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Abstract

We performed calculations of the in-plane infrared response of underdoped cuprate superconductors
to clarify the origin of a characteristic dip feature which occurs in the published experimental spectra
of the real part of the in-plane conductivity below an onset temperature T°" considerably higher than
T:.. We provide several arguments, based on a detailed comparison of our results with the published
experimental data, confirming that the dip feature and the related features of the memory function

M (w) = M;(w) + iM, (w) (apeakin M| and akink in M,) are due to superconducting pairing
correlations that develop below T°". In particular, we show that (i) the dip feature, the peak and the
kink of the low-temperature experimental data can be almost quantitatively reproduced by
calculations based on a model of a d-wave superconductor. The formation of the dip feature in the
experimental data below T°™ is shown to be analogous to the one occurring in the model spetra below
T:. (ii) Calculations based on simple models, for which the dip in the temperature range from T; to
T°" is unrelated to superconducting pairing, predict a shift of the onset of the dip at the high-energy
side upon entering the superconducting state, that is not observed in the experimental data; (iii) the
conductivity data in conjunction with the recent photoemission data (Reber et al 2012 Nat. Phys. 8
606, Reber et al 2013 Phys. Rev. B 87 060506) imply the persistence of the coherence factor
characteristic of superconducting pairing correlations in a range of temperatures above 7¢.

1. Introduction

The possible persistence of some form of superconductivity, at least pairing correlations, many tens of K above
the bulk superconducting transition temperature T in underdoped (UD) cuprate superconductors belongs to
the most vividly discussed topics in the field of high- T: superconductivity, for representative examples of related
experimental studies, see [ 1-15]. Surprisingly high (up to about 100 K above 1) values of the temperature T°"
of the onset of an increase of coherence, presumably due to an onset of precursor superconducting pairing
correlations, have been deduced from the data of the c-axis infrared response of UD YBa,Cu30 75 (Y-123) [6].
More recently, the interpretation of the T°" scale in terms of a precursor superconductivity has been supported
by results obtained by Uykur and coworkers [7]. They address the persistence of the superfluid density above T;
and the impact of Zn doping on T°™ (T? in the notation of [7]). This interpretation, however, has not yet been
commonly accepted. Two reasons are: (i) the c-axis response of Y-123 is a fairly complex quantity due to the
specific bilayer structure of this compound. Its interpretation therefore requires a detailed understanding of the
c-axis electrodynamics of the bilayer compounds [16-23]. (ii) UD cuprates are known to exhibit ordered phases
distinct from superconductivity, in particular, charge modulations have been reported [24, 25], that set in at
temperatures comparable to T°". This has fueled speculations that the T°™ scale is determined by an order
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different from and possibly competing with superconductivity rather than by pairing correlations themselves. In
this context, it is of high importance to identify manifestations of the increase of coherence below T°™ in the in-
plane response, a quantity revealing aspects of the electronic structure complementary to those manifesting
themselves in the c-axis response, and to ascertain their relation to superconducting pairing correlations.

Ithas been already shown [6] that the real part of the in-plane infrared conductivity of UD Y-123 changes at
T°™ in a way similar to that of an optimally doped (OPD) superconductor at T;: a dip-like feature with a
minimum around 400 cm™! begins to form and this is accompanied by a pronounced spectral weight shift from
the dip region to very low frequencies (below ca 200 cm™). The focus, however, has been on qualitative aspects
of the relevant spectral weight shifts, and the related spectral structures have not been addressed. Here we
concentrate on three prominent spectral features that develop below T°": the onset of the dip at the high energy
side, the corresponding peak in the spectra of the real part of the memory function and the corresponding kink
in the spectra of the imaginary part of the memory function. Our analysis involves comparisons of the data of
two representative UD cuprates with those of OPD ones and with results of our calculations employing
approaches ranging from the Allen’s theory to the fully selfconsistent generalized Eliashberg theory. It provides
evidence that the features are due to superconducting pairing correlations, and the scale T°" due to a precursor
superconducting pairing phase rather than to an ordered state unrelated to superconductivity.

Recall that T°™ is significantly lower than T*, the temperature of the onset of the pseudogap as seen, e.g., in
the planar copper Knight shift [26], in the c-axis conductivity [27-30], in the intrinsic tunnelling [31, 32], in the
angular resolved photoemission spectra of the antinodal region of the Brillouin zone [33] etc. For UD Y-123
with 10% doping T* > 300 K [6, 7,28, 29, 34], while T°™ »~ 170 K [6, 7]. The pseudogap region of the phase
diagram of the cuprates located between the T; line and the T* line involves two distinct types of electronic
correlations: the correlations setting on at T%, on the one hand, cause a depletion of the electronic density of
states at low energies and they seem to compete with superconductivity [30]. The correlations setting on at T°",
on the other hand, bring about an increase of coherence of the electronic states manifesting themselves both in
the out-of plane and in the in-plane response [6].

The paper is organized as follows. In section 2 we summarize the relevant aspects of the experimental
infrared data. As examples we use the published data of UD HgBa,CuO 45 (Hg-1201) [35] and Y-123 [6, 36]. At
the end of the section, the data are compared with the published ones of OPD cuprates. In section 3 we present
and discuss results of our calculations aiming to clarify the origin of the spectral structures. First (in
subsection 3.1), we focus on the spectra calculated using the Eliashberg theory. We put emphasis on the
similarity between the low-temperature (T) data and the low- T calculated spectra and on the similarity between
the onset of the spectral structures below T°" in UD cuprates and that below T; in the calculated spectra. In
subsection 3.2, the data are discussed in terms of the frequently used extended Allen’s theory (EAT) [36-39]. Itis
highlighted that the assumption of a superconductivity unrelated gap in the density of states in the temperature
range T; < T < T°™ leads to inconsistencies with the data. In particular, we show that it leads to a clear shift of
the high energy onset of the dip upon entering the superconducting state, that is not observed in the
experimental data. This applies also to simple models, where the dip in the temperaturerange T. < T < T°™ is
attributed solely to an electron—boson coupling and the temperature dependence of the Fermi and Bose factors.
Finally, in subsection 3.3, we present and discuss results of our calculations of the optical spectra, using as inputs
recently published properties of the quasiparticle spectral function obtained from the photoemission data by
means of analyzing the tomographic density of states [10]. A short summary and conclusions are given in
section 4.

2. Relevant aspects of the published experimental data

The dip feature in the spectra of the real part o of the infrared conductivity o will be illustrated with the recently
published data of UD HgBa,CuO 445 (Hg-1201) with 10% dopingand T: = 67 K [35]. Also discussed will be the
related structures of the memory function M (w) = M; (@) + M, (w), defined by

o(w) = igy a)p21/? / [M (@) + @] [40] and connected to the so called optical selfenergy >.°" (w) by

P (w) = =M (w)/2. Here @y is the plasma frequency. The data of UD Hg-1201 of [35] are similar to the
earlier published ones of UD Y-123 [6, 36], but a much more detailed temperature dependence is reported and
some spectral features are sharper than in Y-123.

