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ABSTRACT 
‘Mushroom Virus X’ (MVX) disease of the cultivated mushroom Agaricus bisporus 

first arose in UK during the 1990’s. This disease resulted in devastating crop losses in 

the UK and gradually became more widespread (e.g. Netherlands and Eire). Up to 

twenty-six, non-encapsidated, double stranded RNA (dsRNA) elements have been 

found to be associated with diseased mushrooms, and these are believed to be the result 

of a complex of viruses. Although considerable data has accumulated on the symptoms 

of infection, aetiological sources, epidemiology and molecular characterization of the 

MVX dsRNA elements are limited. Research described in this thesis focused principally 

on sequence characterization of a frequently occurring dsRNA element (MVX14.4), 

which was shown to be a novel Endornavirus. Assigned ‘Agaricus bisporus 

endornavirus 1’ (AbEV1), this represents the first endornavirus known to infect edible 

mushrooms. AbEV1 is the first MVX element to be fully sequenced. Putative domains 

for RNA-dependent RNA polymerase (RdRp), helicase and glycosyltransferase were 

identified and used in comparisons with other viruses. Characterization of an AbEV1-

type dsRNA found in a culture sample derived from a wild Agaricus bisporus collection 

indicates a possible source of the MVX dsRNA infections. Epidemiological studies 

were used to demonstrate that the AbEV1 dsRNA was transmissible both vertically 

through spores and horizontally by mycelial anastomosis between infected donor and 

MVX free acceptor strains. As a first step in the effort to understand the role of 

AbEV1in MVX infections and to investigate possible host defence mechanisms, 

dsRNA hairpin sequences were introduced into A. bisporus by Agrobacterium-mediated 

transformation. Both helicase and RdRp sequences were able to confer resistance to the 

uptake of MVX dsRNA elements in transformants. These observations suggest that 

homology-dependent gene silencing pathway(s) may be present in A. bisporus and 

represent a residual antiviral defence mechanism. Advances and approaches developed 

in this project open new opportunities to characterize the other dsRNA elements from 

the MVX complex, to further our understanding of mycovirus infections and host 

responses, and to investigate the origins of infectious dsRNA elements. 
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1. Summary 

The work described in this thesis was designed to gain a better understanding of a viral dsRNA 

element associated with the Mushroom Virus X disease, affecting the cultivated mushroom 

Agaricus bisporus. An overview of mushroom biology and fungal virology will provide the 

background to this study. 

 

1.1 The basidiomycete  

Agaricus bisporus (Lange) Imbach 
 

According to fossil records, fungi have existed since the lower cretaceous period, 

approximately 130 million years ago (Chang et al., 1993).  

 

In nature, fungi play an important role in the cycling of carbon and other elements. They 

live either as saprophytic organisms feeding from dead or decaying materials, as 

parasites or in symbiosis with other living organisms. All fungi, except yeasts, grow as 

microscopic filaments called hyphae which extend and branch to form a mycelium. The 

latter is the vegetative phase of fungal growth, while the sexual phase is represented by 

spore-bearing structures called sporophores. 

 

The fungal kingdom comprises five major groups: chytridiomycetes, zygomycetes, 

ascomycetes, deuteromycetes, and basidiomycetes. The latter represent one third of the 

fungal kingdom. Basidiomycetes are classified as either homo- or heterobasidiomycetes 

based on their basidial morphology (Elliott, 1985a). Heterobasidiomycetes produce 

septate basidia of various shapes during their life cycle. Most plant pathogenic fungi 

(e.g. smuts, rusts) belong to this group. Homobasidiomycetes have non-septate basidia 

on large and fleshy fruiting bodies (mushrooms and toadstools) and are further 

subdivided into gasteromycetes and hymenomycetes. Gasteromycetes, also called 

“stomach fungi”, produce spores inside their fruiting bodies. Spores are dispersed when 

fruiting bodies are damaged by animals, heavy rain, etc. Hymenomycetes produce 

spores from an open surface and comprise two orders: the Agaricales (gilled 

mushrooms) and the Aphyllophorales (polypores, toothed fungi, coral fungi) (Hibbett et 

al., 1997). In gilled mushrooms, basidia are aligned in close proximity to each other 
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forming extensive lamellae of meiotically dividing cells. Gilled mushrooms include 

most cultivated genera: Agaricus, Lentinus, Flammulina, Volvariella and Pleurotus 

(Chang et al., 1989). 

 

1.2 Agaricus bisporus description 
 

Agaricus bisporus var. bisporus, commonly named ‘white button mushroom’ (Fig 1.1), 

is the premier cultivated species worldwide and falls within the Agaricus section 

Duploannulatae (Challen et al., 2003). Its name comes from: “Agaricon” which is an 

ancient Greek word for fungus, derived from Agara, a Greek city where mushrooms 

were abundant; while “bisporus” means bearing two spores (web site: 

www.mushroomexpert.com).  

 

A. bisporus is comprised of a cap (pileus) and a stalk (stipe). The spore-bearing lamellae 

or gills are found at the underside of the cap. The gills are not attached to the stipe in 

Agaricus spp., in contrast to other genera, and are covered early in development by a 

veil which opens in the mature mushroom resulting in a distinct ring (annulus) on the 

stipe (Elliott, 1985a). Agaricus species produce dark-brown coloured spores, causing 

the brown coloration of gills seen in mature mushrooms. However, the distinguishing 

feature of the cultivated A. bisporus var. bisporus is microscopic; each basidium bears 

two spores, instead of the usual four observed in most homobasidiomycetes (Fig. 1.2). 

There are four clearly differentiated strains within button mushrooms (Fritsche & 

Sonnenberg, 1988): white, off-white, brown, and hybrid varieties. White strains are 

characterised by smooth white fruiting bodies without scales and produce relatively 

small mushrooms (average 4-8 grams/unit). Off-white strains, also called 

“intermediate”, arose spontaneously amongst Dutch mushroom farms. They have rough 

scaly off-white caps. Fruiting bodies tend to be larger and denser than those of white 

varieties. They are particularly suited for mechanical picking and very high yields can 

be obtained. The brown strains have a more natural cap colour compared to wild A. 

bisporus and are grown for the excellent flavour. Brown strains are used to produce 

specialty mushrooms such as “cremini” and “Portobello”.  
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Fig. 1.1- Agaricus bisporus var. bisporus. The white button mushroom is the premier 
cultivated species worldwide and falls within the Agaricus section Duploannulatae (image 
courtesy of Warwick HRI) 
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1.3  Life-cycle of Agaricus bisporus 

 

1.3.1 Homobasidiomycetes  
The complete sexual life-cycle of homobasidiomycetes consists of three distinct phases: 

haplophase, dikaryonphase, and diplophase. A sexual spore (basidiospore) upon 

germination typically forms a non-self fertile mycelium which, when established, 

contains a single nucleus per cell and is referred to as a monokaryon. This uninucleate 

condition is maintained by a complex of intercellular septal apparatus (Giesy & Day, 

1965) that allows cytoplasmic continuity, but restricts nuclei flow. In many species, 

further sexual development requires a mating interaction between compatible strains, 

leading to the formation of the fertile dikaryon (Koltin et al., 1972) in which the two 

nuclei from compatible mating partners remain closely associated in each cell and 

divide in synchrony, but do not fuse (Casselton, 2002). The dikaryon phase is the 

predominant vegetative phase of basidiomycetes (Casselton, 2002) and can provide 

some advantages of diploidy (Bagueret et al., 1994) such as the masking of recessive 

and deleterious alleles, and an increased ability to adapt to environmental change. It also 

provides an opportunity for somatic genetic recombination, which is particularly 

important in fungi that no longer have a sexual reproduction phase (Bagueret et al., 

1994). In many homobasidiomycete species characteristic lateral, bridge-like hyphal 

connections, termed clamp connections (Fig. 1.3) occur between adjacent cells. These 

Crosses between ‘smooth’ and ‘off-

white’ varieties have been used to 

produce several ‘hybrid’ strains with 

improved agronomic characteristics. 

The first commercial hybrid strains 

were Horst U1 and U3 (Fritsche & 

Sonnenberg, 1988) and most modern 

hybrids are derivatives of these early 

strains (Fritsche, 1983; Kerrigan et al., 

1995; Moore et al., 2001).   

 

Fig. 1.2-Agaricus bisporus basidium 
bearing two spores (image courtesy of 
Warwick HRI) 
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connections are diagnostic of dikaryon mycelium and play a role in the maintenance of 

the bi-nucleate cell (Casselton, 2002).  

 

 
 

 

 

  

 

Meiosis occurs immediately after fusion of the nuclei and the meiotic products enter the 

spores, which are borne on the basidia. These are then dispersed and establish 

monokaryotic mycelia. Instances of incomplete sexual progression are distributed 

throughout the homobasidiomycetes (Koltin et al., 1972). For example, precocious 

fruiting can occur in the absence of a dikaryon phase. Fruiting bodies have been found 

on monokaryotic mycelia of Peniophora ludoviciana (Biggs, 1938), Schizophillum 

commune (Raper & Krongelb, 1958), Sistotrema brinkmanni (Lemke, 1969), and Fomes 

cajanderi (Neuhauser & Gilbertson, 1971). Nevertheless, these species normally form 

their basidia on dikaryotic mycelia. Other homobasidiomycetes lack a conventional 

vegetative dikaryophase and mycelia contain an undefined number of nuclei per cell 

(Koltin et al., 1972). Thanatophorus cucumeris (Mckenzie et al., 1969), Schizophillum 

umbrinum (Raper, 1959), and A. bisporus (Raper et al., 1972) are species which exhibit 

sexual progression without a well-defined dikaryophase. In higher fungi the transition 

from the haplophase to dikaryosis follows two basic pathways (Koltin et al., 1972): (i) 

transition in the absence of mating interaction with another mycelium; (ii) transition 

only after a mating interaction with another mycelium. The former is known as 

homothallism and the latter as heterothallism. 

 

Unlike well-studied homobasidiomycete models (e.g. 

Coprinus and Schizophyllum), the fertile heterokaryotic 

mycelium of A. bisporus lacks clamp connections and 

there is no evidence of regulation of nuclear number (6- 

35 nuclei per cell, Jin et al., 1992). The dikaryotic 

mycelia produce specialised cells, called basidia, in 

which nuclear fusion and meiosis occur (Koltin et al., 

1972).  Generally these basidia are associated with well-

organized structures, called fruiting bodies. Nuclear 

fusion occurs in the basidia and leads to the diplophase, 

which is limited to a single nuclear generation.  
 

