32 research outputs found

    <i>Campylobacter jejuni</i>transmission and colonisation in broiler chickens is inhibited by Faecal Microbiota Transplantation

    Get PDF
    ABSTRACT BACKGROUND Campylobacter jejuni, the most frequent cause of foodborne bacterial infection, is found on around 70% of retail chicken. As such there is a need for effective controls in chicken production. Microbial-based controls such as probiotics are attractive to the poultry industry, but of limited efficacy. Furthermore, as commercially-produced chickens have no maternal contact, their pioneer microbiome is likely to come from the hatchery environment. Early delivery of microbials that lead to a more ‘natural avian’ microbiome may, therefore, improve bird health and reduce susceptibility to C.jejuni colonisation. A faecal microbiota transplant (FMT) was used to transfer a mature cecal microbiome to newly-hatched broiler chicks and its effects on C.jejuni challenge assessed. We used both a seeder-bird infection model that mimics natural bird-to-bird infection alongside a direct-challenge model. We used a 16S rRNA gene sequencing-based approach to characterize the transplant material itself alongside changes to the chicken microbiome following FMT. RESULTS FMT changes the composition of the chicken intestinal microbiome. We observed little change in species richness following FMT compared to untreated samples, but there is an increase in phylogenetic diversity within those species. The most significant difference in the ceca is an increase in Lactobacilli, although not a major component of the transplant material, suggesting the FMT results in a change in the intestinal milieu as much as a direct change to the microbiome. Upon direct challenge, FMT resulted in lower initial intestinal colonisation with C.jejuni. More significantly, in a seeder-bird challenge of infection transmission, FMT reduced transmission and intestinal colonisation until common UK retail age of slaughter. In a repeat experiment, transmission was completely blocked following FMT treatment. Delayed FMT administration at 7 days of-age had limited effect on colonisation and transmission. CONCLUSIONS We show that transfer of a whole mature microbiome to newly-hatched chicks reduces transmission and colonisation of C.jejuni. This indicates that modification of the broiler chick microbiome can reduce intestinal colonisation of C.jejuni to levels projected to lead to lower the human infection rate. We believe these findings offer a way to identify key taxa or consortia that are effective in reducing C.jejuni colonisation and improving broiler gut health

    Cytokine responses in birds challenged with the human food-borne pathogen Campylobacter jejuni implies a Th17 response

    Get PDF
    Development of process orientated understanding of cytokine interactions within the gastrointestinal tract during an immune response to pathogens requires experimentation and statistical modelling. The immune response against pathogen challenge depends on the specific threat to the host. Here, we show that broiler chickens mount a breed-dependent immune response to Campylobacter jejuni infection in the caeca by analysing experimental data using frequentist and Bayesian structural equation models (SEM). SEM provides a framework by which cytokine interdependencies, based on prior knowledge, can be tested. In both breeds important cytokines including pro-inflammatory interleukin (IL)-1β, , IL-4, IL-17A, interferon (IFN)-γ and anti-inflammatory IL-10 and transforming growth factor (TGF)-β4 were expressed post-challenge. The SEM revealed a putative regulatory pathway illustrating a T helper (Th)17 response and regulation of IL-10, which is breed-dependent. The prominence of the Th17 pathway indicates the cytokine response aims to limit the invasion or colonization of an extracellular bacterial pathogen but the time-dependent nature of the response differs between breeds

    Campylobacter, a zoonotic pathogen of global importance: prevalence and risk factors in the fast-evolving chicken meat system of Nairobi, Kenya

    Get PDF
    Campylobacteriosis is a leading foodborne zoonosis worldwide, and is frequently associated with handling and consumption of poultry meat. Various studies indicate that Campylobacter causes a substantial human disease burden in low to middle-income countries, but data regarding the organism's epidemiology in countries like Kenya are scarce. In sub-Saharan Africa, 3.8 million deaths of children under-5 years of age are reported annually. Of those, 25% are caused by diarrheal diseases, and Campylobacter is one of the most frequently isolated bacteria from diarrheic children. With the growth of urban conglomerates, such as Kenya's capital, Nairobi, changes in diets, food production systems, and retailing dynamics, it is likely that exposure and susceptibility to this pathogen will change. Therefore, the importance of Campylobacter disease burden in Kenya may increase further. The objectives of this study were: 1) to determine the prevalence of Campylobacter spp. in Nairobi's small-scale chicken farms and meat retailers, and 2) to identify potential risk factors associated with its presence in those sites. The prevalence data provides the first detailed baseline for this pathogen in the urban Kenyan context. The risk factors provide context-specific insights for disease managers. A cross-sectional study of broiler, indigenous chicken farms, and chicken meat retailers, was conducted in a peri-urban, low to middle-income area (Dagoretti), and a very-low income informal settlement (Kibera) of Nairobi. Chicken faeces were collected using one pair of boot socks per farm, and 3 raw chicken meat samples were purchased per retailer. Samples were cultured for viable Campylobacter spp. using mCCDA, followed by blood agar plates in aerobic/microaerobic conditions for prevalence calculations. A questionnaire-based survey on sanitary, sourcing and selling practices was conducted at each site for risk factor identification using logistic regression analyses. A total of 171 farm premises and 53 retailers were sampled and interviewed. The prevalence results for Campylobacter spp. were between 33 to 44% for broiler and indigenous chicken farms, 60% and 64% for retailers, in Dagoretti and Kibera, respectively. Univariable logistic regression showed an association between Campylobacter spp. presence and the easiness of cleaning the display material used by the retailer. Restricting access to the flock was also associated with the pathogen's presence. Multivariable logistic regression identified the selling of defrosted meat as a retailer risk factor (OR: 4.69; 95% CI: 1.31-19.97), calling for more investigation of the reported repetitive freezing-thawing processes and cold chain improvement options. At the farm-level, having a pen floor of material not easy to clean was found to increase the risk (OR: 2.31; 95%CI: 1.06-5.37). The relatively high prevalence of Campylobacter spp. across different areas and value chain nodes indicates a clear human exposure risk. The open nature of both small-scale broiler and indigenous chicken production practices with low biosecurity, hygiene and informal transactions, likely plays a role in this. While gradual improvement of farm biosecurity is recommended, risk factors identified suggest that consumer education and enforcement of basic food safety principles at the retailer end of the food continuum represent key targets for risk reduction in informal settings

