , ) ( , )(0) (3) is the usual spectral function. The normal state version of the formula
reads
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

∫

∑σ ω
ω

ϵ

ν
π

ν ν ω ν ν ω

= ∂
∂

× + − +
−∞

∞

( )
N

d N k a

A Ak k

( )
e 1

d

2
( , ) ( , )[f( ) f( )]. (8)

p

xk

1

2
2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Figures 1(d)–(f) show the calculated spectra of σ1,M1, andM2, respectively. Note the agreement between the
low-T spectra and the low-T data shown infigures 1(a)–(c). The structures of σ1 andM2, in particular aweak
onset around the energy of the resonancemode ω0 (here 50 meV), and theHEODof σ1 and the corresponding
kink ofM2 at ω Δ≈ + 20 max, can be interpreted along the lines of the earlier theoretical studies [55, 56]. For the
convenience of the reader, the interpretation is summarized in the following paragraph.

Figure 3(a) shows the 30 K spectra of σ1 andM2 from figures 1(d) and (f) and the corresponding spectra of
the second derivative of ωM2, all in arbitrary units. The arrows indicate three important features, occuring also
in the experimental spectra ofOPD cuprates, whose interpretationwas presented in [55, 56]: (i) a weak onset of
σ1 andM2 around the energy ω0 of the bosonicmode (within the present context themagnetic resonance)
[43, 44, 52, 55, 56]. (ii) Amaximumof the second derivative of ωM2 [60] at approximately ω Δ+0 max

[53, 55, 56]. (iii) A localmaximumof σ1 at Eg with Eg approximately equal or slightly above ω Δ+ 20 max

[43, 44, 54, 56], associatedwith theHEOD, and the corresponding kink ofM2. At the simplest relevant
perturbative level (Bogolyubov quasiparticles of a d-wave superconductor coupled to bosons), the basic infrared
activefinal states consist of twoBogolyubov quasiparticles and the bosonicmode, see figure 3(b). Final states
consisting of twoBogolyubov quasiparticles are not infrared active in the clean limit. The features (i), (ii), and
(iii) are due, as detailed in [55, 56], to the appearance above the characteristic energies (ω0, ω Δ+0 max,
ω Δ+ 20 max) offinal states consisting of (i) two near nodal (Bogolyubov) quasiparticles and the bosonicmode,
(ii) a near nodal quasiparticle, an antinodal quasiparticle and themode, and (iii) two antinodal quasiparticles
and themode. Above ω Δ+ 20 max , the density of available final states saturates. A schematic representation of
the three types offinal states, associatedwith the features (i), (ii), and (iii) is presented infigure 3(c).

The relation Δ ω≈ +E 2g max 0 [54–56] allows for a quantitative consistency check. The value of Eg ofUD
Hg-1201 of 140 meV is indeed approximately consistent with the available experimental values of ω0 and Δmax

(ω ≈ 50 meV0 [61], Δ ≈ 39 meVmax [62], Δ ≈ 45 meVmax [63]). Recently, a similar consistency check has
been applied to the infrared data ofOPDBi2Sr2CaCu2O δ+8 (Bi-2212) byHomes and coworkers [64]. To
conclude, the low-T infrared spectra ofUDHg-1201are consistent with awell establishedmodel of a d-wave
superconductor.

Next we address theT-dependence of themodel spectra. It can be seen infigures 1(d)–(f) that the three
important features (the dip of σ1, themaximumofM1 and theM2 kink) develop belowTc in the same fashion as
in the data ofOPDmaterials [42–45]. In particular, the σ1dip forms already close toTc.Whatwewould like to
highlight here is that not only theT dependence of the data ofOPD cuprates but also that of theUD is similar to
themodel spectra, compare figures 1(a)–(c) with figures 1(d)–(f). Note that the development of the dip in the
UDHg-1201 below ≈T 180 Kons is analogous to that of themodel spectra belowTc: somewhat belowT ons/Tc a
characteristic change of slope appears in σ ω( )1 , with decreasingT its energy approaches Eg and theminimumat
low energies and the characteristicmaximumaround Eg are forming. In themodel spectra, the energy scale of

Figure 3. (a) 30 K spectra of σ1 andM2 from figure 1(d), (f) and the corresponding spectra of the second derivative of ωM2, all in
arbitrary units. The arrows indicate three important features discussed in the text. (b)Diagrammatic representation of thefinal states
discussed in the text. The solid lines denote Bogolyubov quasiparticles, the dashed line a boson participating in thefinal state, within
the present scheme the resonance. (c) Schematic representation of the three types offinal states associatedwith the features (i), (ii),
(iii).We show thefirst Brillouin zone and the Fermi surface, the symbols represent the Bogolyubov quasiparticles, the arrows the
k-vectors of the bosons.
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the dip developsmore gradually than in the data. This difference ismost likely due to themeanfield character of
themodel. The similarity between theT-dependence of the data belowT ons and that of themodel spectra below
Tc provides a further support for the interpretation of theT ons scale in terms of a precursor superconducting
pairing state, for whichT ons corresponds to themean field transition temperature.

