308 research outputs found

    Oligonucleotide sequences forming short self-complimentary hairpins can expedite the down-regulation of Coprinopsis cinerea genes

    Get PDF
    Gene silencing in fungi is often induced by dsRNA hairpin forming constructs the preparation of which can require multiple cloning steps. To simplify gene silencing in the filamentous fungi we have evaluated a high throughput cloning method for target sequences using the homobasidiomycete Coprinopsis cinerea, the GFP reporter and a commercially available vector system. The pSUPER RNAi Systemℱ, which was developed for mammalian experiments, exploits the human H1 Polymerase III (Pol III) RNA gene promoter and expedites cloning/expression of specific user-defined oligonucleotide sequences to form short self-complimentary hairpins. Transformation of C. cinerea with pSUPER constructs harboring specific oligonucleotides (19 nt stem length) enabled recovery of transformants with reduced transcripts of the GFP transgene, that were less fluorescent in protein assays and microscopic phenotypes. This technological advance should expedite functional genomic studies in C. cinerea and has wider potential for utility in other homobasidiomycete and filamentous fungi

    Double-stranded RNA elements associated with the MVX disease of Agaricus bisporus

    Get PDF
    Double-stranded RNA (dsRNA) has been isolated from Agaricus bisporus fruit bodies exhibiting a wide range of disease symptoms. The symptoms which occurred singularly or in combination included; bare cropping areas on commercial beds (primordia disruption), crop delay, premature veil opening, off- or brown-coloured mushrooms, sporophore malformations and loss of crop yield. All symptoms were associated with loss of yield and/or product quality. Collectively, these symptoms are described as mushroom virus X (MVX) disease. The dsRNA titre was much lower than that previously encountered with the La France viral disease of mushrooms and a modified cellulose CF11 protocol was used for their detection. A broad survey of cultivated mushrooms from the British industry identified dsRNA elements ranging between 640 bp and 20.2 kbp; the majority have not previously been described in A. bisporus. 26 dsRNA elements were identified with a maximum of 17, apparently non-encapsidated dsRNA elements, in any one sample. Three dsRNAs (16.2, 9.4 and 2.4 kbp) were routinely found in mushrooms asymptomatic for MVX. Previously, La France disease was effectively contained and controlled by minimising the on-farm production and spread of basidiospores. Our on-farm observations suggest that MVX could be spread by infected spores and/or mycelial fragments

    Characterization of serine proteinase expression in agaricus bisporus and coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 Promoter

    Get PDF
    The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiatio

    Characterization of a novel virus associated with the MVX disease of Agaricus bisporus

    Get PDF
    ‘Mushroom Virus X’ (MVX) disease of the cultivated mushroom Agaricus bisporus first arose in UK during the 1990’s. This disease resulted in devastating crop losses in the UK and gradually became more widespread (e.g. Netherlands and Eire). Up to twenty-six, non-encapsidated, double stranded RNA (dsRNA) elements have been found to be associated with diseased mushrooms, and these are believed to be the result of a complex of viruses. Although considerable data has accumulated on the symptoms of infection, aetiological sources, epidemiology and molecular characterization of the MVX dsRNA elements are limited. Research described in this thesis focused principally on sequence characterization of a frequently occurring dsRNA element ( MVX 14.4), which was shown to be a novel Endornavirus. Assigned ‘Agaricus bisporus endornavirus 1’ (AbEV1), this represents the first endornavirus known to infect edible mushrooms. AbEV1 is the first MVX element to be fully sequenced. Putative domains for RNA-dependent RNA polymerase (RdRp), helicase and glycosyltransferase were identified and used in comparisons with other viruses. Characterization of an AbEV1- type dsRNA found in a culture sample derived from a wild Agaricus bisporus collection indicates a possible source of the MVX dsRNA infections. Epidemiological studies were used to demonstrate that the AbEV1 dsRNA was transmissible both vertically through spores and horizontally by mycelial anastomosis between infected donor and MVX free acceptor strains. As a first step in the effort to understand the role of AbEV1in MVX infections and to investigate possible host defence mechanisms, dsRNA hairpin sequences were introduced into A. bisporus by Agrobacterium-mediated transformation. Both helicase and RdRp sequences were able to confer resistance to the uptake of MVX dsRNA elements in transformants. These observations suggest that homology-dependent gene silencing pathway(s) may be present in A. bisporus and represent a residual antiviral defence mechanism. Advances and approaches developed in this project open new opportunities to characterize the other dsRNA elements from the MVX complex, to further our understanding of mycovirus infections and host responses, and to investigate the origins of infectious dsRNA elements.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Testing the Children: Do Non-Genetic Health-Care Providers Differ in Their Decision to Advise Genetic Presymptomatic Testing on Minors? A Cross-Sectional Study in Five Countries in the European Union