Fig. 1.3- Clamp connection.  
Bridge-like hyphal connection 
between adjacent cells, termed 
clamp connection (arrow; 
image courtesy of Warwick 
HRI)  
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1.3.2 Heterothallism and Homothallism     

Two principle breeding systems are recognised in the basidiomycetes: homothallism 

and heterothallism.  

 

Most basidiomycetes (ca 90%) are heterothallic (Whitehouse, 1949; Elliott, 1985b). In 

heterothallic basidiomycetes such as Coprinus cinereus, each basidium usually bears 

four spores. Each basidiospore receives a single post-meiotic nucleus and germinates to 

form a primary, monokaryotic mycelium, which is septate with uninucleate cells. Two 

compatible mating-type monokaryons mate through anastomosis to form a dikaryon 

(Elliott, 1985b) capable of fruiting (Fig. 1.4 A).  

 

In homothallic species, the individual mycelium mates with itself and produces a viable 

offspring. A consequence of this breeding system is a reduced gene flow into the 

genetic population, which may reduce genetic variation in subsequent generations 

(Raper, 1966). However, only 1% of basidiomycete species are primarily homothallic 

(Lemke, 1969). Many homothallic basidiomycetes are secondarily homothallic, 

converting an essentially outbreeding heterothallic system into habitual inbreeding 

(Skolko, 1944; Kemp, 1970; Raper et al., 1972). These basidiomycetes produce self-

fertile spores and some two-spored and four-spored species have been described 

(Elliott, 1986). In bisporic species, such as A. bisporus each basidiospore receives two 

nuclei and can germinate without requiring mating to form a heterokaryon (Fig. 1.4 B). 

A. bisporus exhibits low recombination during meiosis but an apparent non-random 

nuclear migration occurs that favours the pairing of non-sister nuclei in each single 

basidiospore (Raper et al., 1972; Summerbell et al., 1989). Each spore, therefore, may 

germinate forming a heterokaryon without going through the usual homokaryotic stage 

of basidiomycetes. Over 90% of A. bisporus basidiospores are heterokaryotic and self-

fertile. Aberrant three-and four-spored basidia can also occur (ca 5%) because of 

occasional aberrant packaging of nuclei in bisporic basidia (Elliott, 1985b). Resulting 

spores germinate to produce homokaryotic mycelia that will need to mate with 

compatible strains in order to complete their cycle. In four-spored species such as 

Mycocalia denudata there is a precocious mitosis in the basidium, making eight nuclei 

available to migrate into four basidiospores (Challen, 1993). 
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Fig. 1.4- Diagrammatic representation of mushroom life cycle. (A) A typical 4 spored 
heterothallic life history, representative of A. bitorquis and many other gilled basidiomycetes. 
(B) The secondarily homothallic life cycle of the button mushroom, A. bisporus. (from Horgen, 
P.A. et al., 1991)     
 

 

 

A 

B 
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1.4  Cultivation of Agaricus bisporus 
 

A. bisporus has been cultivated since the 17th century, firstly in open fields and later in 

caves, which  provided a stable environment in terms of temperature and humidity. 

Nowadays they are grown in mushroom sheds or houses, where they are cropped in 

trays or plastic bags filled with a specific compost. This compost is made from a mixed 

chicken or horse manure, wheat straw, gypsum (hydrated calcium sulphate) and water. 

The straw provides a good carbon source in the form of cellulose, hemicelluloses and 

lignin; manure provides a nitrogen source, vitamins and carbohydrates, while gypsum 

ensures a better compost texture and a lower pH (Gerrits, 1988). Compost is prepared in 

different phases to allow fermentation to occur.   

 

During phase I substrates are combined and allowed to ferment for 2-3 weeks. During 

this time the temperature rises to 76°C due to microbial activity, breaking down 

biochemical complexes and killing many potential pathogens and pests of mushrooms. 

The compost is usually turned to ensure aeration and maintain a constant temperature 

throughout. 

 

During phase II the compost is incubated at 60°C for 8 h, to further reduce pathogen 

load and then cooled to 52°C for up to 9 days. At this stage carbohydrates are 

decomposed and the volatilisation of ammonia occurs reducing the toxic concentrations 

of this compound in the compost (Gerrits, 1988). This microbial conversion causes a 

change in the compost pH from alkaline to neutral at the time of spawning. Indeed on 

completion of phase II the compost is inoculated with A. bisporus mycelium (mushroom 

spawn) by mechanical mixing. Approximately 0.5% spawn (w/w) is added to the 

compost. Spawn produced by commercial suppliers is usually rye or millet grains 

colonised with a pure culture of A. bisporus mycelium (Elliott, 1985a). A. bisporus 

mycelium colonises the compost completely in approximately 2 weeks at 25°C, 84-86% 

relative humidity and 5000 ppm carbon dioxide. When the spawn run is complete, the 

compost is covered with ca 5 cm deep layer of ‘casing’ (peat mixed with lime and 

chalk) and the temperature and carbon dioxide levels are reduced to ca 20°C and 1100 

ppm, respectively, to induce the fruiting bodies production. The casing acts as an anchor 
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for mushrooms to grow on and has excellent water retaining properties. The trays are 

incubated at 20-22°C and regularly watered over a three-week period, before the 

temperature is dropped to 16-18°C and watering stops. These conditions mimic the 

onset of autumn and trigger the fungus to produce mushrooms in three approximately 

synchronous intervals called flushes, each of 8-10 days in duration (van Gils, 1988). 

 

 Microflora play an important role in fruiting body production (reviewed by Flegg & 

Wood, 1985). The growth of A. bisporus mycelium through the casing and compost 

generates volatiles such as ethanol, ethanal, ethyl ethanoate and carbon dioxide. These 

metabolites build up in the casing and selectively promote the growth of a specialised 

microflora including the bacterium Pseudomonas putida. These biological stimuli are 

thought to induce the production of mushroom initials (pins), which will grow and 

differentiate into mushrooms. Visscher (1988) suggested that the role of P. putida is to 

remove or decrease the concentration of some inhibitors allowing the fructification of A. 

bisporus. According to Hammond & Wood (1985), mannitol is significantly higher in 

fruiting bodies (25-35%) than in mycelium (1.5-4.0%) and plays an important role, 

creating hydrostatic pressure for hyphal extension by attracting water into fruiting 

bodies. A. bisporus typically yields between 200-250 kg of mushrooms per tonne of 

compost (van Gils, 1988).  

 

1.5  Nutritional and medicinal aspects of  

Agaricus bisporus 

  
Mushrooms have been treated as a special kind of food since earliest times. Chinese and 

Japanese chronicles recorded Shiitake (Lentinula edodes) mushrooms being offered to 

emperors. The Romans ate mushrooms on special occasions, and Mexican Indians used 

hallucinogenic mushrooms in religious ceremonies (van Griensven, 1988).  

 

Mushrooms are considered to be ‘healthy food’ as they contain large amounts of 

essential amino acids, unsaturated fatty acids, vitamins and minerals. In particular, they 

are a good source of ascorbic acid (vitamin C) and B vitamins such as thiamine (B1), 

riboflavin (B2), niacin and biotin. Oei (1996) suggested that B vitamins may aid 
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treatment of stress, depression and fatigue. Mushrooms also contain significant amounts 

of selenium and potassium, important as antioxidant and controller of blood pressure, 

respectively (Oei, 1996). 

 

Chen (2004) suggested that white button mushrooms may play a role in treating and 

preventing breast cancer: fresh white mushroom extracts contain chemicals which 

inhibit the activity of aromatase, an enzyme involved in estrogen production. It is 

known that estrogen has breast cancer-promoting effects especially in postmenopausal 

women. A. bisporus extracts also seem to suppress steroid 5-alpha-reductase, which 

plays an important role in the development of prostate cancer cells (Chen, 2004).    

  

1.6  Economic importance of Agaricus bisporus 
 

The history of commercial cultivation of mushrooms is extensive and dates back to the 

17th century, when the industry first started in France (van Griensven, 1988). During the 

last 400 years, three major events have dramatically affected the mushroom industry: (i) 

the development of mushroom spawn in the late 1800s, (ii) improved composting 

technologies, and (iii) the breeding of new hybrid spawn (van Griensven, 1988). 

 

It is estimated that approximately 3.2 million metric tonnes (mt) of edible mushrooms 

were produced during the year 2004 (FAOSTAT data)1. China leads world mushroom 

production (1,359,335 mt in 2004), followed by the USA (391,000 mt in 2004). In Asia 

mushroom production is dominated by shiitake (Lentinus edodes) and oyster 

mushrooms (Pleurotus species), while the American and European industries 

predominantly produce button mushrooms. A. bisporus is the most broadly cultivated 

mushroom worldwide, with an annual production in the region of five million tonnes 

(Kües & Liu, 2000) and an estimated commercial value of £ 3000 million (Scrase & 

Elliott, 1998).  In Europe, button mushroom production is estimated at around 1 million 

mt (Gaze, pers. comm.). The Netherlands is the major European mushroom producer  
 

 

source: 1 http://faostat.fao.org/faostat 
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(260,000 mt in 2004)1, followed by France, Poland, Spain, Italy, UK, Ireland, and 

Germany. In the UK, A. bisporus mushrooms account for around 10% of total 
horticultural production (reviewed by Burns et al., 2005) with an annual production of 

approximately 80,000 tonnes in 2004 (FAOSTAT data) 1.  

 

1.7  Pests and diseases of Agaricus bisporus 
 

Mushroom crops can be affected by a wide range of pests and diseases. Susceptibility to 

disease is exacerbated by the fact that the crop is a virtual monoculture and the 

controlled environment in which A. bisporus mushrooms are grown is ideal for the 

survival of pests and pathogens (Milgroom, 1999).  

 

Few genetic differences exist in mushroom crops throughout the world as most 

commercial mushrooms are derived from a few hybrid strains (Section 1.2). This lack of 

genetic diversity greatly increases the chances of pathogens and pests attacking 

mushroom crops (Milgroom, 1999; Moore, 2001). Moreover, mushroom cropping 

involves a network of labour intensive activities not all of which take place on site, 

including emptying tunnels, compost production, transport and filling of full growth 

compost, spawn production (Section 1.4). Many of these are critical steps with regards 

to the infection. Hygiene measures to minimise development of pest or diseases are 

important and the following procedures are often implemented by the industry (Geels et 

al., 1988): use of spore filters; disinfection of equipment, footwear, etc.; wearing clean 

and disinfected clothing; controlling insects; using disinfected packing containers; and 

through ‘cooking out’ of the growing room at the end of the harvest. 