Admittedly, themeanfieldmodel does not reproduce the low-energy part of the data aboveTc. The
calculated spectra of σ1 at 70 K,100 K, and 120 K contain a δ function at ω = 0 (not shown), which is not
present in the corresponding experimental spectra. In addition, the calculated spectra ofM2 at 70 K,100 K, and
120 K display amore gradual increase with increasing frequency than the experimental ones, that satisfy the

Fermi-liquid like scaling, ω ξ∼M T( , )2
2, with ξ ω π= + p k T( ) ( )B

2 2 and p=1.5 [35]. In our opinion,
these discrepancies are due to the presence of strong fluctuationswhich suppress the long range phase coherence
in the temperature range fromTc toT ons. An adequatemicroscopic description of the spectra in this
temperature rangemust include thefluctuating condensate and/or a contribution of uncondensed pairs, and the
coupling between the former and the thermally excited quasiparticles. Note, however, that in the frequency
range around theHEOD, the impact of the fluctuations on the spectral features can be expected to be of less
importance. For completeness, theT-dependence of the contribution of the condensate/fluctuating condensate
inUD cuprates will be qualitatively discussed below. At low temperatures, the response of the condensate is
represented by the δ-peak at ω = 0 in σ ω( )1 .When going fromT=0 toTc, the spectral weight of the δ-peak
decreases, which is compensated by thefilling in of the gap [65, 66]. AtTc, the δ-peak vanishes but the superfluid
does not,merely its long range phase coherence has been lost [67]. Simultaneously, the superfluid acquires a
finite phasecorrelation time τ, probably due to a randommotion of unbound thermally excited vortices, and the
δ-peak is replacedwith aDrude peak offinite width τ∼1 [68, 69] that cannot be easily distinguished from the
response of thermally excited quasiparticles.

For our considerations on the origin of the three spectral structures, it is very important that the THz
experiments [68] have clearly confirmed the presence of afluctuating condensate atTc and at temperatures
slightly higher thanTc. For a slightlyUD epitaxial film of Bi-2212with =T 74 Kc , the reported value of the

fluctuating condensate density atTc ( +T 5 Kc ) is ca 35% (25%) of that at low temperatures (see the θT 0 line in
figure 4 of [68]). Based on this observation only, it can be expected, with a high degree of certainty, that themore
stronglyUDHg-1201 sample of [35]will be, at temperatures notmuch higher than =T 67 Kc , e.g., at 70 K, in a
fluctuating state with a considerable value of the fluctuating condensate density and themagnitude of the
superconducting gap not very different from the low-T one. And, importantly, there is no clear qualitative
difference between the 70 K experimental data of [35] and the 80 K, 90 K and100 K ones.

When going fromTc to higher temperatures, the spectral weight of the fluctuating condensate (i.e., that of
the corresponding narrowDrude peak) decreases further [68], in parallel with the filling in of the gap. At the
same time, τ decreases dramatically [68], so that forT above ca +T 20 Kc , the contribution of the fluctuating
condensate could not be distinguished from that of normal state electrons [68, 69], see also [70]. It has remained
an open question [71], whether at higher temperatures the fluctuating condensate is simply absent ormerely
unobservable by the THz techniques, whilemanifesting itself in theNernst and diamagnetic response [1–3]. The
data reported byMirzaei and coworkers clearly show that the process offilling in the gap, very similar to that of
OPD cuprates or that of amodel d-wave superconductor (the similarity has been demonstrated in the present
study), continues up toT ons, and the spectral weight comes from the lowest frequencies (ω < 20 meV). For
these reasonswe suspect that the partially condensed and/or uncondensed pairs persist up toT ons providing a
low-energy component of σ ω( ). This issuewill be addressed again at the end of section 3.3. Finally, we note that
the precursor phenomena discussed abovemay be strongly influenced by a spatial inhomogeneity of the
superconducting order [4, 72].

In our calculations, fluctuations of the condensate have not been included. There is no establishedway of
doing this in conjunctionwith a retarded interaction, which is needed for a description of the infrared response.
Previous attempts are limited to phenomenologicalmodels (e.g., [73]) andmodels involving a nonretarded
interaction (e.g., [74]).Manske and coworkers [75] have used thefluctuation exchange approximation
combinedwith results of the Kosterlitz–Thouless theory and thermodynamic considerations based on the
Ginzburg–Landau theory to estimate the difference betweenTc and themean field transition temperature (Tc

*)

and have confirmed the claimof [67] that inUD cupratesTc is considerably lower thanTc
*. This approach,

however, cannot be easily extended towards calculations of the optical conductivity in the fluctuating state.
The calculations also do not include the pseudogap setting on atT* (‘antinodal pseudogap’). Its opening can

be expected to influence the in-plane conductivity in two different ways: (a) directly, bymodifying the
contribution to σ1 of the antinodal region, that is approximately determined by the corresponding contribution
to the sumover k on the right hand side of equation (8). (b) Indirectly, through a renormalization of near nodal
quasiparticles, caused by a nodal–antinodal boson assisted scattering. The former contribution can be expected
to be small since inmoderately UDcuprates the pseudo-gapped region of the Brillouin zone around the
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antinode is relatively small [33, 76] and, in addition, themagnitude of the corresponding vertex (
ϵ∼ ∂

∂ k a( )x

) is

small. Themechanism (b)may influence the spectra significantly. The large difference betweenT* andT ons,
however, indicates, that the dip feature in the spectra of σ1 is not caused by the antinodal pseudogap. In the
following subsectionwe further demonstrate, using the EAT, that the feature is unlikely to be caused by an order
setting on atT ons and unrelated to superconducting pairing.