Figure 1 shows, in part (a), a selection of the spectra of 6; of Hg-1201 from figure 1 of [35], and, in parts (b)
and (c), the corresponding spectra of M; and M, from figure 4 of [35]. The low-temperature spectra of o,
contain the §-peak at @ = 0 (not shown in the figure) corresponding to the loss-free contribution of the
superconducting condensate, a narrow low-energy component corresponding to residual quasiparticles, and a
deep and broad minimum around 30 meV (see, e.g., the 10 K line in figure 1(a)). This is followed by a broad
region of an approximately linear increase terminating at E, ~ 140 meV, where the slope of the spectrum
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Figure 1. (a) Real part of the in-plane infrared conductivity of Hg-1201 with 10% dopingand T: = 67 K for five selected temperatures
(data obtained by Mirzaei and coworkers, published in figure 1 of [35]). (b), (c): the corresponding spectra of M, and M,, respectively
(data from figure 4 of [35]). The arrows indicate the features discussed in the text: the one in (a) the change of slope of 6y, the left
(right) one in (b) the maximum (the onset feature at the high energy side) of the characteristic peak of M;, and that in (c) indicates the
kink of M,. (d), (e), (f): The spectra of oy, M, and M, calculated using the model of charged quasiparticles coupled to spin fluctuations
and the fully selfconsistent generalized Eliashberg equations. (g), (h), (i): The normal (green) and superconducting state (violet)
spectra of oy, M, and M, calculated using the hybrid approach. The dotted lines in (h) and (i) represent the derivatives of M; and M.
They are shown to highlight the shift of the structures due to Agc. The vertical lines are guides to the eye.
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Figure 2. Real part of the in-plane infrared conductivity of Hg-1201 with 10% dopingand T; = 67 K for eight selected temperatures
(data obtained by Mirzaei and coworkers published in figure 1 of [35]). The dotted lines represent linear extrapolations and are shown

changes, see the arrow in figures 1(a) and figure 2 . This change of slope will be called the high energy onset of the
dip (HEOD). Itis associated with a local maximum at a slightly higher energy. The HEOD is further
accompanied by a characteristic peak in the spectra of M with an onset feature at the high energy side (around
E;), and akink in those of M, see the arrows in figures 1(b) and (c). All the three features are well known from
earlier infrared studies [28, 36, 38, 39, 41]. What has, however,—to the best of our knowledge—not yet been
recognized, is the fact that they start to form close to the temperature T°™ of [6].
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This will be discussed below. We focus on o first. The 70 K and 120 K spectra in figure 1(a) display a clear
HEOD at an energy close to Eg, see also figure 2 . The 250 K spectrum, on the other hand, does not display any
such feature in the relevant spectral range. It can be seen in figure 1 of [35], see also figure 2, that the dip feature
vanishes at a temperature higher than 160 K but <200 K, close to the maximum T°™ of [6] (180 K). Based on
this finding and the earlier observations of [6] we assume that the temperature scale of the dip coincides with the
earlier established T°™ of [6] and T* of [ 7] and denote it by T°™. The T-dependence of the characteristic peak in
the spectra of M is similar: at 70 K and 120 K it is still very pronounced and almost at the same location as at low
temperatures, at 250 K a clear maximum is not evident (see also figure 4 of [35]; the remaining very weak band
in the 90—130 meV range seems to be of different origin, perhaps related to the sharp structure at ca 80 meV).
Note that the onset feature at the high energy side of a similar peak occurring in the case of UD Y-123 has already
been reported to vanish around 170 K [36], see discussion of figure 7 in [36]. Next we address the T-dependence
of the kink in the spectra of M,. Atlow temperatures the feature is very sharp (note that the 10 K spectrum
overshoots the 70 K one). It gets less sharp around 1; but persists, at approximately the same energy, up to much
higher temperatures, see figure 4 of [35]. In the 120—-200 K range, it transforms into a smoother onset at a lower
energy due to the presence of the relatively narrow low energy component of 6, that can be seen in figure 2,
rather than to the HEOD. Note finally that the onset of the features is very likely connected with a transition to a
purely quadratic T-dependence of the dc resistivity occurring slightly above 200 K [35] and with the appearance
below about 200 K of a Fermi-liquid like scaling of M (w) [35].

In OPD materials, a dip feature in 67 (w) terminated by alocal maximum, a peak in M; (w) and akinkin
M, (w), similar to those discussed above, set in at T; (or very slightly above T¢). For representative examples, see
[42—45]. These features of OPD materials are clearly caused by superconductivity, since they develop in parallel
with the formation of the loss-free contribution to 6 (w) of the superconducting condensate, involving the
d-peakat w = 01in o) (w): the §-peak collects the spectral weight lost by the formation of the dip. Itappears, that
the three features of OPD materials, that set in at T. and are due to superconductivity, continuously transform
into those of the UD ones, setting in at T°"°. This is a strong phenomenological argument in favor of the
superconducting pairing-based interpretation of the three features and the precursor superconducting pairing
based interpretation of the T°™ scale.

3. Results and discussion

3.1.Response functions calculated using the Eliashberg theory, comparison with the data
Recall that many properties of OPD cuprate superconductors, including superconductivity, can be (at least
qualitatively) understood in terms of (various versions of) the model, where charged planar quasiparticles are
coupled to spin fluctuations. For reviews, see [46—51]. In particular, the low- T spectra of o, in the
superconducting state have been well reproduced [52-55] using a phenomenological version of the model,
where the spin fluctuation spectrum y (v, q) isapproximated by a narrow (in ~) mode centered at the frequency
of the magnetic resonance. By including a continuum contribution to y (v, q) and performing the calculations
at the fully selfconsistent generalized Eliashberg level, almost quantitative agreement with the data can be
achieved [56], see also [57]. In the following we demonstrate that even the low-T experimental spectra of UD
Hg-1201 can be approximately reproduced using the generalized Eliashberg approach formulated in [56]. In
order to avoid any misunderstanding, we emphasize here that it is not the purpose of the present paper to
advocate a very specific model. There are only two ingredients of the model, that are really essential for our
conclusions: the superconducting order of d-wave symmetry and the relatively strong coupling between charge
carriers and bosonic excitations (not necessarily spin fluctuations), whose spectral density is peaked around
40-50 meV. Other ingredients—the presence of a tail of the spectrum of the bosonic excitations ranging to high
energies, the full selfconsistency etc.—help to reproduce the low temperature data quantitatively.

We begin with a brief description of the computational approach, details can be found in appendix A. The
generalized Eliashberg equations (see, e.g., [58]) can be written as

% (o 1) = ﬂg_;zy(iym, Q)G (i — it k - q), 1)

mq
where X is the matrix selfenergy that can be expressed in terms of the Pauli matrices as
3 =30z 4 30% 4+ 302, G = GO% + GP%; + G4 is the renormalized quasiparticle propagator,
A1 L, Lo
G (i, k) = iwnto — [e(k) — plts — 3 (o, k), 2)

x (iy,;, q) is the Matsubara counterpart of the the spin susceptibility, gis the coupling constant, iw, and iy, are
the fermionic and bosonic Matsubara energies, respectively. The equations have been solved on the real axis
using spectral representations of G and y. We have used the same form of the input spin susceptibility as in our
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previous studies [55] and [56]. It contains a narrow (in frequency) mode centered at the frequency of the
magnetic resonance and a component approximating the spin-fluctuation continuum. The corresponding
formulas, the values of all input parameters, providing the values of T; and A,,x 0of 133 Kand 45 meV,
respectively, and some intermediate results are given in appendix A. Here A, is the maximum value of the
superconducting gap of d2_,2 symmetry. The high value of T; is not surprising considering the observation of
[59] that the value of the spin-fermion coupling constant providing the best fit of the nodal kink in UD Y-123
yields a high T¢ value of 175 K.