 

1.7.1 Pests of Agaricus bisporus 
Insects and mites infections usually occur after the pasteurisation process, as the 

majority of these cannot survive through the compost peak-heating reached during 

phase II. The main mushroom pests are phorid flies and sciarid. Phorid flies (Phoridae) 

belong to the Diptera family. Megaselia halterata and M. nigra are found in UK and  

 
source: 1 http://faostat.fao.org/faostat 
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both species are very active in the vicinity of light sources. M. halterata larvae feed on 

mushroom mycelium in compost and casing soil, while M. nigra dig tunnels in the 

mushroom fruiting bodies from the top of the cap down to the stem (Fletcher et al., 

1986). Sciarid flies (Lycoriidae) also belong to the Diptera family and the main species 

is Lycoriella auripila. The larvae not only feed on the mycelium in the compost and/or 

casing soil, but also on fruiting bodies. Sciarid flies are also known to have a role in 

transmission of fungal diseases, mites, bacteria and nematodes (Geels et al., 1988). 

 

1.7.2 Bacterial Pathogens of Agaricus bisporus 
Numerous bacteria, most of them from the genus Pseudomonas, are capable of infecting  

A. bisporus mushrooms. 

 

‘Brown blotch disease’ is caused by Pseudomonas tolaasii and characterised by the 

formation of brown spots on the caps. P. tolaasii occurs together with other 

Pseudomonads (including P. fluorescens and P. putida) in the casing soil. During 

mushroom fruiting, pinheads, primordia and sporophores can be colonised by the 

bacterium. Excessive watering and/or humidity can establish optimal conditions for P. 

tolaasii (Geels et al., 1988; Soler-Rivas et al., 1999). 

 

“Ginger blotch” is caused by P. gingeri and symptoms include pale yellow to 

yellowish-brown blotches on young fruiting bodies, generally only at the edge of the 

cap (Wong et al., 1982).  

 

“Mummy disease” is thought to be caused by another Pseudomonad bacterium, whose 

species has not been determined (Fletcher et al., 1986). Two different types of 

symptoms can be observed. Firstly, after casing it is possible to have bare patches on the 

bed because pinheads are stuck in the casing soil without further growth. Secondly, 

mushrooms can turn greyish in colour, stems become crooked and often thickened at the 

basis surrounded by a fluffy edge of mycelium, while caps become tough, spongy, dry, 

and mummified (Geels et al. 1988; Dyki et al., 1993). 
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“Drippy gill” is another important disease of A. bisporus (Gill & Cole, 2000) caused by 

P. agarici, which infects the mushroom gills before the veil opens; small brown patches 

with creamy white bacterial slime appear on the gills, which consequently do not 

develop properly (Young, 1970; Fletcher et al., 1986).   

 

1.7.3 Fungal Diseases of Agaricus bisporus 
Fungi affecting mushroom crops can be categorised as competitive or parasitic fungi. 

Competitive fungi are often described as “weed moulds” acknowledging the fact that 

they are undesirable and can quickly spread on a massive scale. They usually affect 

mushroom mycelium during the spawn run phase by competing for CO2, nutrients, 

water and substrate. Their presence is often associated with the preparation of poor 

mushroom compost and/or ineffective peak-heating. Some examples of competitive 

fungi are, ink caps (Coprinus spp.) and various green moulds (Trichoderma, Aspergillus 

and Penicillium species) (Geels et al., 1988). 

  

Parasitic fungi can damage the mycelium or fruiting bodies of mushrooms. ‘Dry bubble 

disease’ is caused by Verticillium fungicola var. fungicola, a major fungal disease of A. 

bisporus. Various symptoms can be observed, depending on the stage of infection. 

Mushrooms, infected at the pinhead stage, form undifferentiated mass of bodies (dry 

bubble). At a later stage of infection mushrooms appear with crooked and often split 

stipes (stipe blowout). A lesser symptom develops on fully formed mushrooms, cap 

spotting or lesions. V. fungicola grows in the casing and can be rapidly spread by 

spores, splashing/aerosols, but also by phorid and sciarid flies, dirty equipment, hands 

and clothing (Geels et al., 1988).  

 

‘Wet bubble’ is caused by Mycogone perniciosa (Fletcher et al., 1986). Symptoms 

include misshapen and/or brown mushrooms, swollen stems and caps and in later stages 

of the disease, a rotten mass appears on the deformed mushrooms (Geels et al., 1988). 

The disease is spread via infected spores and mycelium. 

  

‘Cobweb’ is caused by Cladobotryum dendroides (Fletcher et al., 1986). Symptoms 

include the appearance of C. dendroides mycelium patches, which form a white cotton-
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like web over the mushrooms, causing discoloration and death. Symptoms generally 

occur in the late flushes, but if casing is contaminated with C. dendroides mycelium, 

symptoms can appear in the first flush. Spores and remains of casing soil can spread the 

disease, which is made worse by high temperature and relative air humidity. 

 

1.8  Viral diseases of Agaricus bisporus 
 

1.8.1 Viruses in fungi 
Mycovirology is a relatively recent branch of virology. Interestingly the first mycovirus 

identified was observed in diseased mushrooms of A. bisporus (Hollings, 1962). 

Mycoviruses are widespread among fungi and in most cases their presence is 

symptomless (Buck, 1986). They typically possess dsRNA genomes (Ghabrial, 1998), 

which are either encapsidated by proteins forming virions of 20-50 nm in diameter 

(Buck, 1986), or are associated with membrane vesicles (Nuss & Koltin, 1990). 

Mycoviruses can be either monopartite (genome in one molecule), bipartite (genome 

split between two molecules packaged into two separate particles), or multipartite 

(genome divided into three or more molecules packaged separately). Because 

mycoviruses are often asymptomatic and unencapsidated, their detection must rely on 

demonstrating the presence of transmissible dsRNAs. During the last decade detection 

of mycoviruses by electron microscopy has been replaced by screening on ethidium-

bromide stained gels for the presence of dsRNA banding pattern, typical for the disease 

(Sonnenberg et al., 1995). Comparison of both methods has shown that the latter is 

more sensitive, faster and more reliable as a diagnostic tool (Franklin, 1966; Bishop & 

Koch, 1969; Bar-Joseph et al., 1983; Yardimci & Korkmaz, 2004). This method 

exploits the fact that most fungal viruses have dsRNA genomes and that each virus has 

a characteristic dsRNA profile defined by the number and size of segments. In the early 

history of mycovirology scientists attempting to use electron microscopy as a diagnostic 

tool, often observed fungal tissues densely infected with various shaped-virus particles 

(Hollings, 1962; Buck, 1986). The discrimination and identification of the virus of 

interest was often extremely challenging. DsRNA analysis succeeded where electron 

microscopy failed at discriminating between morphologically similar, but genetically 
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distinct viruses, and between viruses and normal cellular components (Romaine & 

Goodin, 2002).      

 

Mycoviruses can be transmitted horizontally via anastomoses between hyphae (Day & 

Anagnostakis, 1973; Sonnenberg & van Griensven, 1991; Ihrmark et al., 2002), or 

vertically via infected spores (Romaine et al., 1993; Ihrmark et al., 2002; Chu et al., 

2003).  

 

Mixed infections with two or more unrelated viruses are not uncommon (Ghabrial, 

1998). Another feature of mycovirus infections is the accumulation of defective and 

satellite dsRNAs (Ghabrial, 1998). Defective RNAs are subgenomic RNAs generated 

from infectious virus genome by replicase error (Dhar and Bandyopadhyay, 1999), 

whereas satellites are sub-viral agents whose replication is dependent on co-infection 

with another virus (www.ncbi.nlm.nih.gov/ICTVdb).  

 

1.8.2 Taxonomy of Mycoviruses 

Mycoviruses are divided into the following families: Totiviridae, Partitiviridae, 

Chrysoviridae, Hypoviridae, Narnaviridae, Barnaviridae, Pseudoviridae, Metaviridae 

and two unassigned genera, Rhizidiovirus and Endornavirus (Table 1.1). There are also 

several unassigned mycoviruses (www.ncbi.nlm.nih.gov/ICTVdb).   

 

The Totiviridae family is the best characterised whose members have monopartite 

dsRNA genomes encompassing genes for RNA-dependent RNA polymerase (RdRp) 

gene and coat protein (CP). Three genera belong to this family: Giardiavirus and 

Leishmaniavirus infect parasitic protozoa whilst Totivirus infect fungi. e.g. 

Helminthosporium victoriae 190S virus (Huang & Ghabrial, 1996), Saccharomyces 

cerevisiae virus L-A (L1) (Icho & Wickner, 1989) and Ustilago maydis virus H1 (Kang 

et al., 2001). 

 

Partitiviridae have bipartite genomes with the CP and RdRp genes on separate dsRNA 

segments. This family includes the genus Cryptovirus infecting plants and the genus 
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Partitivirus infecting fungi. e.g. Discula destructiva virus (Rong et al., 2002), and 

Heterobasidion annosum virus (Ihrmark et al., 2002). 

 

Chrysovirus is the only genus of the Chrysoviridae family. These viruses were 

previously classified as Partitiviridae, but sequence data showed that the two families 

are only distantly related. Chrysoviruses are multipartite viruses with the four linear 

dsRNA genomic segments encapsidated in isometric particles. Helminthosporium 

victoriae 145S virus is a chrysovirus containing dsRNAs ranging from 2.9 to 3.5 kbp 

(Soldevila, 2000). 

 

Mycoviruses of the family Hypoviridae lack conventional capsids and their linear, 

monopartite dsRNA genome is enclosed in membranous host-encoded vesicles. They 

normally are associated with decreased virulence of fungal hosts. Cryphonectria 

hypovirus is an example of Hypovirus, the only genus belonging to this family (Griffin, 

1986).  

 
Narnaviridae mycoviruses have a ssRNA genome, ranging from 2.3 to 3.6 kbp, which 

is associated with the RdRp into ribonucleoprotein complex. No capsids have been 

found. This family comprises two genera both infecting fungi. Mitovirus, associated 

with mitochondria usually cause hypovirulence in the fungus host e.g. Cryphonectria 

mitovirus 1 (Polashock & Hillman, 1994) and Ophiostoma novo-ulmi mitovirus (Hong 

et al., 1998). Narnavirus are cytoplasmic parasites of yeasts with no phenotypic effects. 

e.g. Saccharomyces cerevisiae narnavirus 20S and 23S (Esteban et al., 1992). 