3.2. Analysis of the aboveTc data based on the EAT, problems of interpretations not involving pairing
The normal state (i.e., aboveTc) spectra ofM1 andM2 ofUDY-123 andBi2Sr2CaCu2O δ+8 (Bi-2212) have been
previously successfully fitted and interpreted in terms of the phenomenological EAT [36–39]. This is based on
two implicit assumptions: (i) the in-plane response is dominated by the contribution of near nodal
quasiparticles; (ii) the dominant part of the renormalization of these quasiparticles comes from anodal–
antinodal boson assisted scattering, the antinodal region being gapped. The essential inputs are a function
α νF ( )2 describing bosonic excitations and a density of states ωN ( )displaying the antinodal gap, whose physical
origin is not specified.Here we provide two indications that the gap captured by the EATbased fits is likely
related to superconducting pairing.

(i)We have fitted theHwang’s data ofUDY-123 reported in [36] using the formulas of the EAT, i.e., the
Allen’s formula [77, 78]

 ∫σ ω
ϵ ω

ω
ϵ

ϵ ω ϵ

ω Σ ω ϵ Σ ω
= − +

− + +−∞

∞
( )

i
d

f( ) f( )

( ) *( )
, (9)0 pl

2

whereω and ωpl are in units of energy, the formula for the imaginary part Σ2 of the retarded selfenergyΣ
proposed in [37]

∫Σ ω π να ν ω ν ν ω ν

ω ν ν ω ν

= − − + − −

+ + + +

∞
F N

N

( ) d ( ){ ( )[b( ) 1 f( )]

( )[b( ) f( )]}
, (10)

2
0

2

and

∫Σ ω
π

ν
Σ ν
ω ν

= −
−−∞

∞( )
1

d
( )

. (11)1
2

Wehave achieved a degree of agreement comparable to that of previous studies (e.g., that of [39]). In the above
equations, νb( ) and ωf( ) are the Fermi and the Bose functions, respectively. Our ansatz for α νF ( )2 , the one for

ωN ( ), and a detailed description of ourfits can be found in appendix B.
The important findings are: (a) while the presence of the density of states gap is needed to achieve a high

quality fit for temperatures well belowT ons, it is not essential for temperatures higher thanT ons. For the latter
temperatures (and not for the former, see appendix C), the simple Allen’s theory [77, 78], as used in [79, 80],
appears to be sufficient. The characteristic temperature of the sharp gap of the EATbasedfits is thusT ons rather
than the pseudogap temperatureT*. (b) The opening of the gap in the density of states causes a spectral weight
shift from the dip region to low frequencies, the same effect as expected for a precursor superconducting pairing
state.

(ii) Assuming that the physics at < <T T Tc
ons is unrelated to superconducting pairing, we arrive at a

contradictionwith the experimental data, as outlined below. Starting from the above assumption, the opening of
the superconducting gap in the near nodal region belowTc can be expected to give rise to a blue shift of the
structures established aboveTc. This blue shift occurs indeed in the calculated spectra, see the discussion below,
but is not seen in the experimental data. Figure 1(g) shows the normal (100 K and 67 K) and the
superconducting state (67 K) spectra of σ1 calculated using a version of the hybrid approach [55, 81], that is
described in the following paragraph.

The hybrid approach uses an approximate expression for theNambuGreen’s function, involving the
dispersion relation of charged quasiparticles ϵ k( ), the superconducting gap Δk, and a selfenergy correction

Σ Σ τ Σ τ Σ τ= + +ˆ ˆ ˆ ˆ(0)
0

(3)
3

(1)
1:

ω
ωτ ϵ τ Δ τ

ω ϵ Δ
=

+ +
− −

G k
k

k
ˆ ( , )

˜ ˆ ˜( ) ˆ ˜ ˆ

˜ ˜ ( ) ˜
, (12)k

k

0 3 1

2 2 2

where ω ω Σ ω= − k˜ ( , )(0) , ϵ ϵ μ Σ ω= − +k k k˜( ) ( ) ( , )(3) , Δ Δ Σ ω= + k˜ ( , )k k
(1) . In contrast to [55, 81]

(see also [49] and references therein), where Σ̂ was obtained using a perturbative nonselfconsistent treatment of
the coupling to spin fluctuations, we employ here the selfenergy resulting fromour EATbased fits of the Y-123
data of [36]. The superconducting gap is approximated by the commond-wave ansatz
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Δ
Δ

= −( ) ( )k a k a
2

cos cos (13)x yk
max ⎡⎣ ⎤⎦

and the components of Σ̂ by

Σ ω Σ ω Σ Σ ω
Σ ω

ω
Δ= = = −

′
k k( , ) ( ), 0, ( , )