    Multi-Locus Sequence Analysis Reveals Profound Genetic Diversity among Isolates of the Human Pathogen Bartonella bacilliformis

    Get PDF
    Bartonella bacilliformis is the aetiological agent of human bartonellosis, a potentially life threatening infection of significant public health concern in the Andean region of South America. Human bartonellosis has long been recognised in the region but a recent upsurge in the number of cases of the disease and an apparent expansion of its geographical distribution have re-emphasized its contemporary medical importance. Here, we describe the development of a multi-locus sequence typing (MLST) scheme for B. bacilliformis and its application to an archive of 43 isolates collected from patients across Peru. MLST identified eight sequence types among these isolates and the delineation of these was generally congruent with those of the previously described typing scheme. Phylogenetic analysis based on concatenated sequence data derived from MLST loci revealed that seven of the eight sequence types were closely related to one another; however, one sequence type, ST8, exhibited profound evolutionary divergence from the others. The extent of this divergence was akin to that observed between other members of the Bartonella genus, suggesting that ST8 strains may be better considered as members of a novel Bartonella genospecies

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Use of Galleria mellonella as a Model for Insect Vector Transmission of the Foodborne Pathogen Campylobacter jejuni in Broiler Chickens: A Pilot Study

    No full text
    There is growing pressure to find a way to eradicate or reduce the levels of foodborne pathogens such as Campylobacter in broiler chickens, whilst limiting the use of antimicrobials. For Campylobacter, there is currently no vaccine and on-farm biosecurity alone is insufficient to prevent colonization of broiler chicken flocks. Dipteran flies are proven carriers of Campylobacter and their entry into broiler houses may contribute to its transmission to broiler chickens. As there is currently no experimental vector transmission model for Campylobacter and chickens, we decided to examine experimentally whether Galleria mellonella could be used as vector to transmit Campylobacter to broiler chickens. More recently, the use of live insect feed has been proposed both for its nutritional qualities and improving bird welfare through the encouragement of natural foraging behaviours and it is unclear any risk this poses in terms of pathogen transmission. In this study, day-old chicks (n = 29) were obtained from a commercial hatchery. At three weeks of age, birds were split into 4 This groups; Group 1 was infected via oral gavage with 106 cells of C. jejuni-M1, Group 2 was fed Galleria mellonella infected with 106 cells of C. jejuni-M1, Group 3 was fed uninfected Galleria mellonella, whilst the remaining group was unchallenged. Cloacal swabs were taken at 2, 4, and 6 days post-infection (dpi) to follow transmission and at 8 dpi birds culled and C. jejuni load quantified in the caeca and liver. At 8 dpi, all birds in both the Campylobacter gavage group and those in the group fed the Campylobacter infected Galleria mellonella were Campylobacter positive, whereas those fed uninfected Galleria mellonella and the control group were all Campylobacter negative. The mean caecal Campylobacter load in the Campylobacter gavage group was 1.7 × 1010 per gram compared with 8.6 × 109 in the group fed the Campylobacter-infected Galleria mellonella. No liver positives were found in any of the groups. Our findings indicate that feeding broiler chickens with the vector Galleria mellonella infected with C. jejuni-M1 is sufficient to establish colonisation with C. jejuni. We propose that Galleria can be used as an easy and flexible model for vector transmission of foodborne pathogens in chicken.</jats:p

    Use of Galleria mellonella as a Model for Insect Vector Transmission of the Foodborne Pathogen Campylobacter jejuni in Broiler Chickens: A Pilot Study