Finally, after obtaining the selfconsistent solution of the generalized Eliashberg equations, the optical
conductivity was calculated using the formula

€N, [ — K + [T (@) |

3
7id o + 10 ®)

Oxx (w) =

Here d is the c-axis lattice parameter (d =9.52 A for Hg-1201, d = 11.65 A for Y-123), N, is the number of CuO,
planes within a unit cell (N, = 1 for Hg-1201, N}, = 2 for Y-123) and @ is here in units of energy. The expressions
K, and I1,, (w) in the numerator provide the diamagnetic and paramagnetic contributions to the optical
conductivity, respectively. Both can be expressed in terms of the matrix quasiparticle spectral function

A =A% + A% + AV defined by A (w, k) = =2 Im{G (@ + i0, k) }. The diamagnetic term is given by
the following formula (exact)

1 0% (k) [ © dE ﬂE]
Kyu=—-——) ———|1- —A®(E, k)tanh £= |, (4)
N zk: a( kxa)2 [w 2 2

The paramagnetic term is given by the current—current correlation function and can be expressed (in terms of
A) only approximately. The most frequently used approximation, employed also in our calculations, completely
neglects vertex corrections and leads to the following formula for the imaginary part 17, of I1,,:

2
n,gc(w)z—i [ae(k))
2N 4 okya

x/ (Zi—yTr{A(u, KAW+ o, 0} f0) - f@ + o). (5)
—00 T
The real part I7;, of I1,, was obtained using the Kramers—Kronig transformation. Note that the expression on
the right hand side of equation (3) includes the contribution of the condensate, the superfluid plasma energy
i) ¢ is given by
2
»

e’N
ﬁzwgl,sc = ?[H);x (0) - Kxx] (6)
0

In order to assess the validity of the approximation of equation (5), we have also evaluated 1., using the
gauge invariant approach of [56], where an important class of vertex corrections is included. The corrections
modify the spectra of I1,, only slightly, the only significant problem of the approximation being an
underestimation of the total spectral weight at finite frequencies and |IT;, (0) | by ca 8%. For the normal state, this
leads to the presence of a small unphysical singular component. In order to avoid the problem, we have replaced
K, with [T}, (0) in the normal state calculations. For temperatures below T, we have set K, = I, (0) [140 K].
The corresponding value of the (total) plasma energy /iy is 1.95 eV.

For future reference, we provide here also the formula for the real part o1 (@) of oy, (@) resulting from
equation (5):

2

&N, 1 oe © dv
U](Cl))—%ﬁ - W [m g{A(U, k)A(v+a), k)
+ AV, WAY (v + o, W @) - f + )], (7)

where A (v, k) = A% (v, k) + A® (1, k) is the usual spectral function. The normal state version of the formula
reads
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Figure 3. (a) 30 K spectra of 6; and M, from figure 1(d), (f) and the corresponding spectra of the second derivative of @wM,, all in
arbitrary units. The arrows indicate three important features discussed in the text. (b) Diagrammatic representation of the final states
discussed in the text. The solid lines denote Bogolyubov quasiparticles, the dashed line a boson participating in the final state, within
the present scheme the resonance. (c) Schematic representation of the three types of final states associated with the features (i), (ii),
(iii). We show the first Brillouin zone and the Fermi surface, the symbols represent the Bogolyubov quasiparticles, the arrows the
k-vectors of the bosons.

Np 1 g e
dhio N K a(kxa)

o (w) =

x[" S_ZA@, KA+ o, K [f0) - v + o). (8)

Figures 1(d)—(f) show the calculated spectra of 61, M, and M., respectively. Note the agreement between the
low-T spectra and the low-T data shown in figures 1(a)—(c). The structures of 6; and M, in particular a weak
onset around the energy of the resonance mode /%wy (here 50 meV ), and the HEOD of ¢, and the corresponding
kink of M, at /7wy + 24, can be interpreted along the lines of the earlier theoretical studies [55, 56]. For the
convenience of the reader, the interpretation is summarized in the following paragraph.

Figure 3(a) shows the 30 K spectra of 6, and M, from figures 1(d) and (f) and the corresponding spectra of
the second derivative of wM,, all in arbitrary units. The arrows indicate three important features, occuring also
in the experimental spectra of OPD cuprates, whose interpretation was presented in [55, 56]: (i) a weak onset of
o1 and M, around the energy 7w, of the bosonic mode (within the present context the magnetic resonance)
[43,44,52,55,56]. (ii) A maximum of the second derivative of @M, [60] at approximately Zwy + Apayx
[53, 55, 56]. (iii) Alocal maximum of ¢ at E, with E, approximately equal or slightly above Zwq + 2414
[43,44, 54, 56], associated with the HEOD, and the corresponding kink of M,. At the simplest relevant
perturbative level (Bogolyubov quasiparticles of a d-wave superconductor coupled to bosons), the basic infrared
active final states consist of two Bogolyubov quasiparticles and the bosonic mode, see figure 3(b). Final states
consisting of two Bogolyubov quasiparticles are not infrared active in the clean limit. The features (i), (ii), and
(iii) are due, as detailed in [55, 56], to the appearance above the characteristic energies (%wg, #wy + Amaxs
71wy + 244, ) of final states consisting of (i) two near nodal (Bogolyubov) quasiparticles and the bosonic mode,
(ii) a near nodal quasiparticle, an antinodal quasiparticle and the mode, and (iii) two antinodal quasiparticles
and the mode. Above 7w + 24,4, the density of available final states saturates. A schematic representation of
the three types of final states, associated with the features (i), (ii), and (iii) is presented in figure 3(c).

The relation Eg & 24, + /%, [54-56] allows for a quantitative consistency check. The value of Eg of UD
Hg-1201 0f 140 meV is indeed approximately consistent with the available experimental values of 7w and A«
(0g = 50 meV [61], Apax & 39 meV [62], Amax & 45 meV [63]). Recently, a similar consistency check has
been applied to the infrared data of OPD Bi,Sr,CaCu,O g5 (Bi-2212) by Homes and coworkers [64]. To
conclude, the low-T'infrared spectra of UD Hg-1201are consistent with a well established model of a d-wave
superconductor.