( )
, (14)AD

AD
k

(0) (3) (1)

where ΣAD is given by equations (10), (11), with α ωF ( )2 fromourfits of the 100 K and 67 Kdata andwith the
value of the gap depth of h=1 (for the spectra of α F2 , see figure B1(d), h is defined by equation (B.2)). The
construction of Σ(1) ensures that the gap of νA k( , ) is exactly equal to Δk for ϵ μ=k( ) . The in-plane
conductivity σ ω( )has been calculated using equations presented in subsection 3.1. The value of the plasma
frequency ωpl,sc, however, has not been obtained by a direct computation of the expression on the right hand
side of equation (6), but using the sum rule

∫ω ω
πϵ

ωσ ω= −
∞

+

2
d ( ). (15)pl,sc

2
pl
2

0 0
1

Here ωpl is the (total) plasma frequency, that has been approximated by

∫ω
πϵ

ωσ ω=
∞2

d ( ), (16)pl
2

0 0
1
n

where σ ω( )n is the calculated normal state conductivity.We use the − ′t t dispersion relationwith t=250meV
and ′ = −t 100 meV, μ = −350 meV, and the values ofNp and d corresponding toHg-1201.

The approach allows us to identify in a simple way the impact of the opening of the superconducting gap on
the spectral structures. For the superconducting (normal) state we set Δ = 40 meVmax (0 meV). The normal
state, 67 K, conductivity spectrum is very close (whenmultiplied by the conversion factor − −d d2 Hg 1201 Y 123) to
the experimental data of Y-123 and exhibits a dipwith theHEODaround 125 meV. In the superconducting
state, the feature is clearly shifted to higher energies, and the same applies to the spectra ofM1 andM2 shown in
figures 1(h) and 1(i). This is, however, in contradictionwith the experimental data, where there is no
comparable shift. The relatively smallmagnitude of the shift in the calculated spectra as compared to Δmax is a
consequence of the Brillouin zone averagingwith amajor contribution of the near nodal quasiparticles. Note
that a similar shift between the above and belowTc spectra, not occuring in the data, appears also in results of
models, where the dip is solely due to an electron–boson coupling and the temperature dependence of the Fermi
andBose factors, for an example, see figureC1 of appendix C.

3.3.Optical conductivity calculated starting from the properties of the quasiparticle spectral function
obtained byReber and coworkers
Reber et al [10, 11] have recently analyzed their photoemission data ofOPDandUDBi-2212 using the
tomographic density of states. This has led them to the observation that the near-nodal gap evolves smoothly
throughTc and closes only at a temperature Tclose, that is forUD samples considerably higher thanTc (see [11])
and presumably corresponds toT ons. This is a photoemission data based indication of the precursor
superconducting pairing scenario. Herewe demonstrate that the energy scales of the infrared data and those of
the photoemission ones are consistent with each other.We further argue that the data, taken together, suggest
the presence of superconducting pairing correlations in theT-range fromTc toT ons.

Figure 4 shows the spectra of σ1 calculated using the type of parametrization of the quasiparticle spectral

function, that has been used tofit the photoemission data in [10]: ω ω ω= − +A G Gk k k( , ) 2 Im[ ( , ) ( , )](0) (3) ,
with Ĝ given by equation (12), Δk by equation (13), Σ̂ by equation (14), Σ ″AD by

Σ ω
Γ ω Ω
Γ Ω ω

″ = −
<

⩽
Γ

Γ∞
T

T
( , )

( ) for ,

for ,
(17)AD

⎧⎨⎩
and Σ ′AD by equation (11). The temperature dependence of Γ T( )has been determined by the condition that
Γ Σ ω ω− ′ω→T( ) {1 lim [ ( ) ]}AD0 equals the experimental value of the broadening parameter reported infigure
4 (a) of [10], corresponding to theUDBi-2212 sample with =T 67 Kc . The values of the other input parameters
are Ω =Γ 70 meV and Γ =∞ 150 meV and Δ = 40 meVmax , with no temperature dependence for simplicity.
The last one is consistent with figure 4(a) of [10].We have used the same dispersion relation as in section 3.2 and
the values ofNp and d corresponding to Y-123. The thin lines represent the spectra computed using the standard
normal state formula, equation (8), not assuming any specific order. The thick lines have been obtained using
the standard superconducting state formula, equation (7), with A(1) corresponding to theNambuGreen’s
function Ĝ introduced above. In both cases the sumover k entering the expression for σ1 runs over the restricted
region of the Brillouin zone that is shaded in the inset offigure 4 , i.e., over the region addressed in [10].It is clear
from the data of [10], that this region is not significantly influenced by the antinodal pseudogap setting on atT*.
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Note that the thin (artificial normal state) lines are shownmerely to illustrate the role of the off-diagonal
component of Â determining the coherence factor.