 

Barnavirus, the only genus of the Barnaviridae family comprises ssRNA viruses 

encapsidated in bacilliform virions. Mushroom bacilliform virus (MBV) is the type 

species of the family and is often found in association with Agaricus bisporus virus 1 

(ABV1), the virus associated with ‘La France’ disease of mushrooms (Revill et al., 

1994).  

 

The Pseudoviridae family encompasses retrotransposons infecting invertebrates, plants 

and fungi. Structurally, they have long terminal repeat (LTR) sequences and coding 

regions with sequence motifs for reverse transcriptase (RT), ribonuclease H (RH), 



Table 1.1- Classification of mycovirus family according to  
The Universal Virus Database of the International Committee on Taxonomy of Viruses* 

  
 

FAMILY GENUS NUCLEIC ACID MORPHOLOGY HOST 
Giardiavirus Protozoa 

Leishmaniavirus Protozoa Totiviridae 
Totivirus 

dsRNA (4-7 kbp) isometric virions 
Fungi 

Cryptovirus Plant Partitiviridae 
Partitivirus 

dsRNA (2-3 kbp) isometric virions 
Fungi 

Chrysoviridae Chrysovirus dsRNA (3-3.6 kbp) isometric virions Fungi 

Hypoviridae Hypovirus dsRNA (9-13 kbp) cytoplasmic 
vesicles Fungi 

- Endornavirus dsRNA (14-18 kbp) cytoplasmic 
vesicles Plants, Fungi1, Protists2 

Mitovirus Fungi Narnaviridae 
Narnavirus 

ssRNA (2-3 kbp) ribonucleoprotein 
complexes Fungi 

Barnaviridae Barnavirus ssRNA (4 kbp) bacilliform virion Fungi 

Pseudovirus Fungi, Invertebrates, 
Plants Pseudoviridae 

Hemivirus 
ssRNA (5-8 kbp) unknown 

Fungi, Invertebrates, 
Plants 

Metavirus Fungi, Invertebrates Metaviridae 
Errantivirus 

ssRNA (4-10 kbp) unknown 
Invertebrates 

 - Rhizidiovirus dsDNA (27 kbp) Isometric virions Fungi 
  
 

*Source: www.ncbi.nlm.nih.gov/ICTVdb/ 
1 Source: Osaki et al., 2006 
2 Source: Hacker et al., 2005 
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protease and integrase activities. Their morphology is poorly characterised. This family 

comprises two genera, Pseudovirus and Hemivirus e.g. Saccharomyces cerevisiae Ty1 

virus (Boeke et al., 1988) and Drosophila melanogaster copia virus (Mount & Rubin, 

1985). 

 

The Metaviridae family comprises retrotransposons with similar features to those of the 

Pseudoviridae. They are divided according to the presence of the envelope gene 

(Errantivirus) or its absence (Metavirus) (Hull, 2001) e.g. Saccharomyces cerevisiae 

Ty3 virus (Peterson-Burch et al., 2004) and Drosophila melanogaster gypsy virus 

(Harpen et al., 2002). 

 

Rhizidiovirus forms a genus not yet assigned to a family. They also infect fungi but 

have a dsDNA genome of 27 kbp encapsidated in 60 nm isometric particles e.g. 

Rhizidiomyces virus (Dawe & Kuhn, 1983). 

 

The International Committee on Taxonomy of Viruses (ICTV) has recently accepted 

Endornavirus as a new genus (ICTVdB Management, 2006). Some authors have 

suggested the new family, Endornaviridae, to encompass the new genus (Horiuchi & 

Fukuhara, 2004; Fukuhara et al., 2005). Endornaviruses have been mostly observed in 

plant hosts (Moriyama et al., 1995; Pfeiffer, 1998; Coutts, 2005; ICTVdB Management, 

2006), but also in some fungi (Osaki et al., 2006) and protists (Hacker et al., 2005). 

They have a monopartite linear dsRNA genome associated with RdRp activity 

(Lefebvre et al., 1990; Pfeiffer et al., 1993). The genome size has recently been 

estimated between 14-18 kbp (ICTVdB Management, 2006). However, smaller 

genomes have also been reported  (Tuomivirta & Hantula, unpublished). Conventional 

virus-like structures have not been found, but the viral genome is encapsidated in 

cytoplasmic vesicles in the form of a nucleoprotein complex (Lefebvre et al., 1990; 

ICTVdB Management, 2006). Although Endornavirus are mostly symptomless 

(Fukuhara, 1999), deleterious symptoms have been reported in some cases (Lefebvre et 

al., 1990; Osaki et al., 2006).  
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1.8.3 Mycovirus Replication Strategy 

There is no universal life cycle for dsRNA viruses (Nemeroff & Bruenn, 1986). Nothing 

is known about the replication and packaging of A. bisporus viruses but studies of other 

dsRNA viruses have yielded information, which may be relevant.  

 

Two important events have to take place during virus replication: the synthesis of 

messenger RNA (mRNA) for the expression of viral genes and the replication of the 

viral genome. The latter can take place in either a conservative or semi-conservative 

manner.  

 

During conservative replication, the newly synthesized strand serves as mRNA and as 

template for the replication of the dsRNA molecule, while the old (+) strand remains 

attached to the old (-) strand (Goodin et al., 1997). During semi-conservative 

replication, the old (+) strand is displaced by the newly synthesized strand. The 

displaced (+) strand then serves as mRNA and as template for the synthesis of (-) 

strand. Both mechanisms are found in fungal viruses (Goodin et al., 1997). The viruses 

classified in the Totiviridae family use a conservative mode of replication (Sclafani & 

Fangman, 1984; Ghabrial & Havens, 1989; Wickner, 1993; Murphy et al., 1995). The 

viruses belonging to the family of Partitiviridae replicate in a semi-conservative way 

(Buck, 1978; Buck et al., 1981; Wickner, 1993; Murphy et al., 1995), but the molecular 

mechanisms have not been studied in detail. The only difference is whether the template 

(-) strand remains annealed to the new (+) strand (semi-conservative) or repairs with the 

parental strand (conservative) (Wickner, 1993; Fig. 1.5).  

 

DsRNA replication occurs in the cytoplasm for all dsRNA viruses (Wickner, 1993). 

Transcription defined as the synthesis of viral (+) strand from a dsRNA template, takes 

place within viral particles or core particles. The exceptions are the viruses lacking a 

conventional protein coat and associated with membranous vesicles (Dodds, 1980). The 

(+) strands are generally extruded from the viral particles and then translated to make 

new viral proteins, which will package the (+) strands. Once the new particles or cores 

have formed, (-) strand synthesis on the (+) strand template completes the formation of 

new dsRNA (Wickner, 1993) as all dsRNA viruses have capsid-associated RNA 
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polymerase activities (Nemeroff & Bruenn, 1986). The mechanism by which multiple 

segmented-genome viruses manage to package one segment in each particle is less 

clear. A suggestion might come from the bacteriophage ∂6, an enveloped dsRNA virus 

of Pseudomonas syringae. It has been shown that the in vitro (-) strand synthesis occurs 

only when all three (+) strands have been packaged (Gottlieb et al., 1992; Frilander et 

al., 1992). No single segment or pair of segments is sufficient for synthesis to proceed 

and data indicate that the procapsids have specific binding sites for each segment (+) 

strand. However, the mechanism might be different in other multisegmented viruses 

(Wickner, 1993).     
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 1.5- Fungal virus replication modes. During conservative replication, the newly 
synthesized strand serves as mRNA and as template for the replication of the dsRNA molecule, 
while the old (+) strand remains attached to the old (-) strand. During semi-conservative 
replication, the old (+) strand is displaced by the newly synthesized strand. The displaced (+) 
strand then serves as mRNA and as template for the synthesis of (-) strand. Both mechanisms 
are found in fungal viruses 
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1.8.4 Genome Expression Strategies 

RNA viruses exhibit wide variations in structure and organization of their genome. 

They may also have different terminal structures, such as a cap structure or a genome-

linked protein (VPg) at the 5’end, and a poly(A)-tail or a tRNA-like structure at the 

3’end of their RNA genome (reviewed by Goldbach et al., 1991). RNA viruses appear 

to have evolved different strategies for genome expression overcoming constraints of 

different host DNA-based systems. The eukaryotic 80S ribosome is generally able only 

to translate monocistronic mRNAs starting from the 5’ region according to the 

“scanning ribosome model” proposed by Kozak (1991). According to this model 

eukaryotic translation begins with the ribosomal recognition of the 5' cap (an additional 

GTP molecule forming a 5'-5' linkage with mRNA) at the 5’end of mRNA. Then the 

migrating 40S ribosomal subunit stalls at the first AUG codon, which is recognised in a 

large part by base pairing with the anticodon in Met-tRNAimet (Kozak, 1991). The main 

strategies used by RNA viruses to allow protein synthesis in a eukaryotic system are 

discussed below. 

 

Multipartite genome 

Genome segmentation can result in monocistronic RNAs (reviewed by Bustamante & 

Hull, 1998). Each segment contains one or two open reading frames (ORFs). A 

segmented genome has additional benefits such as inter-virus recombination as easier 

way to exchange genetic information between two viruses (http//jpkc.ynan.edu.cn). 

 

Subgenomic RNAs 

The expression of internal genes is frequently mediated by subgenomic RNAs, which 

can be produced by two mechanisms: (i) during (-) RNA strand synthesis, premature 

termination can lead to truncated subgenomic RNAs; (ii) alternatively subgenomic 

RNA can result from an internal deletion event (Tartaglia et al., 1985). The generation 

of internally deleted defective RNA molecules appears to be a common feature of 

hypovirulence-associated dsRNA replication. This event could be explained by the 

presence of bulky secondary structures such as stem-loop structures in the template 

strand leading to the interruption of the nascent strand. Therefore, the synthesis complex 
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dissociates and reassociates with the template to overcome the hurdle, completing the 

synthesis (Shapira et al., 1991).  

 

Polyprotein 

In this strategy the viral genome contains a long ORF, which is translated and then 

cleaved into smaller, functional proteins by viral proteinases (reviewed by Bustamante 

& Hull, 1998). Hypoviruses undergo this strategy (reviewed by Ghabrial, 1994). 