Next we address the T-dependence of the model spectra. It can be seen in figures 1(d)—(f) that the three
important features (the dip of 67, the maximum of M, and the M, kink) develop below T; in the same fashion as
in the data of OPD materials [42—45]. In particular, the o7 dip forms already close to T.. What we would like to
highlight here is that not only the T'dependence of the data of OPD cuprates but also that of the UD is similar to
the model spectra, compare figures 1(a)—(c) with figures 1(d)—(f). Note that the development of the dip in the
UD Hg-1201 below T°™ ~ 180 K is analogous to that of the model spectra below T;: somewhat below T°*/T. a
characteristic change of slope appears in o} (w), with decreasing T'its energy approaches E, and the minimum at
low energies and the characteristic maximum around E, are forming. In the model spectra, the energy scale of
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the dip develops more gradually than in the data. This difference is most likely due to the mean field character of
the model. The similarity between the T-dependence of the data below T°™ and that of the model spectra below
T; provides a further support for the interpretation of the T°™ scale in terms of a precursor superconducting
pairing state, for which T°" corresponds to the mean field transition temperature.

Admittedly, the mean field model does not reproduce the low-energy part of the data above T;. The
calculated spectra of oy at 70 K, 100 K, and 120 K contain a 6 function at @ = 0 (not shown), which is not
present in the corresponding experimental spectra. In addition, the calculated spectra of M, at 70 K, 100 K, and
120 K display a more gradual increase with increasing frequency than the experimental ones, that satisfy the
Fermi-liquid like scaling, M, (w, T) ~ &%, with & = \/(ﬁw)2 + (pakT)? and p= 1.5 [35]. In our opinion,
these discrepancies are due to the presence of strong fluctuations which suppress the long range phase coherence

in the temperature range from T; to T°™. An adequate microscopic description of the spectra in this
temperature range must include the fluctuating condensate and/or a contribution of uncondensed pairs, and the
coupling between the former and the thermally excited quasiparticles. Note, however, that in the frequency
range around the HEOD, the impact of the fluctuations on the spectral features can be expected to be of less
importance. For completeness, the T-dependence of the contribution of the condensate/fluctuating condensate
in UD cuprates will be qualitatively discussed below. At low temperatures, the response of the condensate is
represented by the §-peak at = 0 in 67 (w). When going from T'= 0 to T, the spectral weight of the §-peak
decreases, which is compensated by the filling in of the gap [65, 66]. At T, the -peak vanishes but the superfluid
does not, merely its long range phase coherence has been lost [67]. Simultaneously, the superfluid acquires a
finite phasecorrelation time 7, probably due to a random motion of unbound thermally excited vortices, and the
6-peak is replaced with a Drude peak of finite width ~1/7 [68, 69] that cannot be easily distinguished from the
response of thermally excited quasiparticles.

For our considerations on the origin of the three spectral structures, it is very important that the THz
experiments [68] have clearly confirmed the presence of a fluctuating condensate at T; and at temperatures
slightly higher than T¢. For a slightly UD epitaxial film of Bi-2212 with T; = 74 K, the reported value of the
fluctuating condensate density at T; (T. + 5 K) is ca 35% (25%) of that at low temperatures (see the Tg linein
figure 4 of [68]). Based on this observation only, it can be expected, with a high degree of certainty, that the more
strongly UD Hg-1201 sample of [35] will be, at temperatures not much higher than T, = 67 K, e.g.,at 70 K, ina
fluctuating state with a considerable value of the fluctuating condensate density and the magnitude of the
superconducting gap not very different from the low-T one. And, importantly, there is no clear qualitative
difference between the 70 K experimental data of [35] and the 80 K, 90 K and 100 K ones.

When going from 7T; to higher temperatures, the spectral weight of the fluctuating condensate (i.e., that of
the corresponding narrow Drude peak) decreases further [68], in parallel with the filling in of the gap. At the
same time, 7 decreases dramatically [68], so that for T'above ca T. + 20 K, the contribution of the fluctuating
condensate could not be distinguished from that of normal state electrons [68, 69], see also [70]. It has remained
an open question [71], whether at higher temperatures the fluctuating condensate is simply absent or merely
unobservable by the THz techniques, while manifesting itself in the Nernst and diamagnetic response [1-3]. The
data reported by Mirzaei and coworkers clearly show that the process of filling in the gap, very similar to that of
OPD cuprates or that of a model d-wave superconductor (the similarity has been demonstrated in the present
study), continues up to T°%, and the spectral weight comes from the lowest frequencies (v < 20 meV). For
these reasons we suspect that the partially condensed and/or uncondensed pairs persist up to T°" providing a
low-energy component of ¢ (w). This issue will be addressed again at the end of section 3.3. Finally, we note that
the precursor phenomena discussed above may be strongly influenced by a spatial inhomogeneity of the
superconducting order [4, 72].

In our calculations, fluctuations of the condensate have not been included. There is no established way of
doing this in conjunction with a retarded interaction, which is needed for a description of the infrared response.
Previous attempts are limited to phenomenological models (e.g., [73]) and models involving a nonretarded
interaction (e.g., [74]). Manske and coworkers [75] have used the fluctuation exchange approximation
combined with results of the Kosterlitz—Thouless theory and thermodynamic considerations based on the
Ginzburg-Landau theory to estimate the difference between T and the mean field transition temperature (T;)
and have confirmed the claim of [67] that in UD cuprates T; is considerably lower than T . This approach,
however, cannot be easily extended towards calculations of the optical conductivity in the fluctuating state.

The calculations also do not include the pseudogap setting on at T* (‘antinodal pseudogap’). Its opening can
be expected to influence the in-plane conductivity in two different ways: (a) directly, by modifying the
contribution to o of the antinodal region, that is approximately determined by the corresponding contribution
to the sum over k on the right hand side of equation (8). (b) Indirectly, through a renormalization of near nodal
quasiparticles, caused by a nodal-antinodal boson assisted scattering. The former contribution can be expected
to be small since in moderately UD cuprates the pseudo-gapped region of the Brillouin zone around the
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antinode is relatively small [33, 76] and, in addition, the magnitude of the corresponding vertex (~ 5 (ke ) ) is
<4

small. The mechanism (b) may influence the spectra significantly. The large difference between T* and T°,

however, indicates, that the dip feature in the spectra of ¢ is not caused by the antinodal pseudogap. In the

following subsection we further demonstrate, using the EAT, that the feature is unlikely to be caused by an order

setting on at T°™ and unrelated to superconducting pairing.

3.2. Analysis of the above T, data based on the EAT, problems of interpretations not involving pairing
The normal state (i.e., above T;) spectra of M; and M, of UD Y-123 and Bi,Sr,CaCu,O g5 (Bi-2212) have been
previously successfully fitted and interpreted in terms of the phenomenological EAT [36—39]. This is based on
two implicit assumptions: (i) the in-plane response is dominated by the contribution of near nodal
quasiparticles; (ii) the dominant part of the renormalization of these quasiparticles comes from a nodal—
antinodal boson assisted scattering, the antinodal region being gapped. The essential inputs are a function
a’F (v) describing bosonic excitations and a density of states N (@) displaying the antinodal gap, whose physical
origin is not specified. Here we provide two indications that the gap captured by the EAT based fits is likely
related to superconducting pairing.