    No full text
    There is growing pressure to find a way to eradicate or reduce the levels of foodborne pathogens such as Campylobacter in broiler chickens, whilst limiting the use of antimicrobials. For Campylobacter, there is currently no vaccine and on-farm biosecurity alone is insufficient to prevent colonization of broiler chicken flocks. Dipteran flies are proven carriers of Campylobacter and their entry into broiler houses may contribute to its transmission to broiler chickens. As there is currently no experimental vector transmission model for Campylobacter and chickens, we decided to examine experimentally whether Galleria mellonella could be used as vector to transmit Campylobacter to broiler chickens. More recently, the use of live insect feed has been proposed both for its nutritional qualities and improving bird welfare through the encouragement of natural foraging behaviours and it is unclear any risk this poses in terms of pathogen transmission. In this study, day-old chicks (n = 29) were obtained from a commercial hatchery. At three weeks of age, birds were split into 4 This groups; Group 1 was infected via oral gavage with 106 cells of C. jejuni-M1, Group 2 was fed Galleria mellonella infected with 106 cells of C. jejuni-M1, Group 3 was fed uninfected Galleria mellonella, whilst the remaining group was unchallenged. Cloacal swabs were taken at 2, 4, and 6 days post-infection (dpi) to follow transmission and at 8 dpi birds culled and C. jejuni load quantified in the caeca and liver. At 8 dpi, all birds in both the Campylobacter gavage group and those in the group fed the Campylobacter infected Galleria mellonella were Campylobacter positive, whereas those fed uninfected Galleria mellonella and the control group were all Campylobacter negative. The mean caecal Campylobacter load in the Campylobacter gavage group was 1.7 &times; 1010 per gram compared with 8.6 &times; 109 in the group fed the Campylobacter-infected Galleria mellonella. No liver positives were found in any of the groups. Our findings indicate that feeding broiler chickens with the vector Galleria mellonella infected with C. jejuni-M1 is sufficient to establish colonisation with C. jejuni. We propose that Galleria can be used as an easy and flexible model for vector transmission of foodborne pathogens in chicken

    Navigating frailty: how can digital tools support holistic assessments and integrate care across sectors?

    No full text
    Summary Using a design-led methodology and cross-organisational partnership, we worked with people living with frailty, unpaid carers, and professionals to explore the challenges of navigating care and develop new digital tools. Abstract With an increasingly frail population (1) and stretched health and social care services, the third sector has become essential for supporting people living with frailty (PLWF) and unpaid carers in navigating complex and fragmented care systems (2). Through an innovative partnership between Midlothian Health and Social Care Partnership (MHSCP), the British Red Cross (BRC), VOCAL (Voices of Carers Across Lothian) and Scotland's Digital Health and Care Innovation Centre (DHI), funded by the Scottish Government, we are developing new digitally enabled approaches which can help PLWF and carers to navigate care. Using a design-led methodology, we began with a multidisciplinary professional workshop which explored how IT systems and risk-averse information governance policies siloes information and requires individuals to tell their story many times. Next, interviews with PLWF and carers identified that many people struggled with navigating the system, coordinating care, and tracking who was involved. Application forms for services and benefits were overly complex, requiring information to be inputted multiple times. Professionals such as BRC and VOCAL advisors who helped people navigate these processes were highly valued. With this in mind, we focused on the BRC "What Matters to You?" assessment. This person-centred conversation builds a holistic picture of the person, helps them navigate options, and sets goals for living independently. BRC then agrees actions with the individual to take forward. However, BRC staff found that the paper form used for the assessment interfered with their ability to build rapport and follow the natural flow of conversation. Through participatory workshops, we unpicked the knowledge embedded within the current process and co-designed ideas with staff. We identified moments in the conversation where the tool should 'disappear', and moments when the tool could be used to support improved communication. From this, we developed digital prototypes for a new assessment tool which records information about the individual in a more holistic way, shows the people involved in someone’s care, and makes it simple to record and track actions. The information can also be shared with other professionals or used to complete applications using a transparent consent process. The prototypes were validated in workshops with BRC staff, VOCAL staff, PLWF, and unpaid carers. Their feedback showed that the tool was considered extremely valuable in helping citizens understand what information was being recorded about them and taking charge of their care. The learning gained in the project offers insight into the potential for digital tools to support person-centred frailty assessments, and the design-led process for collaboratively developing innovative tools that meet the needs of citizens and professionals. In the next phase, we plan to develop a working proof of concept, which can be trialled in Midlothian. (1) Reeves D, Pye S, Ashcroft DM, Clegg A, Kontopantelis E, Blakeman T, et al. The challenge of ageing populations and patient frailty: Can primary care adapt? BMJ (Online). 2018;362. (2) Xie Y, Hamilton M, Peisah C, Anstey KJ, Sinclair C. Navigating Community-Based Aged Care Services From the Consumer Perspective: A Scoping Review. Gerontologist. 2023;(April):1–14
    corecore