 

Protein read-through  

In normal protein synthesis, a ribosome stops protein elongation when it encounters one 

of the three terminators (UAG, UGA, UAA). If the first cistron in the genomic viral 

RNA has a leaky termination codon (UAG or UGA) it might be suppressed by a host 

tRNA. Thus, some ribosomes can read through the codon into a downstream cistron, 

giving rise to a second longer functional polyprotein (reviewed by Bustamante & Hull, 

1998). The read-through process requires at least two elements: (i) a suppressor tRNA; 

(ii) an appropriate nucleotide context surrounding the terminator codon (Skuzeski et al., 

1991; Valle et al., 1992).  

 

Translational frameshift 

Normal translocation maintains a single reading frame that is fixed at the time of 

translocation initiation. Ribosomal frameshift is a strategy frequently employed by 

various organisms to produce more than one protein from overlapping reading frames 

(reviewed by Bustamante & Hull, 1998). It may occur in either direction, the ribosome 

may shift either -1 or +1 nucleotide or more, and hop to a distant location to change the 

reading frame. If this shift occurs near the end of the first ORF this can produce a fusion 

protein. A shift in the 3’ direction (+1 frameshift) has also been described in the yeast 

retrotransposon Ty (Belcourt & Farabaugh, 1990); whereas a shift in the 5’ direction (-1 

frameshift) has been demonstrated in L-A virus of Saccharomyces cerevisiae (Wickner, 

1993), retroviruses (Vickers & Ecker, 1992), and luteoviruses (Prufer et al., 1992). The 

frameshift event requires a slippery site on the mRNA of the form XXXYYYZ 

(Wickner, 1993), which has the potential to adopt a pseudoknot folding pattern, that 

slows down the ribosome movement and allows it to change reading frames.  
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DsRNA viruses, (+) strand RNA viruses, and retroviruses all use their (+) strands for 

three functions: as mRNA, as the species packaged to make new virions, and as a 

template for replication (Wickner, 1993). If they alter these (+) strands for translation 

purposes, by splicing or editing, they will create mutant viruses removing a site 

necessary for packaging or replication. Presumably for this reason, dsRNA and (+) 

ssRNA viruses do not splice (excise internal regions after transcription) or edit their (+) 

strands. ‘Ribosomal frameshift’ and ‘read-through’ of termination codon are the two 

most common strategies deployed by viruses to produce different proteins using the 

same mRNA (Icho & Wickner, 1989).   

  

1.8.5 Viral effects on fungi 
The latent or symptomless relationship of many fungal viruses with their hosts suggests 

that fungi and their viruses have coevolved and co-adapted to a considerable degree 

(Ghabrial, 1980; Buck, 1986; Milgroom, 1999). Ghabrial (1980) suggested that the lack 

of extracellular infectivity of fungal viruses played a role as selective pressure upon 

virus pathogenicity. In order to make efficient use of host proteins many fungal viruses 

maintain only genes that are essential for their survival, such as RNA-dependant RNA 

polymerase and capsid genes. The host cell has evolved to support only a defined level 

of virus replication beyond which virus infection becomes pathogenic, leading to cell 

death. In the absence of an extracellular route of infection, host death means virus 

elimination; thus fungal viruses tend not to be extremely virulent (Ghabrial, 1998). 

Other authors have suggested a possible correlation between viral transmission and host 

virulence (Milgroom, 1999). Milgroom (1999) also suggested that the relative 

importance of vertical or horizontal transmission may provide clues to virus-host 

relationships. Viruses that depend primarily on vertical transmission are most likely to 

evolve towards reduced host, even to the point of being benign. In contrast, viruses that 

have the opportunity of horizontal transmission tend to be more deleterious to their 

hosts because they have more chances of survival. Mycovirus infection can be 

associated with various symptoms ranging from symptomless to severely debilitating or 

from hypovirulence to hypervirulence (Nuss & Koltin, 1990; Ghabrial, 1994). 
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1.8.5.1 Killer phenomenon 
Some dsRNA mycoviruses offer advantages to their hosts. The “killer” phenotypes in 

yeasts (Saccharomyces cerevisiae) and in smuts (Ustilago maydis) are two such 

examples (Kandel, 1988; Koltin, 1988). Yeast and smut killer strains secrete a toxin to 

which they are immune, but that is lethal to sensitive strains. The toxin is synthesized as 

a preprotoxin, which is then processed by proteolysis and secreted as a mature toxin. It 

binds to cell-wall receptors after which the toxin makes proton leaks in the membrane 

of susceptible cells. Genetic and biochemical studies suggest that the toxin production is 

conferred by dsRNA satellites (M-dsRNA, H-dsRNA L-dsRNA), which are dependent 

on helper viruses (Hutchins & Bussey, 1983; Koltin, 1988). On the other hand, 

immunity is conferred by nuclear genes (Finkler et al., 1992; Tao et al., 1993; Ginzberg 

& Koltin, 1994). The helper viruses (Saccharomyces cerevisiae totivirus L-A and 

Ustilago maydis totivirus H1) are autonomously replicating and do not require dsRNA 

satellite for replication. They encode the RNA polymerase and coat protein needed 

either for their own replication and encapsidation or that of dsRNA satellites. Killer 

yeasts are commonly found in grapes and fermenting grape musts, and have been 

implicated as the cause of protracted fermentations (reviewed in Van Vuuren & Jacobs, 

1992). In some wine producing areas nearly all the naturally occurring strains are 

killers, while in other areas the latter may be completely absent. Killer strains may have 

significant economic impact because they generally ferment slowler and reduce the 

quality of the wine produced (Milgroom, 1999). There are no apparent adverse effects 

of these viruses on the growth, development or survival of infected yeasts. On the 

contrary, killer strains have been shown to have fitness advantages over non-killer 

strains because of their ability to inhibit toxic-sensitive strains (Milgroom, 1999).  

 

1.8.5.2 Hypovirulence 

Mycoviruses can also debilitate their hosts. When the host is a plant pathogenic fungus 

such as Cryphonectria parasitica (Van Alfen et al., 1975), Ophiostoma ulmi (Brasier, 

1991), Helminthosporium victoriae (Ghabrial & Mernaugh, 1983), dsRNAs can induce 

hypovirulence of the host and has been suggested as a potential biological control 

agents for the fungal disease. The best studied of these mycoviruses is Cryphonectria 

parasitica hypovirus 1-EP713 (CHV1-EP713), which is associated with the 
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hypovirulence phenotype of the chestnut blight fungus, Cryphonectria parasitica 

(Shapira et al., 1991b). C. parasitica infects chestnut trees through wounds in the bark 

and forms cankers that often kill the above-ground parts completely (Griffin, 1986; 

Anagnostakis & Kranz, 1987). Chestnut blight epidemics swept through eastern North 

America and Europe with devastating effects. Within 20 years the epidemic slowed 

considerably because of the natural appearance of the hypovirulent strains (reviewed by 

Heiniger & Rigling, 1994), which were infected with viruses and exhibited reduced 

virulence, causing superficial cankers only. For almost 20 years, hypovirulence was 

thought to be associated with dsRNAs in the cytoplasm of the fungus (Van Alfen et al., 

1975); however because it was not possible to infect fungi with purified viruses, Koch’s 

postulates were only fulfilled following advances in molecular techniques (Choi & 

Nuss, 1992a).  

 

CHV1-EP713 comprises three different dsRNAs associated with membrane vesicles: L-

dsRNA is the main element, while the smaller dsRNAs (M and S) proved to be deletion 

products of L-dsRNA (Shapira et al., 1991 a, b). L-dsRNA (+) strand (12,712 bp) 

contains two open reading frames, ORF A and B coding for 622 and 3165 amino acids, 

respectively. These ORFs are cleaved autocatalytically into different proteins. The 

processed ORF B contains helicase-like and polymerase-like domains with homology to 

those of plant Potyvirus (Shapira et al., 1991). ORF A is the determinant of specific 

traits of the infected fungus, which include suppressed pigmentation, reduced 

conidiation, reduced expression of laccase and down-regulation of crypanin (Carpenter 

et al., 1992; Choi et al., 1992). 

 

Using DNA-mediated transformation of C. parasitica, it has been possible to determine 

whether the phenotype traits exhibited by hypovirulent C. parasitica strains are the 

result of the presence of replicating dsRNA, or whether these traits are dependent on 

functions encoded by specific hypovirus genes. Transformation of dsRNA-free C. 

parasitica strains with a cDNA copy of ORF A was shown to confer some 

hypovirulence-associated traits such as reduced pigmentation, reduced laccase 

accumulation and suppressed conidiation (Choi & Nuss, 1992a). However, the complete 

hypovirulence phenotype was only obtained by transformation with a full-length cDNA 



Chapter 1                                              General Introduction 
 

 27 

copy of CHV1-EP713 (Choi & Nuss, 1992a). Powell & Van Alfen (1987a, b) have 

demonstrated that specific host mRNA and polypeptides are down-regulated in dsRNA-

containing strains. Hypovirus infection is believed to perturb the expression of specific 

developmentally regulated fungal host genes at mRNA level, such as those for laccase 

and crypanin. The extracellular laccase is a copper-containing phenol oxidase, known to 

occur in many plant and fungal species (Ghabrial, 1994). The biological function of this 

enzyme remains obscure, although laccase activity has been implicated in sporulation, 

pigmentation production, lignin degradation and pathogenesis (Ander & Eriksson, 1976; 

Law & Timberlake, 1980; Leatham & Stahmann, 1981; Anagnostakis, 1987; Bar-Nunn 

et al., 1988). Another developmentally regulated gene that is affected by virus infection 

is crypanin (Carpenter et al., 1992). It is a cell surface protein with lectin-like 

properties, particularly abundant in aereal hyphae and fruiting bodies.    

 

1.8.6 Mushroom Viruses 
Mycovirology (fungal virology) as a new branch of science was developed following 

the discovery of virus-like particles in diseased mushrooms in 1962. Hollings (1962) set 

a precedent for the previously unconsidered notion that fungi can be infected by viruses. 