First of all, it can be seen that theHEODoccurs at an energy very close to that of the experimental infrared
data ofUD cuprates. Second, from the two blue lines, only the thick one is qualitatively consistent with the data
for temperatures slightly aboveTc. The thin one displays a pronounced shoulder feature in themiddle of the dip,
that the experimental data do not contain. The energy of the structure is determined by Δmax, here it is located at
ca 60 meV. The feature persists to some extent to higher temperatures—note the differences between the onsets
at the high energy side of the low energymaximumof σ1 in the thick lines and those in the thin lines. It
corresponds to ‘transitions across the gap’.Whatwemean is the following: the expression on the right hand side
of equation (8) (see the factor ν ν ω ν ν ω+ − +A Ak k( , ) ( , )[f( ) f( )]) can be thought of as a sumof
contributions of different ‘transitions’ between ν and ν ω+ , for →T 0 between occupied states at negative
energies and unoccupied states at positive energies. A pronounced contribution can be expected to originate
from transitions between the broad peaks at the negative energy side and those at the positive energy side—the
transitions across the gap. For a schematic representation of the transitions, see figure 5. In the superconducting
state belowTc, the contribution to σ ω( )1 of the transitions across the gap denoted infigure 5 by the solid blue
arrow ( →A A) is compensated by the contribution of the transitions denoted by the dashed blue arrow
( →A A(1) (1), see the second term in the integral of equation (7)). This is amanifestation of the characteristic
coherence factor [82] described here by A(1). In the spectra calculated using the unrealistic normal statemodel
for < <T T Tc

ons, the contribution of the transitions accross the gap denoted by the solid red arrow infigure 5 ,
is not compensated and yields the structure in themiddle of the dip infigure 4.

The absence of the structure in the aboveTc experimental data indicates the persistence of the coherence
factor of superconducting pairing correlations aboveTc. In fact, we are not aware of any ordered state not
involving superconducting pairing that would be consistent with Reber’s observations and at the same time
exhibit a coherence factor consistent with the infrared data. For simple charge and spin density wave systems, the
relevant coherence factor is such that the contribution of the transitions across the gap is enhanced rather than

Figure 4.The spectra of σ ω( )1 calculated using the hybrid approach and the same value of the gapmagnitude and the same structure
of the quasiparticle selfenergy as in [10]. Shown is the contribution of the region of the Brillouin-zone that is shaded in the inset. The
thin (thick) lines represent results obtainedwith the off-diagonal component of theGreen’s function not included, as in standard
normal state calculations (included, as in standard superconducting state calculations).

Figure 5.Model quasiparticle spectral function ωA k( , ) for <T Tc (solid blue line), the corresponding off-diagonal component A(1)

(dashed blue line), and ωA k( , ) for < <T T Tc close (solid red line) displaying a broad peak at the negative energy side and another one
at the positive energy side. The arrows indicate the transitions across the gap discussed in the text.
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fully suppressed. For a discussion of the coherence factors of density waves, see [82], for examples of
conductivity spectra of density wave compounds displaying the Δ2 peak due to the transitions, see [83–85]. A
clear Δ2 peak appears also in the calculated spectra corresponding to the d-density-wavemodel [86]. Fujita and
coworkers reported recently a complex pattern of the charge distribution associatedwith the density wave
occurring inUD cuprates [87]. To the best of our knowledge, possible consequences for the coherence factors
have not been investigated thus far.

Finally, wewould like to comment on the fate of the spectral weight of the transitions across the gap
indicated infigure 5. In the true superconducting state the loss of this spectral weight caused by the presence of

A(1) is compensated by the formation of the δ-peak at ω = 0. In the normal state, for < <T T Tc
ons, there is no

long range phase coherence and therefore =A 0(1) . The persisting pairing correlations, however,must provide a

vertex correction to the right hand side of equation (8) playing a similar role as A(1) belowTc, i.e., a correction
partially reducing the spectral weight of the transitions across the gap. The lost spectral weight can be expected to
reappear at low energies, in the contribution to σ1 of collective degrees of freedom associatedwith the pairing
correlations.

4. Summary andConclusions

The published experimental data of σ ω( )1 ofUDhigh-Tc cuprate superconductors (HTCS) display a clear dip
feature below ca 130 meV, that starts to develop at >T Tons

c. This dip feature gives rise to corresponding
structures of thememory function. The features are similar to those ofOPDHTCS, where they set in very close
toTc and are commonly assigned to superconductivity andwell understood in terms of the Eliashberg theory.
This similarity and the one between the data and our calculated (Eliashberg) spectra strongly suggest that the dip
feature of theUDHTCS is also due to superconducting pairing correlations and its persistence in the
temperature range fromTc toT ons due to the presence of a precursor superconducting pairing phase. In order to
support this interpretation, we have further demonstrated that (a) the temperature dependence of the dip
feature cannot be simply accounted for in terms of a normal state gap unrelated to superconductivity, or in terms
of normal fermions coupled to bosons, and (b) that the infrared data taken together withfindings of recent
photoemission studies employing the tomographic density of states indicate the persistence of the coherence
factor characteristic of superconducting pairing correlations in a range of temperatures aboveTc. Future studies
should focus on clarifying the relation between the superconducting pairing correlations and the observed
charge density waves and on the origin of the Fermi-liquid like scaling of ωM ( ) in the temperature range from
Tc toT ons.
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AppendixA. Generalized Eliashberg equations: detailed account of the computational
approach and the values of input parameters

Within the framework of the spin-fermionmodel used to obtain the data presented infigures 1(d)–(f), the
superconductivity emerges in a similar way as in a coupled electron–phonon systemof a conventional
superconductor. The retarded pairing interaction ismediated by spin fluctuations replacing the phonons of the
conventional case and coupling to the spin of the quasiparticles instead of their charge, for reviews, see [46–51].
A quantitative treatment of the spin-fermionmodel can be based on the generalized Eliashberg equations, see,

e.g., [58]. Thematrix selfenergy Σ̂ , in terms of Paulimatrices Σ Σ τ Σ τ Σ τ= + +ˆ ˆ ˆ ˆ(0)
0