(i) We have fitted the Hwang’s data of UD Y-123 reported in [36] using the formulas of the EAT, i.e., the
Allen’s formula [77, 78]

c(w) = le_ow_lfl /°° de fle) — f(w + €) o
i o J-w w—2(w+e) +2%(0)

where @ and o, are in units of energy, the formula for the imaginary part X, of the retarded selfenergy X
proposedin [37]

2 (w) = _ﬂ‘/(;oo dva’F W) {N(w — ) [b(v) + 1 - f(w — V)]

, (10)
+N(w+v)[blv) + flw + )]}
and
_ 1 o 3 (v)
5 (@) = ”Pf_m dv = (11)

We have achieved a degree of agreement comparable to that of previous studies (e.g., that of [39]). In the above
equations, b(v) and f(w) are the Fermi and the Bose functions, respectively. Our ansatz for a*F (v), the one for
N (w), and a detailed description of our fits can be found in appendix B.

The important findings are: (a) while the presence of the density of states gap is needed to achieve a high
quality fit for temperatures well below T°%, it is not essential for temperatures higher than T°". For the latter
temperatures (and not for the former, see appendix C), the simple Allen’s theory [77, 78], as used in [79, 80],
appears to be sufficient. The characteristic temperature of the sharp gap of the EAT based fits is thus T°™ rather
than the pseudogap temperature T*. (b) The opening of the gap in the density of states causes a spectral weight
shift from the dip region to low frequencies, the same effect as expected for a precursor superconducting pairing
state.

(ii) Assuming that the physicsat . < T < T°™ is unrelated to superconducting pairing, we arrive ata
contradiction with the experimental data, as outlined below. Starting from the above assumption, the opening of
the superconducting gap in the near nodal region below T; can be expected to give rise to a blue shift of the
structures established above T¢. This blue shift occurs indeed in the calculated spectra, see the discussion below,
butis not seen in the experimental data. Figure 1(g) shows the normal (100 K and 67 K) and the
superconducting state (67 K) spectra of o7 calculated using a version of the hybrid approach 55, 81], that is
described in the following paragraph.

The hybrid approach uses an approximate expression for the Nambu Green’s function, involving the
dispersion relation of charged quasiparticles € (k), the superconducting gap Ay, and a selfenergy correction
3 =308+ 5002 + xW;

Gl 1) = oty + (k)13 + Akfl, (12)
@ — (k) — A;
where @ = w — 20 (w, k), ék) = e (k) — u + 2P (w, k), Ax = A + =V (w, k). In contrast to [55, 81]
(see also [49] and references therein), where X was obtained using a perturbative nonselfconsistent treatment of
the coupling to spin fluctuations, we employ here the selfenergy resulting from our EAT based fits of the Y-123
data of [36]. The superconducting gap is approximated by the common d-wave ansatz
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Ay = ﬁ[cos(kxa) - cos(kya)] (13)
2
and the components of X by
Z/
20 (0, 1) = Eap (@), 2O = 0, 50 (@, k) = — 242y (14)

where X 4, is given by equations (10), (11), with @’F () from our fits of the 100 K and 67 K data and with the
value of the gap depth of h = 1 (for the spectra of a*F, see figure B1(d), h is defined by equation (B.2)). The
construction of X ensures that the gap of A (v, k) is exactly equal to Ay for € (k) = p. The in-plane
conductivity o (w) has been calculated using equations presented in subsection 3.1. The value of the plasma
frequency @y ., however, has not been obtained by a direct computation of the expression on the right hand
side of equation (6), but using the sum rule

2

o
2 2
Dhjc = O — —— dwoy (w). (15)
7ep J 0,

Here @y, is the (total) plasma frequency, that has been approximated by

0l == [ dwop (a), (16)
zeg Jo
where ¢ " (w) is the calculated normal state conductivity. We use the t — ¢’ dispersion relation with =250 meV
andt’ = —100 meV, u = —350 meV, and the values of N,and d corresponding to Hg-1201.

The approach allows us to identify in a simple way the impact of the opening of the superconducting gap on
the spectral structures. For the superconducting (normal) state we set Ap.x = 40 meV (0 meV). The normal
state, 67 K, conductivity spectrum is very close (when multiplied by the conversion factor 2dpg_ 1501 / dy_123) 0
the experimental data of Y-123 and exhibits a dip with the HEOD around 125 meV. In the superconducting
state, the feature is clearly shifted to higher energies, and the same applies to the spectra of M; and M, shown in
figures 1(h) and 1(i). This is, however, in contradiction with the experimental data, where there is no
comparable shift. The relatively small magnitude of the shift in the calculated spectra as compared to A« isa
consequence of the Brillouin zone averaging with a major contribution of the near nodal quasiparticles. Note
that a similar shift between the above and below T spectra, not occuring in the data, appears also in results of
models, where the dip is solely due to an electron—-boson coupling and the temperature dependence of the Fermi
and Bose factors, for an example, see figure C1 of appendix C.

3.3. Optical conductivity calculated starting from the properties of the quasiparticle spectral function
obtained by Reber and coworkers
Reber et al [10, 11] have recently analyzed their photoemission data of OPD and UD Bi-2212 using the
tomographic density of states. This has led them to the observation that the near-nodal gap evolves smoothly
through T; and closes only at a temperature Tjos., that is for UD samples considerably higher than T; (see [11])
and presumably corresponds to T°%. This is a photoemission data based indication of the precursor
superconducting pairing scenario. Here we demonstrate that the energy scales of the infrared data and those of
the photoemission ones are consistent with each other. We further argue that the data, taken together, suggest
the presence of superconducting pairing correlations in the T-range from T; to T°™.

Figure 4 shows the spectra of o7 calculated using the type of parametrization of the quasiparticle spectral
function, that has been used to fit the photoemission datain [10]: A (, k) = =2 Im[G?) (@, k) + G (@, k)],
with G given by equation (12), A by equation (13), X by equation (14), X4, by

r(T) for |w|< Qr,

17
I for Qr < |w|, (17)

ZA,D , T) = _{

and X}, byequation (11). The temperature dependence of I' (T) has been determined by the condition that

' (T)/{1 = lim,_[2p (w)/w]} equals the experimental value of the broadening parameter reported in figure
4 (a) of [10], corresponding to the UD Bi-2212 sample with T. = 67 K. The values of the other input parameters
are Qr = 70 meV and I, = 150 meV and A,, = 40 meV, with no temperature dependence for simplicity.
Thelast one is consistent with figure 4(a) of [10]. We have used the same dispersion relation as in section 3.2 and
the values of N, and d corresponding to Y-123. The thin lines represent the spectra computed using the standard
normal state formula, equation (8), not assuming any specific order. The thick lines have been obtained using
the standard superconducting state formula, equation (7), with A" corresponding to the Nambu Green’s
function G introduced above. In both cases the sum over k entering the expression for 6; runs over the restricted
region of the Brillouin zone that is shaded in the inset of figure 4, i.e., over the region addressed in [ 10].It is clear
from the data of [10], that this region is not significantly influenced by the antinodal pseudogap setting on at T*.
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Figure 4. The spectra of oy (w) calculated using the hybrid approach and the same value of the gap magnitude and the same structure
of the quasiparticle selfenergy as in [10]. Shown is the contribution of the region of the Brillouin-zone that is shaded in the inset. The
thin (thick) lines represent results obtained with the off-diagonal component of the Green’s function not included, as in standard
normal state calculations (included, as in standard superconducting state calculations).
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Figure 5. Model quasiparticle spectral function A (w, k) for T < T, (solid blue line), the corresponding off-diagonal component AV
(dashed blueline), and A (w, k) for T. < T < T (solid red line) displaying a broad peak at the negative energy side and another one
at the positive energy side. The arrows indicate the transitions across the gap discussed in the text.