Since then, mycoviruses have been reported in several other mushrooms. Magae & 

Hayashi (1999) reported two types of degenerative symptoms in pure white strain of 

Flammulina velupes mushrooms: one was a spontaneous brown colour change and 

another was malformation or reduced production of fruiting bodies. Two dsRNA 

elements (1.9 and 1.8 kbp) were detected in mycelium derived from brown-coloured 

mushrooms. These elements were located in the cytoplasm fraction and were associated 

with 50 nm diameter virus-like particles (Magae & Hayashi, 1999). Other virus-like 

particles have been reported in Lentinus edodes (Inoue, 1970) and the basidiomycete 

Agrocybe aegerita (Barroso & Labarere, 1990). Barroso & Labarere (1990) observed 

two types of viral complex in commercial A. aegerita mushrooms, a unencapsideted 

dsRNA complex (1900, 1800 and 1700 bp, respectively) associated with large vesicles 

or mitochondria, and another complex encompassing isometric mycoviruses. Although 

many viral particles and dsRNA elements were found in edible mushrooms (Schisler et 

al., 1967; Inoue, 1970; Go et al., 1992; Revill et al., 1994; Park & Kim, 1996; Van der 

Lende et al., 1996; Magae & Hayashi, 1999; Romaine & Goodin, 2002), very few have 
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been characterised. The best studied mycoviruses are the ones affecting Agaricus 

bisporus and Pleurotus ostreatus. 

 

1.8.6.1 Mycoviruses infecting Pleurotus ostreatus 

 In P. ostreatus spherical and bacilliform viruses were isolated from malformed 

sporophores (Go et al., 1992; Park & Kim, 1996). Van der Lende et al. (1995b) also 

demonstrated a possible correlation between the presence of dsRNA mycoviruses and 

slow growing mycelium. Yu et al. (2003) reported an epidemic disease in Korea 

affecting the oyster mushroom, ‘die-back disease’, which led to reduced yields in 

commercial farms. The epidemic was strongly associated with a ssRNA virus, oyster 

mushroom spherical virus (OMSV). OMSV is a 27 nm isometric virus with a 5.784 kbp 

ssRNA genome. Genomic structure and sequence analysis showed that OMSV shares 

closer similarity with tymoviruses than to other mycoviruses (Yu et al., 2003). Another 

characterised virus infecting P. ostreatus is Pleurotus ostreatus virus 1 (PoV1), a 

partitivirus (Lim et al., 2005). Unlike OMSV, PoV1 is not associated with diseased 

symptoms. 

 

1.8.6.2 Mycoviruses infecting Agaricus bisporus 
Viruses of the cultivated mushroom A. bisporus were the first viruses found in fungi 

(Hollings, 1962), probably because of their role in reducing mushroom production. Two 

main viral diseases affect A. bisporus: ‘La France’ disease and MVX disease. 

 

1.8.6.2.1 ‘La France’ Disease  

 ‘La France’ disease was first reported on the La France brothers’ farm in Pennsylvania, 

USA in 1948 (Sinden & Hauser, 1950). Similar symptoms were observed some years 

later, in UK, France, the Netherlands, Italy, Denmark, and Australia (Ghabrial, 1994). 

Several different designations (‘X-disease’, ‘watery stipe’, ‘brown disease’, and ‘die-

back’) were used to describe La France disease (reviewed by van Zaayen, 1979). During 

the 1970’s, La France disease occurred at epidemic proportions in North America and 

Europe and was a major problem during commercial mushroom production (Romaine & 

Goodin, 2002). La France disease can affect all A. bisporus varieties, but does not infect 
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the alternative cultivated species A. bitorquis (Geels et al., 1988), which is often used as 

‘virus breaker’.  

 

Symptoms of La France disease range from minor infections, resulting in an almost 

negligible yield loss, to severe infections, associated with malformed fruiting bodies 

(Romaine & Goodin, 2002). The first indication of La France disease is delayed 

emergence of fruiting bodies and bare-patches throughout the commercial beds where 

mycelium does not permeate the casing layer resulting in loss of yield. Fruiting bodies 

surrounding the bare areas typically assume a ‘drumstick’ phenotype, consisting of 

elongated stems and small mishapen caps. The caps sometimes turn dark brown and 

stems bend. There is also a tendency for the diseased fruiting bodies to mature 

prematurely and release infected spores (Romaine & Goodin, 2002). The infectious 

nature of La France disease was demonstrated before it was known to be caused by a 

virus (Schisler et al., 1967). The La France virus can be transmitted by basidiospores, 

between 65-75% spores produced by infected mushrooms are virus-infected (Romaine 

et al., 1993). The virus can also be transmitted horizontally from infected to healthy 

mycelium (Schisler et al., 1967; Sonnenberg & Van Griesven, 1991).  

 

Three types of virus particles have been identified in La France diseased mushrooms: 

two isometric particles with diameters of 34-36 nm and 25 nm respectively 

(predominant types) (Van Zaayan, 1979) and bacilliform particles measuring 50x19 nm 

(Revill et al., 1994). Since all three viral particle types have also been observed in 

apparently healthy fruiting bodies (Van Zaayan, 1979), the major correlation occurs 

between the disease and the presence of nine dsRNA elements (Harmsen et al., 1989; 

Koons et al., 1989). The dsRNA pattern most frequently associated with La France 

diseased mushrooms consists of six major dsRNAs: L1 (3.8 kbp), L2 (3.1 kbp), L3 (3.0 

kbp), L4 (2.8 kbp), L5 (2.6 kbp) and M2 (1.3 kbp), which are invariably present in 

infected mushrooms. Three minor dsRNA elements, M1 (1.7 kbp), S1 (0.9 kbp) and S2 

(0.8 kbp) can be also observed but are often absent (Marino et al., 1976; Wach et al., 

1987; Harmsen et al., 1989; Romaine & Schlagnhaufer, 1989). The 34-36 nm-virions 

can be co-purified with six dsRNA molecules (L1, L2, L3, L4, L5, and M2) and 

sometimes accompanied by minor dsRNAs (M1, S1, and S2) (Goodin et al., 1992; Van 
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der Lende et al., 1994). This virus was initially named La France isometric virus (LIV) 

(Goodin et al., 1992; Romaine et al., 1993).  Subsequent authors preferred to rename it 

as Agaricus bisporus virus 1 (ABV1) since its role as the causal agent remained 

circumstancial (Van der Lende et al., 1996).  

 

The nine La France dsRNAs showed no cross hybridization under stringent conditions 

(Harmsen et al., 1989), suggesting that each had a unique sequence and was not a 

defective (Tartaglia et al., 1986; Shapira et al., 1991a) or subgenomic RNA (Ni & 

Kemp, 1994). The most favoured interpretation is that the six major dsRNAs represent 

the ABV1 genome, whereas the minor elements (M1, S1 and S2), present in submolar 

amounts may be satellite RNAs (Romaine & Goodin, 2002). Cosegregation of dsRNA 

elements during sporogenesis of La France infected-mushrooms is consistent with the 

idea that they are interdependently replicating molecules, comprising the genome of a 

single virus (Romaine et al., 1993). What is less clear is whether the dsRNAs are 

encapsidated individually or together in a single particle. Some authors have suggested  

a multiparticle system, similar to that found in many plant viruses (Goodin et al., 1992; 

Romaine & Goodin, 2002). However, Van der Lende (1995a) suggested that the ABV1 

genome could replicate as in Reovirus. X-ray diffraction studies of reovirus type 3 

(Harvey et al., 1981) indicate that dsRNAs are packaged in a well-ordered and semi-

crystalline way. Their capsid core (25 nm in diameter) accommodates the entire genome 

of ten dsRNA molecules with a total length of about 23 kbp. Assuming that the 

observations made by Harvey et al. (1981) apply to ABV1, the nine dsRNAs (making a 

total length of 18.5 kbp) could be accomodated into a capsid of 20 nm (Van der Lende, 

1995a). It is therefore physically possible for the ABV1 genome to be packaged in the 

observed 34-36 nm virion particle.      

  

L1, L3, L5, M1 and M2 dsRNA elements have been completely sequenced (Harmsen et 

al., 1991; Van der Lende et al., 1996). Only the L1 dsRNA, exhibiting homology to 

proteins present in protein databases encodes a putative RNA-dependent RNA 

polymerase (Romaine & Goodin, 2002) whose best matching sequences occur in 

dsRNA viruses of Saccharomyces cerevisiae, Ustilago maydis, Leishmania brasiliensis 

subsp. guyanensis and Giardia lamblia (Van der Lende, 1996). The presence of an 
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RdRp in the L1 dsRNA sequence was consistent with the demonstration of RdRp 

activity associated with ABV1 (Goodin et al., 1997). However, no other similarities 

were found between the other dsRNAs sequences and available protein sequences (Van 

der Lende, 1995). Given the minimal resemblance to dsRNA fungal viruses, ABV1 has 

not yet been assigned to a mycovirus family (Romaine & Goodin, 2002).  

 

ABV1 is frequently found in co-infections with mushroom bacilliform virus (MBV) 

(Revill et al., 1994; Romaine & Goodin, 2002; Section 1.8.2) in button mushrooms. 

Romaine et al. (1995) estimated that 60% of diseased mushrooms collected in North 

America during a 13-year period, were co-infected by ABV1 and MBV. Initially, MBV 

was thought to be a satellite virus, but single infection (Romaine et al., 1995) and the 

presence of an RdRp gene in its genome (Revill et al., 1994) dismissed this theory. 

Hybridization analyses also support the idea that MBV is a distinct virus from ABV1 

(Romaine & Schlaghhaufer, 1991). No obvious symptoms were observed in MBV-

singly infected mushrooms (Romaine & Goodin, 2002). The idea that ABV1 and MBV 

are independently replicating viruses does not exclude the possibility of a synergistic 

relationship between them. Indeed, the titre of MBV can be 12-fold higher in 

mushrooms infected with ABV1 than without (Romaine et al., 1995).  

 

1.8.6.2.2 MVX disease 

In the mid 1990s a new, complex disorder of A. bisporus was observed on several 

British farms (Gaze, 1997). This disease was termed as ‘Mushroom Virus X’ or ‘MVX’ 

disease (Gaze et al., 2000). Within a few years, MVX symptoms were also seen in the 

Netherlands and Ireland (Sonnenberg & Lavrijssen, 2004; Rao et al., 2007). Crops 

affected by MVX disease develop bare patches due to arrested development of pins or 

delay in fruiting body formation. Other symptoms include premature veil opening, 

brown discoloration and malformed sporophores (Fig. 1.6). Estimates of UK crop losses 

due to MVX disease were approximately £50 m in 2000 and yield reductions of 15% 

were common (Grogan, pers. comm.). In Dutch farms symptoms were restricted to 

brown discoloured mushrooms and were reported to extend to some farms in Belgium 

and Germany linked to some Dutch companies (Sonnenberg & Lavrijssen, 2004). In 

Ireland the appearance of MVX symptoms appeared to be confined to the first flush of 
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mushrooms and often tended to decline or disappear in the subsequent flushes (Rao et 

al., 2007).  