(3)
3

(1)
1, is determined by

the selfconsistent equation
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involving the renormalized quasiparticle propagator

ω ω τ ϵ μ τ Σ ω= − − −− ( ) ( )G k k kˆ i , i ˆ [ ( ) ] ˆ ˆ i , , (A.2)n n n
1

0 3

and the spin susceptibility χ ν q(i , )m , where ωi n are theMatsubara energies for fermions and νi m for bosons. The
value of the coupling constant g can be adjusted so that realistic values of the superconducting gap and of the
transition temperature are obtained.

A direct solution of equation (A.1) inMatsubara energies has to be followed by a numerical analytical
continuation of the selfenergy to the real axis which is an ill-posed problem. To avoid the numerical difficulties,
one can employ the spectral representation of the quasiparticle propagator
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ω
ω ω
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−−∞

∞
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i
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where τ τ τ= + +A A A Aˆ ˆ ˆ ˆ(0)
0

(3)
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(1)
1 is defined by ω ω= − +A Gk kˆ ( , ) 2 Im{ ˆ ( i0, )} and also of the spin

susceptibility
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By inserting the spectral representations in equation (A.1), the following expression for the imaginary part of the
retarded selfenergy on the real axis can be obtained

∫∑Σ ω ν
π

χ ν ω ν ω ν ν″ = ″ − − − − −
−∞

∞g

N
Ak q k qˆ ( , )

d

2
( , ) ˆ ( , )[f( ) b( ) 1], (A.5)

q

2

where ωf( ) and νb( ) are the Fermi and the Bose functions, respectively. The corresponding real part of the
selfenergy is calculated via theKramers–Kronig transformation. The evaluation of the expression on the right
hand side of equation (A.5) represents themost demanding part of the calculation due to the νq, -summation
for every (ω k, ). The computational effort can be greatly reduced by using the fact that the expression can be
written as a difference of two convolutions of the form

∫∑ ν ω ν ν⋆ = − −ω
−∞

∞
X Y

N
X Yq k q

1
( , ) ( , )d , (A.6)k

q

,

which can be efficiently evaluated using the fast Fourier transform algorithm.With the above definition, a
compact expression for Σ″ reads

Σ χ χ α″ = ″⋆ − − + ″ ⋆ =α α αg A Af
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Wehave solved the selfconsistent equations for the selfenergy iteratively startingwith a BCS spectral
function. The bare quasiparticles were described by the tight-binding dispersion

ϵ = − + − ′( ) ( ) ( ) ( )t k a k a t k a k ak( ) 2 cos cos 4 cos cos , (A.8)x y x y
⎡⎣ ⎤⎦

with =t 380 meV and ′ = −t 120 meV, = Åa 3.828 . The same formof themodel spin susceptibility
containing the resonancemode and a continuumas in [55, 56]was employed,

χ ω χ ω χ ω
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where π π= a aQ ( , ) and the values of FRM and FC are determined by a normalization condition presented in
[55].Here we have set ω = 50 meV0 , Γ = 20 meV, ξ = a2.5 , ω = 400 meVC , Γ = 1000 meVC , ξ = a1.5C ,

=b 2M , and =b 4C . Themain differences with respect to the input values of [56] are: the energy of the
resonance ω0 is slightly higher (40 meV in [56]), the ‘coherence length’ ξC of the continuum is ca three times
higher, and the dimensionless spectral weight of the resonance bM is twice as high.With these values of the
parameters, the value of the coupling constant of =g 3 eV leads to =T 133 Kc and Δ = 45 meVmax .

After every iteration, the chemical potential μwas adjusted to keep the electron occupancy at =n 0.85el .
Workingwith the spectral functions, nel is evaluated by using the formula
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For the sampling of the selfenergy, we have used a grid of 128× 128 points in the Brillouin zone and the energy
axis was discretized using 32768 points covering uniformly the energy range − +( 4 eV, 4 eV).

Figure A1 shows examples of our intermediate results: the real and imaginary parts of the quasiparticle
selfenergy at the nodal point as functions of temperature.

Appendix B. EATwith a gap in the density of states

The aimof this section is to explore towhat extent we can reproduce the experimental data of the in-plane

conductivity in the temperature range < <T T T*c using the EAT. A special attention is paid to the
experimental trend occurring belowT ons. Our starting point is the fitting procedure developed byHwang,
Sharapov andCarbotte [37, 39]. This formalismhas been slightlymodified so that it is somewhatmore rigorous,
involves less fitting parameters and also allows one to evaluate all important optical functions.