Note that the thin (artificial normal state) lines are shown merely to illustrate the role of the off-diagonal
component of A determining the coherence factor.

First of all, it can be seen that the HEOD occurs at an energy very close to that of the experimental infrared
data of UD cuprates. Second, from the two blue lines, only the thick one is qualitatively consistent with the data
for temperatures slightly above T;. The thin one displays a pronounced shoulder feature in the middle of the dip,
that the experimental data do not contain. The energy of the structure is determined by A, hereitislocated at
ca 60 meV. The feature persists to some extent to higher temperatures—note the differences between the onsets
at the high energy side of the low energy maximum of ¢; in the thick lines and those in the thin lines. It
corresponds to ‘transitions across the gap’. What we mean is the following: the expression on the right hand side
of equation (8) (see the factor A (v, k)A (v + w, k) [f(v) — f(v + ®)]) can be thought of as a sum of
contributions of different ‘transitions’ between v and v + @, for T — 0 between occupied states at negative
energies and unoccupied states at positive energies. A pronounced contribution can be expected to originate
from transitions between the broad peaks at the negative energy side and those at the positive energy side—the
transitions across the gap. For a schematic representation of the transitions, see figure 5. In the superconducting
state below T¢, the contribution to o (w) of the transitions across the gap denoted in figure 5 by the solid blue
arrow (A — A) is compensated by the contribution of the transitions denoted by the dashed blue arrow
(AD - AM see the second term in the integral of equation (7)). This is a manifestation of the characteristic
coherence factor [82] described here by AV, In the spectra calculated using the unrealistic normal state model
for T, < T < T°™, the contribution of the transitions accross the gap denoted by the solid red arrow in figure 5,
is not compensated and yields the structure in the middle of the dip in figure 4.

The absence of the structure in the above T, experimental data indicates the persistence of the coherence
factor of superconducting pairing correlations above T¢. In fact, we are not aware of any ordered state not
involving superconducting pairing that would be consistent with Reber’s observations and at the same time
exhibit a coherence factor consistent with the infrared data. For simple charge and spin density wave systems, the
relevant coherence factor is such that the contribution of the transitions across the gap is enhanced rather than
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fully suppressed. For a discussion of the coherence factors of density waves, see [82], for examples of
conductivity spectra of density wave compounds displaying the 24 peak due to the transitions, see [83-85]. A
clear 24 peak appears also in the calculated spectra corresponding to the d-density-wave model [86]. Fujita and
coworkers reported recently a complex pattern of the charge distribution associated with the density wave
occurring in UD cuprates [87]. To the best of our knowledge, possible consequences for the coherence factors
have not been investigated thus far.

Finally, we would like to comment on the fate of the spectral weight of the transitions across the gap
indicated in figure 5. In the true superconducting state the loss of this spectral weight caused by the presence of
AW is compensated by the formation of the 5-peak at @ = 0. In the normal state, for T, < T < T°™, there is no
long range phase coherence and therefore A" = 0. The persisting pairing correlations, however, must provide a
vertex correction to the right hand side of equation (8) playing a similar role as AV below T, i.e., a correction
partially reducing the spectral weight of the transitions across the gap. The lost spectral weight can be expected to
reappear atlow energies, in the contribution to o7 of collective degrees of freedom associated with the pairing
correlations.

4. Summary and Conclusions

The published experimental data of o1 (@) of UD high-T; cuprate superconductors (HTCS) display a clear dip
feature below ca 130 meV, that starts to develop at 7°" > T.. This dip feature gives rise to corresponding
structures of the memory function. The features are similar to those of OPD HTCS, where they set in very close
to T and are commonly assigned to superconductivity and well understood in terms of the Eliashberg theory.
This similarity and the one between the data and our calculated (Eliashberg) spectra strongly suggest that the dip
feature of the UD HTCS is also due to superconducting pairing correlations and its persistence in the
temperature range from T to T°™ due to the presence of a precursor superconducting pairing phase. In order to
support this interpretation, we have further demonstrated that (a) the temperature dependence of the dip
feature cannot be simply accounted for in terms of a normal state gap unrelated to superconductivity, or in terms
of normal fermions coupled to bosons, and (b) that the infrared data taken together with findings of recent
photoemission studies employing the tomographic density of states indicate the persistence of the coherence
factor characteristic of superconducting pairing correlations in a range of temperatures above T;. Future studies
should focus on clarifying the relation between the superconducting pairing correlations and the observed
charge density waves and on the origin of the Fermi-liquid like scaling of M (w) in the temperature range from
T to TO™.
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Appendix A. Generalized Fliashberg equations: detailed account of the computational
approach and the values of input parameters

Within the framework of the spin-fermion model used to obtain the data presented in figures 1(d)—(f), the
superconductivity emerges in a similar way as in a coupled electron—phonon system of a conventional
superconductor. The retarded pairing interaction is mediated by spin fluctuations replacing the phonons of the
conventional case and coupling to the spin of the quasiparticles instead of their charge, for reviews, see [46—51].
A quantitative treatment of the spin-fermion model can be based on the generalized Eliashberg equations, see,
e.g., [58]. The matrix selfenergy 3, in terms of Pauli matrices £ = X%, + X®)#; + X4, is determined by
the selfconsistent equation
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% (i, ) = %D(iym, 9) 6 (i — it Kk - ), (A1)
mq

involving the renormalized quasiparticle propagator
G (i, k) = iw,to — [e (k) — plts — 3 (i, k), (A.2)

and the spin susceptibility y (iy,, q), where i, are the Matsubara energies for fermions and iy, for bosons. The
value of the coupling constant g can be adjusted so that realistic values of the superconducting gap and of the
transition temperature are obtained.