 

 
Fig. 1.6- MVX symptomology in Agaricus bisporus mushrooms. (a) pin suppression around a 
group of normal mushrooms; (b) bare cropping areas; (c) gradation in pin development from no 
pin on the left to fully developed mushrooms on the right; (d) premature veil opening; (e) 
‘brown’ mushrooms; (f) an off-coloured mushroom (right) compared to a normal one (left); (g-
h) malformed mushrooms (from Grogan et al., 2003) 
 

Studies of 389 MVX-infected mushroom samples carried out at Warwick HRI, UK 

allowed the identification of 26 dsRNA elements ranging in size from 640 bp to 20.2 

kbp (Fig. 1.7; Grogan et al., 2003). More recently, an additional dsRNA element of 3.5 

kbp has been observed (Grogan et al., 2004; Holcroft, pers. comm.). The researchers 

have extensively compared their results obtained from a wide range of sites and farms 

for dsRNA elements as expressed by banding patterns of MVX disease. Given the 

various sizes and numbers of dsRNAs together with the diverse range of symptoms 
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observed they concluded that MVX disease complex might comprise more than one 

virus. 

 

 
Fig. 1.7- dsRNA profiles from Agaricus bisporus mushrooms. M1 = molecular weight marker 
(λDNA/HindIII ladder + 100 bp ladder, Invitrogen); M2 = molecular weight marker 
(λDNA/HindIII ladder, Invitrogen); lanes 1-5 = different symptomatic MVX samples; lane 6 = 
asymptomatic mushroom; lane 7 = mushroom infected by La France disease. Molecular weights 
(kbp) are indicated for each dsRNA element. Asymptomatic dsRNAs are indicated by broken 
lines and highlighted in the schematic with the suffix “a” (from Grogan et al., 2003)    
 

Three dsRNA elements (MVX16.2a, MVX9.4a, MVX2.4a) were routinely found in 

mushrooms asymptomatic for MVX, whereas the remaining 24 dsRNAs were present 

exclusively in MVX-infected mushroom samples. The 4 low molecular weight dsRNAs 

(MVX2.0, MVX1.8, MVX0.8, and MVX0.6) were tentatively associated with brown symptoms 

Grogan et al., 2003).  

 
Other than the low weight dsRNAs, no clear relationship between the various MVX 

symptoms and the presence of specific dsRNA elements are present (Grogan et al., 

2003). DsRNA patterns may vary between samples collected in different sites and 

farms. The maximum number of dsRNAs found to occur in one sample is 17 (Grogan et 

al., 2003). 

MVX dsRNA 
(kbp) 

M1         1         2               3         4         5                6           7           M2 
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Electron microscopy examinations have not revealed any morphological abnormalities 

or virus particles specifically associated with the disease (Sonnenberg & Lavrijssen, 

2004; Rao et al., 2007; Everard & Clay, unpubl.). 

 

Hybridization analyses have indicated the presence of possible defective elements 

within the complex of viruses (Adie et al., 2004). The MVX2.2 dsRNA hybridised with 
MVX18.3 and MVX16.2a, while MVX9.4a, 8.6, 7.8, and MVX7.0 formed a different 

hybridization group. Probes obtained from MVX14.4, 3.6, 1.8, 08, and MVX0.6 did not 

hybridize to any other MVXdsRNAs with the exception of the original element (Adie et 

al., 2004). Sequence analyses of nine MVXdsRNA sequences obtained from random 

clones suggested similarity with various viral sequences (Adie et al., 2004; Table 1.2).    

 

Table 1.2- Summary of sequence analysis of MVXdsRNAs (from Adie et al., 2004) 

MVXdsRNA 
(kbp) 

Sequence 
generated 

(bp) 
Homologies Blast similarity Conserved Motifs 

14.4 558 

Vicia faba dsRNA 
element causing 

male sterility 
(endornavirus); 

Oryza sativa 
dsRNA 

(endornavirus) 

 
1.0e-07; 
2.0e-04 

NI 

9.4a 925 
Potexviruses: fox 

mosaic virus; clover 
yellow mosaic virus   

5.2e-08; 
1.4e-07 NI 

7.0 599 Novel sequence- no 
significant similarity NA Potential helicase DEAD 

box 

1.8 657 Low similarity to 
Picornaviridae 0.55 RdRp GDD box motif 

0.8 693 
Mushroom 

bacilliform virus (1 
clone) 

6.0e-44 NI 

NI: none identified; NA: not applicable 
 

Work carried out at Warwick HRI suggested that MVXdsRNAs can be transmitted by 

spores and mycelia fragments (Gaze et al., 2000; Grogan et al., 2003; Adie et al., 2004). 

Gaze et al. (2000) reported that MVX-infected spawn and mycelium used as inoculum 

for mushroom production in MVX-free areas could transmit MVX symptoms. In 

particular, when small amounts of MVX-infected spawn were mixed with a much larger 
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quantity of healthy spawn, sporophores subsequently produced were all infected. 

Infected mycelium was also reported as a possible source of infection (Gaze et al., 

2000), able to transmit MVXdsRNA elements through in vitro experiments (Adie et al., 

2004).  

 

Whatever the dsRNA sequences and epidemiological works have revealed so far about 

the MVX disease, the specific viral aetiology still remains enigmatic. A number of 

issues for deciphering the molecular biology of this elusive and devastating disease 

remain to be explored.     

 

1.9 Host Defence Mechanisms 

 

Every organism suffers a constant battle with potential pathogens, but disease is often a 

relatively rare event. In crop science, plants have been used as a model to understand 

the reasons for pathogen failure. Either (i) the organism is unable to support the niche 

requirements of a potential pathogen and therefore is a non-host; or (ii) the organism 

possesses preformed structural barriers or toxic compounds that confine successful 

infections to specialized pathogens species; or (iii) upon recognition of the attacking 

pathogen induced-defence responses are elaborated and the invasion remains localized. 

All three types of interaction are said to be incompatible.  

 

Successful pathogen invasion and disease (compatibility) ensue if the preformed 

organism barriers are inappropriate or the activated defence responses are ineffective 

(Hammond-Kosack & Jones, 1996). The most common mechanism associated with 

active defence is the hypersensitive response (HR); cells surrounding the primary 

infection site of the pathogen die due to a rapidly induced programmed cell death, 

resulting in a visible necrotic local lesion (reviewed by Golbach et al., 2003). The 

induction of this response is preceded by a specific recognition between pathogen 

factors, produced from avirulence genes and infected organism gene products, produced 

from dominant resistance genes (Kenn, 1992; Staskawicz et al., 1995). This type of 

resistance is limited to the inherited set of resistance genes (Laugé et al., 1998) and thus 

cannot rapidly adjust to mutations of pathogens. Compared to fungal and bacterial 
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pathogens, viruses mutate relatively quickly because of the error prone RNA replicases 

(reviewed by Sijen & Kooter, 2000).  

 

Certain organisms seem to have evolved a defence strategy that is activated by and 

directed against viral nucleic acids, rather than a strategy based on protein recognition. 

This mechanism, often refereed to as Post-Transcriptional Gene Silencing (PTGS), 

provides a flexible surveillance system, which is able to cope efficiently with rapidly 

changing viruses (reviewed by Sijen & Kooter, 2000). These, in turn, produce proteins 

capable of suppressing host cell RNA silencing (reviewed by Silhavy & Burgyan, 

2004). PTGS was first discovered in artificial systems where dsRNA was introduced by 

expression of transgenic constructs (van der Krol et al., 1992) or by injection (Fire et 

al., 1998). An early observation of PTGS was made in petunia (Napoli et al., 1990). 

Trying to deepen the purple hue of petunias by boosting the activity of the chalcone 

synthase gene, the authors transferred additional copies of the gene into the plant hosts. 

Unexpectedly, many flowers became variegated or white instead of deep purple. 

Furthermore, they noted that the white colour could be passed to the next generation.  

 

As plant researchers began to understand the significance of RNA silencing, Guo & 

Kemphues (1995), working on the nematode worm, Caenorhabditis elegans obtained 

surprising results with a technique involving ‘antisense’ RNA. In an effort to determine 

the function of the par-1 gene, an antisense par-1 RNA was injected into worms and 

this yielded the expected phenotype, embryonic lethality. However, injection of the 

control sense RNA, also created the same phenotype. Fire et al. (1998) reported that 

either sense- or antisense RNAs could inhibit gene expression and that dsRNA was ten 

fold more efficient than either strand alone.  

 

In fungi, gene silencing was discovered during attempts to boost the production of an 

orange pigment in the mould Neurospora crassa (reviewed by Cogoni & Macino, 

1997). The researchers introduced extra copies of a gene involved in making the 

carotenoid pigment, but found that some transformants bleached out rather than turning 

into deep orange. It soon became clear that PTGS was a widespread mechanism 

amongst different organisms and included the co-suppression observed in plants (Napoli 
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et al., 1990), quelling in fungi (Romano & Macino, 1992), and RNA interference in 

animals (Fire, 1999).  

 

DsRNA is the key initiator molecule (Fire et al., 1998; Wesley et al., 2001) of PTGS, 

which is usually seen as a two step-reaction (Fig. 1.8, Buchon & Vaury, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Fig. 1.8- Post-transcriptional Gene Silencing mechanism. dsRNAs are recognized by the 
RNA silencing pathway and cleaved by a Dicer-like protein to form siRNAs. These siRNAs 
serve as templates to guide the endonucleolytic cleavage of homologous mRNA  
 
In the first step a dsRNA molecule (virus or transcribed transgene) is processed into 

short (21-25 nucleotides) small interference RNAs (siRNAs, Hannon, 2002). siRNAs 

are subsequently incorporated  into a silencing complex, where they serve as templates 

RISC 

mRNA 
cleavage 

mRNA 
target  
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to guide the endonucleolytic cleavage of homologous mRNA (Hammond et al., 2001). 

The first step is performed by a family of ribonucleases, the RNase III family, and more 

precisely by an enzyme called Dicer.  