To describe themodel we beginwith the boson spectral function α F2 . TheAnsatz consists of a single peak
described by two parameters As and ωs

α ω
ω

ω ω
ω ω=

+
< <F

A
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an example is shown infigure B3(c). The density of states ωN ( ) occurring in the formula for the selfenergy reads
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for an example, see figure B3(d). Fixing thewidth of the pseudogap at Δ = 35pg meV, the end of the ‘recovery
region’ [38] at Δ2 pg and conserving the number of states, we have only 2+1fitting parameters in total—As, ωs

and the pseudogap depth h. The selfenergyΣ is calculatedwithin the non–selfconsistent Fock approximation
with the gapped density of statesN. For the imaginary part of the retarded selfenergywe have [37]

∫Σ ω π να ν ω ν ν ω ν

ω ν ν ω ν

= − − + − −

+ + + +

∞
F N

N

( ) d ( ){ ( )[b( ) 1 f( )]

( )[b( ) f( )]}. (B.3)

2
0

2

Figure A1.Real and imaginary parts of the quasiparticle selfenergy at the nodal point, as functions of temperature, calculated using the
generalized Eliashberg approach and the values of the input parameters presented in appendix A.
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The real part Σ1 is obtained using theKramers–Kronig relation

∫Σ ω
π

ν
Σ ν
ω ν

= −
−−∞

∞( )
1

d
( )

. (B.4)1
2

The conductivity is calculated using the Allen’s theory [77, 78]

∫χ ω ϵ
ϵ ω ϵ

ω Σ ω ϵ Σ ω
= − +

− + +−∞

∞
( ) d

f( ) f( )

( ) *( )
, (B.5)


σ ω

ϵ ω
ω
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whereω and ωpl are in units of energy. For the sake of simplicity the integration in (B.5) does not involve the
non–constant density of statesN. Thememory functionM is obtained as

ω ω
χ ω

= − +M ( )
1

( )
1 . (B.7)

⎧⎨⎩
⎫⎬⎭

Here is themain formal difference between our approach and the one byHwang et al [39], where a simplified
expression, obtained by a series expansion of the right hand side of equation (B.5) in powers of the selfenergy is
used to calculateM2.

The values of the parameters As, ωs and h have been obtained byminimizing

∫ ν ν ν∣ − ∣M M( ) ( ) d
30 meV

400 meV
num exp using simulated annealing followed by a simplexmethod.Here Mnum is a

result of the calculations described above and Mexp is derived from experimental data.
We have applied the described fitting procedure to the experimental data of ε1 and σ1 obtained byHwang

et al [36]. To obtain Mexp from the datawe have set ϵ =∞ 3.6.We have further set ω = 2350pl meV
(temperature independent), so that ω ω ω= + ≈m m M* ( ) ( ) 1 11 at ω = 1 eV (as in [88]). Results of the
fitting procedure are shown infigure B1. The experimental data (gray lines) are presented for several
temperatures only.We can see that the quality of the fits is good in thewhole range of temperatures. For each
temperaturewe run the procedure several times. Thefinal α F2 is usually almost identical. Themaximumof α F2

growsmonotonically and shifts to lower frequencies with decreasing temperature, see figure B1 (d). The gap
volume Δh

2

3
pg, shown in the inset of (d), is equal to zero at 295 K and at lower temperatures displays aweak

temperature dependence butwith a significant variance of its value.
Closer look at the results for lower and higher temperatures reveals a clear difference in the role of the gap. In

figure B2 we compare results obtained by the above described 2+1 parametermodel with those obtained using
the 2 parametermodel with no gap in the density of states. In (a)we see that for higher temperatures the gap does
not play any essential role. It only helps to improve thefit quality slightly. On the other hand in (b)we see that for

Figure B1. (a), (b) Results of thefitting procedure described in the text applied to the experimental data of underdoped Y-123 reported
in [36]. The data (gray lines) are presented for selected temperatures only.We can see that the quality of thefit is good for all
temperatures studied. (c) The resulting spectra of σ1 together with selected data. (d) The obtained temperature dependence of the
function α F2 .We see that with decreasing temperature themaximumof α F2 grows and shifts to lower frequencies. The inset shows
the temperature dependence of the gap volume Δh2/3 pg. At 295 K the bestfit is with no gap in the density of states and thus the gap
volume is zero. Below this temperature the gap volume shows aweak temperature dependence, butwith a significant variance.
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lower temperatures the features inM1 andM2, which are discussed in themain text, can bewell reproduced only
by themodel including the gap in the density of states. This is shown inmore detail infigure B3 , wherewe
present the spectra ofM1 calculated using the α F2 from thefit of the 67 K data (a) without and (b)with the gap in
the density of states included. The results confirm thatwithin the studiedmodel the discussed low-temperature
feature ofM1 is due to the gap inN.

Infigure B4 we review some important characteristics of both types offits—with andwithout the gap inN.
Themeasure of the quality of thefit in (a) is given by the integral norm ∣ − ∣M Mnum exp described above.We see
that for higher temperatures bothfits are of a comparable quality. For temperatures closer toTc, starting from ca
200 K, better results are achieved by the approachwith a nonzero gap inN. In (b)we show the temperature

dependence of the integrated spectral weight, ∫ω ω νσ ν=
ω

ω
SW( , ) d ( )1 2 1

1

2
of the experimental data from [36].