A direct solution of equation (A.1) in Matsubara energies has to be followed by a numerical analytical
continuation of the selfenergy to the real axis which is an ill-posed problem. To avoid the numerical difficulties,
one can employ the spectral representation of the quasiparticle propagator

. © dw A(w, k

G(io, k) = [~ oAl (A3)
-0 27 10, — @

where A = A9 2 + A® 5 + AV 2 is defined by A (w, k) = =2 Im{G (» + i0, k) } and also of the spin

susceptibility

)((ium, q) = 1 wdu. (A.4)
T J—-o Wy — VU

By inserting the spectral representations in equation (A.1), the following expression for the imaginary part of the
retarded selfenergy on the real axis can be obtained

ol SN T e — o) - bly)
Z(“”k)‘N§ | S 0@ - v k- f@ - 1) = b) - 1], (A5)

where f(@) and b (v) are the Fermi and the Bose functions, respectively. The corresponding real part of the
selfenergy is calculated via the Kramers—Kronig transformation. The evaluation of the expression on the right
hand side of equation (A.5) represents the most demanding part of the calculation due to the q, v-summation
for every (w, k). The computational effort can be greatly reduced by using the fact that the expression can be
written as a difference of two convolutions of the form

1 o0
Xk V| = — / X, QY (@ - v, k — q)dv, A6
b= R Z K @Y=k g (A6)

which can be efficiently evaluated using the fast Fourier transform algorithm. With the above definition, a
compact expression for Z” reads

1 1
3@ = gz[)(”*(f - E)A(“) - (b + 5);/ *AW], a=0,3,1. (A.7)

We have solved the selfconsistent equations for the selfenergy iteratively starting with a BCS spectral
function. The bare quasiparticles were described by the tight-binding dispersion

ek) = —Zt[cos(kxa) + cos(kya)] — 4t cos(kxa) cos(kya>, (A.8)

with t = 380 meV and t' = —120 meV, a = 3.828 A. The same form of the model spin susceptibility
containing the resonance mode and a continuum as in [55, 56] was employed,

XsE (o, Q) = bRM)(RM (o, CI) + bC)(c (o, Q))

Tt (@, @) = ! Fron

e A 4 1+(q—Q)2§2a)02—(u2—iFa))
1 F,

1o (o, @ = <

1+ (q- Q)2§C2 a)é — - ifcw’

where Q = (x/a, n/a) and the values of Fry and F are determined by a normalization condition presented in
[55]. Here we have set /iwy = 50 meV, I’ = 20 meV, & = 2.5a, /iwc = 400 meV, I = 1000 meV, & = 1.54,
by = 2,and bc = 4. The main differences with respect to the input values of [56] are: the energy of the
resonance 7y is slightly higher (40 meV in [56]), the ‘coherence length’ &¢ of the continuum is ca three times
higher, and the dimensionless spectral weight of the resonance by, is twice as high. With these values of the
parameters, the value of the coupling constant of ¢ = 3 eV leadsto T. = 133 Kand A.x = 45 meV.

After every iteration, the chemical potential y was adjusted to keep the electron occupancy at ) = 0.85.
Working with the spectral functions, 7, is evaluated by using the formula
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Figure A1l. Real and imaginary parts of the quasiparticle selfenergy at the nodal point, as functions of temperature, calculated using the
generalized Eliashberg approach and the values of the input parameters presented in appendix A.

1 « dE PE
a=1-= f —A®(E, k) tanh —. A9
a=1- 3 [ S e a9

For the sampling of the selfenergy, we have used a grid of 128 x 128 points in the Brillouin zone and the energy
axis was discretized using 32768 points covering uniformly the energy range (—4 eV, +4 eV).

Figure A1 shows examples of our intermediate results: the real and imaginary parts of the quasiparticle
selfenergy at the nodal point as functions of temperature.

Appendix B. EAT with a gap in the density of states

The aim of this section is to explore to what extent we can reproduce the experimental data of the in-plane

conductivity in the temperature range T. < T < T* using the EAT. A special attention is paid to the
experimental trend occurring below T°™. Our starting point is the fitting procedure developed by Hwang,
Sharapov and Carbotte [37, 39]. This formalism has been slightly modified so that it is somewhat more rigorous,
involves less fitting parameters and also allows one to evaluate all important optical functions.

To describe the model we begin with the boson spectral function a?F. The Ansatz consists of a single peak
described by two parameters A, and @
Ao

>
o* + o

a’F (w) = 0<w< w, (B.1)

an example is shown in figure B3(c). The density of states N (@) occurring in the formula for the selfenergy reads

2
1—h|1-— £ for ® < A,
pg
N(w) =< 5 (B.2)
1+ Eh for Apg < @ <24,
k1 for 24, < o,

for an example, see figure B3(d). Fixing the width of the pseudogap at A, = 35 meV, the end of the ‘recovery
region’ [38] at 24, and conserving the number of states, we have only 2+1 fitting parameters in total— A, w;
and the pseudogap depth h. The selfenergy X'is calculated within the non—selfconsistent Fock approximation
with the gapped density of states N. For the imaginary part of the retarded selfenergy we have [37]

2 (w)= —ﬂfoo dva’F (V) {N(w = v)[b(v) + 1 — f(ow — 1)]
0
+ N(w +v)[bv) + f(w + v)]}. (B.3)
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Figure B1. (a), (b) Results of the fitting procedure described in the text applied to the experimental data of underdoped Y-123 reported
in [36]. The data (gray lines) are presented for selected temperatures only. We can see that the quality of the fit is good for all
temperatures studied. (c) The resulting spectra of o} together with selected data. (d) The obtained temperature dependence of the
function a’F. We see that with decreasing temperature the maximum of a”F grows and shifts to lower frequencies. The inset shows
the temperature dependence of the gap volume 2/3hA . At 295 K the best fit is with no gap in the density of states and thus the gap
volume is zero. Below this temperature the gap volume shows a weak temperature dependence, but with a significant variance.

The real part X is obtained using the Kramers—Kronig relation

(@) = —Lp f ® w22® (B.4)
T —00 @ — U

The conductivity is calculated using the Allen’s theory [77, 78]

4(@) = /‘°° de f(e) — f(w + ¢€) , (B.5)
= @w-X(w+e)+2(w)

. 2
o(@) = 2% (w), (B.6)
Y/

where @ and o, are in units of energy. For the sake of simplicity the integration in (B.5) does not involve the
non—constant density of states N. The memory function M is obtained as

M (o) = —w{; + 1}. (B.7)
X (o)

Here is the main formal difference between our approach and the one by Hwang et al [39], where a simplified
expression, obtained by a series expansion of the right hand side of equation (B.5) in powers of the selfenergy is
used to calculate M,.

The values of the parameters A, @, and h have been obtained by minimizing

/3 ;(i::/ev [Mpum () — Megp, (v)|dv using simulated annealing followed by a simplex method. Here My, isa

result of the calculations described above and M.y, is derived from experimental data.

We have applied the described fitting procedure to the experimental data of ¢, and ¢; obtained by Hwang
etal [36]. To obtain M, from the datawe have set €, = 3.6. We have further set i, = 2350 meV
(temperature independent), so that m* (w)/m = M (w)/@w + 1 = latw = 1€V (asin [88]). Results of the
fitting procedure are shown in figure B1. The experimental data (gray lines) are presented for several
temperatures only. We can see that the quality of the fits is good in the whole range of temperatures. For each
temperature we run the procedure several times. The final @*F is usually almost identical. The maximum of aF
grows mgnotonically and shifts to lower frequencies with decreasing temperature, see figure B1 (d). The gap
volume —hA,,, shown in the inset of (d), is equal to zero at 295 K and at lower temperatures displays a weak
tempera’?ure dependence but with a significant variance of its value.