    Get PDF
    BACKGROUND: Within Europe many guidelines exist regarding the genetic testing of minors. Predictive and presymptomatic genetic testing of minors is recommended for disorders for which medical intervention/preventive measures exist, and for which early detection improves future medical health. AIM: This study, which is part of the larger 5th EU-framework "genetic education" (GenEd) study, aimed to evaluate the self-reported responses of nongenetic health-care providers in five different EU countries (Germany, France, Sweden, the United Kingdom, and the Netherlands) when confronted with a parent requesting presymptomatic testing on a minor child for a treatable disease. METHODS: A cross-sectional study design using postal, structured scenario-based questionnaires that were sent to 8129 general practitioners (GPs) and pediatricians, between July 2004 and October 2004, addressing self-reported management of a genetic case for which early medical intervention during childhood is beneficial, involving a minor. RESULTS: Most practitioners agreed on testing the oldest child, aged 12 years (81.5% for GPs and 87.2% for pediatricians), and not testing the youngest child, aged 6 months (72.6% for GPs and 61.3% for pediatricians). After multivariate adjustment there were statistical differences between countries in recommending a genetic test for the child at the age of 8 years. Pediatricians in France (50%) and Germany (58%) would recommend a test, whereas in the United Kingdom (22%), Sweden (30%), and the Netherlands (32%) they would not. CONCLUSION: Even though presymptomatic genetic testing in minors is recommended for disorders for which medical intervention exists, EU physicians are uncertain at what age starting to do so in young children

    Functional analyses of <i>Agaricus bisporus </i>Serine Proteinase 1 (SPR1) reveals a role in utilisation of humic rich substrates and adaptation to the leaf-litter ecological niche

    Get PDF
    Agaricus bisporus is a secondary decomposer fungus and an excellent model for the adaptation, persistence and growth of fungi in humic‐rich environments such as soils of temperate woodland and pastures. The A. bisporus serine proteinase SPR1 is induced by humic acids and is highly expressed during growth on compost. Three Spr1 gene silencing cassettes were constructed around sense, antisense and non‐translatable‐stop strategies (pGRsensehph, pGRantihph and pGRstophph). Transformation of A. bisporus with these cassettes generated cultures showing a reduction in extracellular proteinase activity as demonstrated by the reduction, or abolition, of a clearing zone on plate‐based bioassays. These lines were then assessed by detailed enzyme assay, RT‐qPCR and fruiting. Serine proteinase activity in liquid cultures was reduced in 83% of transformants. RT‐qPCR showed reduced Spr1 mRNA levels in all transformants analysed, and these correlated with reduced enzyme activity. When fruiting was induced, highly‐silenced transformant AS5 failed to colonize the compost, whilst for those that did colonize the compost, 60% gave a reduction in mushroom yield. Transcriptional, biochemical and developmental observations, demonstrate that SPR1 has an important role in nutrient acquisition in compost and that SPR1 is a key enzyme in the adaptation of Agaricus to the humic‐rich ecological niche formed during biomass degradation

    Preparedness of emergency departments in northwest England for managing chemical incidents: a structured interview survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of significant chemical incidents occur in the UK each year and may require Emergency Departments (EDs) to receive and manage contaminated casualties. Previously UK EDs have been found to be under-prepared for this, but since October 2005 acute hospital Trusts have had a statutory responsibility to maintain decontamination capacity. We aimed to evaluate the level of preparedness of Emergency Departments in North West England for managing chemical incidents.</p> <p>Methods</p> <p>A face-to-face semi-structured interview was carried out with the Nurse Manager or a nominated deputy in all 18 Emergency Departments in the Region.</p> <p>Results</p> <p>16/18 departments had a written chemical incident plan but only 7 had the plan available at interview. All had a designated decontamination area but only 11 felt that they were adequately equipped. 12/18 had a current training programme for chemical incident management and 3 had no staff trained in decontamination. 13/18 could contain contaminated water from casualty decontamination and 6 could provide shelter for casualties before decontamination.</p> <p>Conclusion</p> <p>We have identified major inconsistencies in the preparedness of North West Emergency Departments for managing chemical incidents. Nationally recognized standards on incident planning, facilities, equipment and procedures need to be agreed and implemented with adequate resources. Issues of environmental safety and patient dignity and comfort should also be addressed.</p

    Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Get PDF
    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost andduringmushroomformation.The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation aremore highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ÎČ-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics

    The ethics of digital well-being: a multidisciplinary perspective

    Get PDF
    This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being
    • 

    corecore