Comparison of (a) and (b) reveals that the temperature, belowwhich the gap inN is necessary for achieving a
good quality of thefit, approximately coincides with the temperature of the onset of the spectral weight shift
from the frequency range 30–200 meV to lower frequencies, see the green and the yellow lines in figure B4(b).
This temperature scale was recognized already in [6] and found to be close toT ons of the c-axis data. The
temperature dependence of the frequency ωmax of themaximumof the boson spectral density in (c) and that of

Figure B2. Illustration of the impact of the gap in the density of states on the quality of thefit. (a) 244 Kdata of UDY-123 reported in
[36] together with the results of thefit involving the gap (red lines) andwith those not involving the gap (blue lines). It can be seen that
the presence of the gap does not lead to a significant improvement. (b) The same for 67 K. It can be seen that the role of the gap is
essential.

Figure B3. Illustration of the role of the gap in the density of states. (a) The temperature dependence of the spectra ofM1 calculated
using the profile of α F2 from the fit of the 67 Kdata and no gap in the density of states ωN ( ). (b) The samewith the gap included.We
clearly see that the characteristicmaximumofM1 can be, within the studiedmodel, reproduced by the calculationwith the gap in the
density of states only. (c) The function α F2 obtained from the 67 Kfit. (d) Profile of the density of states used in the calculationswith
(black line) andwithout (gray line) the gap.
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α ωF ( )2
max in (d) are rathermonotonic for bothmethods. There is no apparent change of the basic trendwithin

the range of temperatures studied.
In summary, we havefitted the experimental data reported byHwang et al [36] by themodel with and

without the gap in the density of states. Comparison of the results shows that at high temperatures themodel
which uses the boson spectral function α F2 and an energy independent density of states is sufficient for a
reasonable description of the data. On the other hand, for temperatures closer toTc, the gap inN becomes crucial
for reproducing the specific features ofM1 andM2. Thefitting procedure reveals the presence of a characteristic
temperature located around 200 K, belowwhich the presence of the gap in the density of states is necessary. This
temperature scale is obviously connected to that described in [6] (see the corresponding supportingmaterial).

AppendixC. Remarks on purely normal-state interpretations of the dip feature

First, a dip in the in-plane conductivity develops with decreasing temperature naturally, even in the absence of a
DOS gap, due to the temperature dependence of the Bose and Fermi factors. Its scale is determined by the
characteristic boson energy and it is typically narrower than in the data. An example of a standard normal state
temperature dependence of σ1 is shown infigureC1(a). The spectra have been calculated using the Eliashberg
formalismdescribed in appendix A and the same values of the input parameters as in [56], except for

=t 0.38 eV, ′ = −t 0.120 eV, n=0.85 and =g 3.0 eV, for definitions, see [56] and [55]. The onset of
superconductivity leads to a different shape of the gap. This is illustrated infigureC1(b) showing the100 K,
80 K and 60 K normal state spectra from (a), and the 80 K and 60 K superconducting state spectra. For the
present values of the input parameters, =T 90 Kc .

Second, a deepening of the dip for afixed temperature can be achieved by increasing the spectral weight of
the low-energy component of the bosonic spectral function (α F2 in theAllen’s theory, χ ω″ q( , ) inmore
realisticmodels involving spin fluctuations). The latter increase, however, also leads to a reduction of the total
optical spectral weight in the infrared, not occurring in the data. This problem is illustrated infigures C1(c) and
C2 . Figure C1(c) shows the100 K and 60 K normal state spectra from (a) and the100 K and 60 K normal state
spectra calculatedwith a higher value of the dimensionless spectral weight of the resonance of =b 1.5M (the
dimensionless spectral weight of the continuum bC is reduced accordingly, from =b 4.0C to =b 3.5C ). The
deepening of theminimumcan be clearly seen. Figure C2(a) shows the calculated normal state temperature

dependence of the spectral weight ∫ω σ ω ω= ′ ′ω
SW( ) ( )d

0 1 corresponding to the spectra offigureC1(a), that is

qualitatively consistent with the experimental one shown infigure 4 of [36].With decreasing temperature,
ωSW( ) at low frequencies increases. Figure C2(b) shows that the increase of bM, for afixed temperature, leads to

the opposite trend: with increasing bM the spectral weight at low frequencies decreases. It is thus unlikely that the

Figure B4. (a) Temperature dependence of the quality of the fit of theUDY-123 data reported in [36] based on themodel with the gap
in the density of states (red symbols) and that of themodel without the gap (blue symbols). It can be seen that for higher temperatures
the performance of the twomodels is comparable. At temperatures closer to Tc themodel including the gap inN provides significantly
better results. (b) Experimental values (data of [36]) of the optical spectral weight for the three energy ranges indicated 0–30, 30–200
and 200–500 meV. The temperature scale of the onset of the decrease of the spectral weight in the frequency range 30–200 meV—
already reported in [6]—approximately coincides with that of the onset of the essential importance of the gap inN. (c) The frequency
ωmax of themaximumof the boson spectral function as a function of temperature. (d) Themaximumvalue α ωF ( )2

max of the boson
spectral function as a function of temperature. Temperature dependencies of ωmax and α ωF ( )2

max are rathermonotonic within the
range of temperatures studied.We donot observe any qualitative change of the trends around 200 K.

16

New J. Phys. 17 (2015) 053022 B Šopík et al



formation of the gap in σ1 could be described as being solely due to a specific temperature dependence of the
low-energy component of α F2 or χ ω″ q( , ).
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