Closer look at the results for lower and higher temperatures reveals a clear difference in the role of the gap. In
figure B2 we compare results obtained by the above described 2+1 parameter model with those obtained using
the 2 parameter model with no gap in the density of states. In (a) we see that for higher temperatures the gap does
not play any essential role. It only helps to improve the fit quality slightly. On the other hand in (b) we see that for
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Figure B2. Illustration of the impact of the gap in the density of states on the quality of the fit. (a) 244 K data of UD Y-123 reported in
[36] together with the results of the fit involving the gap (red lines) and with those not involving the gap (blue lines). It can be seen that
the presence of the gap does not lead to a significant improvement. (b) The same for 67 K. It can be seen that the role of the gap is
essential.
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Figure B3. Illustration of the role of the gap in the density of states. (a) The temperature dependence of the spectra of M, calculated
using the profile of a?F from the fit of the 67 K data and no gap in the density of states N (@). (b) The same with the gap included. We
clearly see that the characteristic maximum of M, can be, within the studied model, reproduced by the calculation with the gap in the
density of states only. (c) The function a?F obtained from the 67 K fit. (d) Profile of the density of states used in the calculations with
(black line) and without (gray line) the gap.

lower temperatures the features in M; and M,, which are discussed in the main text, can be well reproduced only
by the model including the gap in the density of states. This is shown in more detail in figure B3 , where we
present the spectra of M| calculated using the @*F from the fit of the 67 K data (a) without and (b) with the gap in
the density of states included. The results confirm that within the studied model the discussed low-temperature
feature of M, is due to the gap in N.

In figure B4 we review some important characteristics of both types of fits—with and without the gap in N.
The measure of the quality of the fit in (a) is given by the integral norm | Mym — M.y, | described above. We see
that for higher temperatures both fits are of a comparable quality. For temperatures closer to T, starting from ca
200 K, better results are achieved by the approach with a nonzero gap in N. In (b) we show the temperature
dependence of the integrated spectral weight, SW (w;, @,) = fw Tz duvoy (v) of the experimental data from [36].

Comparison of (a) and (b) reveals that the temperature, below which the gap in Nis necessary for achieving a
good quality of the fit, approximately coincides with the temperature of the onset of the spectral weight shift
from the frequency range 30-200 meV to lower frequencies, see the green and the yellow lines in figure B4(b).
This temperature scale was recognized already in [6] and found to be close to T°™ of the c-axis data. The
temperature dependence of the frequency @,y of the maximum of the boson spectral density in (c) and that of
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Figure B4. (a) Temperature dependence of the quality of the fit of the UD Y-123 data reported in [36] based on the model with the gap
in the density of states (red symbols) and that of the model without the gap (blue symbols). It can be seen that for higher temperatures
the performance of the two models is comparable. At temperatures closer to T; the model including the gap in N provides significantly
better results. (b) Experimental values (data of [36]) of the optical spectral weight for the three energy ranges indicated 0-30, 30-200
and 200-500 meV. The temperature scale of the onset of the decrease of the spectral weight in the frequency range 30—200 meV—
already reported in [6]—approximately coincides with that of the onset of the essential importance of the gap in N. (c) The frequency
Omax of the maximum of the boson spectral function as a function of temperature. (d) The maximum value @*F (@ ) of the boson
spectral function as a function of temperature. Temperature dependencies of wpay and a?F (@ ) are rather monotonic within the
range of temperatures studied. We do not observe any qualitative change of the trends around 200 K.

@’F (0pax) in (d) are rather monotonic for both methods. There is no apparent change of the basic trend within
the range of temperatures studied.

In summary, we have fitted the experimental data reported by Hwang et al [36] by the model with and
without the gap in the density of states. Comparison of the results shows that at high temperatures the model
which uses the boson spectral function @’F and an energy independent density of states is sufficient for a
reasonable description of the data. On the other hand, for temperatures closer to T, the gap in N becomes crucial
for reproducing the specific features of M; and M,. The fitting procedure reveals the presence of a characteristic
temperature located around 200 K, below which the presence of the gap in the density of states is necessary. This
temperature scale is obviously connected to that described in [6] (see the corresponding supporting material).

Appendix C. Remarks on purely normal-state interpretations of the dip feature

First, a dip in the in-plane conductivity develops with decreasing temperature naturally, even in the absence of a
DOS gap, due to the temperature dependence of the Bose and Fermi factors. Its scale is determined by the
characteristic boson energy and it is typically narrower than in the data. An example of a standard normal state
temperature dependence of ¢ is shown in figure C1(a). The spectra have been calculated using the Eliashberg
formalism described in appendix A and the same values of the input parameters as in [56], except for
t=0.38eV,t = —0.120 eV,n=0.85and g = 3.0 eV, for definitions, see [56] and [55]. The onset of
superconductivity leads to a different shape of the gap. This is illustrated in figure C1(b) showing the 100 K,

80 K and 60 K normal state spectra from (a), and the 80 K and 60 K superconducting state spectra. For the
present values of the input parameters, 7. = 90 K.

Second, a deepening of the dip for a fixed temperature can be achieved by increasing the spectral weight of
the low-energy component of the bosonic spectral function (a’F in the Allen’s theory, y” (q, @) in more
realistic models involving spin fluctuations). The latter increase, however, also leads to a reduction of the total
optical spectral weight in the infrared, not occurring in the data. This problem is illustrated in figures C1(c) and
C2 . Figure C1(c) shows the 100 K and 60 K normal state spectra from (a) and the 100 K and 60 K normal state
spectra calculated with a higher value of the dimensionless spectral weight of the resonance of by; = 1.5 (the
dimensionless spectral weight of the continuum b is reduced accordingly, from b¢c = 4.0 to bc = 3.5). The
deepening of the minimum can be clearly seen. Figure C2(a) shows the calculated normal state temperature
dependence of the spectral weight SW (w) = /0 ¢ o01(@')dw’ corresponding to the spectra of figure C1(a), that is
qualitatively consistent with the experimental one shown in figure 4 of [36]. With decreasing temperature,

SW (@) atlow frequencies increases. Figure C2(b) shows that the increase of by, for a fixed temperature, leads to
the opposite trend: with increasing by the spectral weight at low frequencies decreases. It is thus unlikely that the
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Figure C1. (a) Normal state temperature dependence of ¢, calculated as described in the text. (b) Selected normal state spectra from
(a) (100 K, 80 K, 60 K) and the 80 K and 60 K superconducting state spectra. The difference between the normal state gap feature
due to the temperature dependence of the Bose and Fermi factors and the superconducting state gap feature due to the opening of the
superconducting gap can be clearly seen. (c) Two normal state spectra from (a) (100 K and 60 K) and the 100 K and 60 K normal
state spectra calculated with a higher value of the spectral weight of the resonance of by; = 1.5. A deepening of the gap due to the
increase of by can be clearly seen.
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Figure C2. (a) Normal state temperature dependence of the frequency dependent spectral weight SW () defined in the text
corresponding to the temperature dependence of the conductivity shown in figure C1(a). (b) The spectral weight SW (@) for two
values of temperature and for two values of the spectral weight by of the low energy component of the bosonic spectral function. It
can be seen that SW (w) decreases with increasing by;.

formation of the gap in 6, could be described as being solely due to a specific temperature dependence of the
low-energy component of a’F or y” (q, w).
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