 

The latter is able to recognize and cleave dsRNA molecules to generate siRNAs. The 

second step of RNAi pathway is the formation of the RNA-Induced Silencing Complex 

(RISC), a large ribonucleoprotein complex considered to be a homology-dependent 

endonuclease, which seeks out and destroys homologous mRNA. The existence of such 

an RNA-based defence mechanism against invading elements could be particularly 

important for organisms such as plants and invertebrate animals, which lack protein-

based adaptive immunity. Nevertheless, evidence has recently emerged that mammals 

also use PTGS to silence or destroy foreign genetic material detected in a cell (Svoboda 

et al., 2004; Lecellier et al., 2005).  

   

Gene silencing against transposons and viruses can rely on another mechanism acting at 

a transcriptional level, Transcriptional Gene Silencing (TGS; reviewed by Buchon & 

Vaury, 2006). Until recently, both PTGS and TGS were considered separate pathways 

acting at the RNA and DNA level, respectively. Recently, a convergence of 

observations from diverse experimental systems suggested that a conserved mechanism 

might link both homology-dependent gene-silencing responses. TGS is often thought to 

involve a local chromatin modification whereby DNA and histones are chemically 

modified to recruit proteins inhibiting transcriptional activity and condensing 

chromatin. Hallmarks of TGS are DNA cytosine methylation and histone lysine 

methylation (reviewed by Buchon & Vaury, 2006). The link between altered chromatin 

structures and dsRNA induced gene silencing has emerged from plant and Drosophila 

systems (Hannon, 2002). In particular, alterations of either methyltransferases or 

chromatin remodelling complexes can affect both the degree and persistence of 

silencing in Arabidopsis (Jones et al., 2001; Furner et al., 1998). Mutations in genes 

required for PTGS decrease both co-suppression and transgene methylation (Fagard et 

al., 2000). Hitherto, the mechanism linking TGS and PTGS pathways remains unclear 

(reviewed by Buchon & Vaury, 2006).   
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1.10 Aims and Objectives of this thesis 
 

The research described in this thesis was principally aimed at studying one dsRNA 

element associated with the MVX disease of A. bisporus, MVX14.4.   

 
MVX14.4 was observed in ca 57% of MVX-infected mushrooms, showing a dsRNA 

pattern of 9 or more dsRNA elements (Adie et al., 2004), and the element usually 

appeared as a very intense band in dsRNA profiles of MVX-infected mushrooms. 

Hybridization analyses (Adie et al., 2004) indicated that MVX14.4 is most likely a unique 

element, with no defective interfering sub-elements.  

 

To conduct molecular and epidemiological characterization of MVX14.4, the following 

specific objectives were identified: 

 

- Generate full cDNA sequence for the MVX14.4 dsRNA using RT-PCR fill in 

strategy, cDNA cloning, sequencing, and sequence analyses. 

- Investigate horizontal and vertical transmission of MVX14.4 using in vitro dual 

culture assay and single-spore progeny analysis, respectively. 

- Characterize MVX14.4-like element observed in wild populations of A. bisporus.  

 

A second aim was to investigate the occurrence of homology-dependent gene silencing 

phenomenon in A. bisporus as antiviral defence mechanism and its utility for functional 

genetic analysis of MVX14.4. To meet this second aim the following objectives were 

identified:  

 

- Construct dsRNA forming-hairpin vectors using MVX14.4 sequences for 

transformation of A. bisporus and establish their utility in ‘silencing’ MVX14.4 

dsRNA. 

- Improve downstream transformation of A. bisporus investigating the use of 

phleomycin resistance gene as an alternative selectable marker. 
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- Additionally, evaluate the ability of different chemical compounds (hygromycin 

and cyclic AMP) to interfere with MVX14.4 replication by incorporation into 

laboratory culture media.  
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2. Summary 
This chapter describes media, organisms, culture maintenance, solutions, and general 

experimental protocols used in this project. Details of more specific materials and methods are 

presented within relevant chapters.  

 

2.1 Media 
  

Unless otherwise stated, media were solidified, when applicable by the addition of 1.2% 

w/v Oxoid Technical Agar N° 3. All media and stock solutions were sterilised at 121° C 

(15 psi) for 15 min, unless otherwise stated. Heat sensitive solutions were filter 

sterilised using 0.2 µm Nalgene units (cat. No. 190-2520). Water used in all media and 

buffers was ultrapurified (18 MΩ) using an ELGA-Maxima Ultra Pure Water System.  

 

2.1.1 Bacterial Media 
Luria-Bertani (LB) medium (Little, 1987) 

The composition of LB broth was as follows (g/L): 10 g bacto-tryptone, 5 g bacto-yeast 

extract, and 5 g NaCl.  

 

SOC broth  

The composition of LB broth was as follows: 2.0 g of bacto-tryptone, 0.5 g of bacto-

yeast extract, 1 ml of 1M NaCl and 0.25 ml of 1M KCl were dissolved in 98 ml water, 

autoclaved, and cooled to room temperature. After autoclaving, 1 ml of 2M Mg2+ 

solution (203.3 g /L MgCl2·6H2O and 246.5 g/L MgSO4·7H2O) and 1 ml of 2M glucose 

were added.  

 

Minimal Medium for Agrobacterium (MM, Hooykaas et al., 1979)  

The composition of MM was as follows (ml/L): 10 ml K-buffer (200 g/L K2HPO4, 145 

g/L KH2PO4), 20 ml M-N buffer (30 g/L MgSO4·7H2O; 15 g/L NaCl), 10 ml 20% w/v 

glucose, 10 ml 0.01% w/v F2SO4, 2.5 ml 20% (NH4)2SO4, and 1 ml 1% w/v 

CaCl2·2H2O. 

 

Agrobacterium Induction Medium (IM, Hooykaas et al., 1979)  
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IM was composed as MM, but with the addition of 40 mM MES, 10 mM glucose and 

0.5% v/v glycerol.  

 

2.1.2 Mycological Media 

 Complete yeast extract medium (CYM, Raper et al., 1972) 

The composition of CYM was as follows (g/L): 20 g D-glucose; 2 g peptone; 2 g yeast 

extract; 0.5 g MgSO4·7H2O; 0.46 g KH2PO4; 1g K2HPO4. 

 

Compost extract + Complete yeast extract medium (CE/CYM, Calvo-Bado et al., 

2000) 

To prepare compost extract (CE), fresh compost (400 g phase II, Section 1.4) was oven 

dried in thin layers (3-4 h at 120º C) and ground to a fine powder using a Sample Mill 

(Cyclotec 1093). Dried compost was added to 1 litre of distilled water, simmered for 1 

h, cooled and filtered through Miracloth (Calbiochem, cat. No. 475855). Solids were 

removed by centrifugation (7,000 xg, 20 min, 5º C, MSE-HS18). The remaining 

supernatant (ca 800 ml) was distributed into 400 ml aliquots and stored at - 20°C until 

required. For preparation of CE/CYM, 200 ml of CE and 20 ml of a stock solution 5x 

CYM were made up to 1 L with water and autoclaved for 20 min. 

 

Malt, Peptone Agar (MPA, Challen, unpublished) 

MPA was composed of 20 g/L malt extract and 5 g/L peptone. 

 

2.1.3 Antibiotics, fungicides and other supplements 
Antibiotics, anti-metabolites, and other supplements were prepared as stock solutions 

and filter sterilised through 0.2 µm Nalgene units (Section 2.1). Solutions were stored at 

-20º C with the exception of carboxin, which was stored at 4º C; and acetosyringone, 

which was made up as a fresh solution before use. Phleomycin working concentration 

was not determined. Table 2.1 shows the chemical stock and working concentrations. 

Compounds were routinely added to autoclaved media after cooling to 50º C.  
 
Table 2.1- Chemical stock and working concentrations of antibiotics, fungicides and other 
supplements  

CHEMICAL TYPE STOCK SOLUTE WORKING 



Chapter 2                                                                    General Materials and Methods 
                    
 
 

  44 

(abbreviation) CONCn CONCn 

Acetosyringone (AS) polyphenol 20 mg/ml ethanol 40 µg/ml 

Ampicillin (Amp) antibiotic 100 mg/ml water 100 µg/ml 

Carbenicillin (Cb) antibiotic 50 mg/ml water 50 µg/ml 

Bromo-cyclic 

AMP (Br-cAMP) 

nucleotide 4.3 mg/ml water 4.3 µg/ml 

Carboxin (Cx) fungicide 100 mg/ml ethanol 15 µg/ml 

Cefotaxime (Cf) antibiotic 200 mg/ml water 200 µg/ml 

Cyclic AMP 

(cAMP) 

nucleotide 369 mg/ml water 369 µg/ml 

Hygromycin B 

(Hyg) 

antibiotic 100 mg/ml water 25 µg/ml 

Kanamycin (Kan) antibiotic 30 mg/ml water 30 µg/ml 

Phelomycin (Phleo) antibiotic 25 mg/ml water - 

Rifampicin (Rf) antibiotic 25 mg/ml methanol 25 µg/ml 

Tetracyclin (Tet)  antibiotic 12.5 mg/ml ethanol 12.5 µg/ml 

- = undetermined 

 

2.1.4 Indicator Media 
Media for colorimetric detection of Escherichia coli transformants were supplemented 

with 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal) and isopropylthiogalactoside 

(IPTG).  A 20 mg/ml stock solution of X-gal in N,N’-dimethyl-formamide  was filter 

sterilised, and stored in the dark at -20º C in glass or polypropylene tubes. A 0.1 M 

stock solution of IPTG in water was filter sterilised and stored at -20º C. Using a sterile 

plastic spreader, 2 ml of X-gal and 2.5 ml of IPTG were added to 500 ml LB agar 

medium with the appropriate antibiotics. 

2.2 Stock solutions and Buffers 
 



Chapter 2                                                                    General Materials and Methods 
                    
 
 

  45 

All chemicals used in molecular procedures were of at least analytical grade. All 

glassware and water used for the preparation of solutions for RNA work were treated 

with dimethylpyrocarbonate (DMPC, Sigma cat. No. D-5520 [5% v/v ethanol; 0.1% v/v 

DMPC working solution]) and autoclaved prior to use.  

 

Restriction endonucleases and other enzymes were obtained from commercial sources 

and used with the appropriate buffers according to the manufacturers instructions.   

 

5x STE  

A stock solution was prepared as follows (g/L): 30.25 g 

tris(hydroxymethyl)methylamine (TRIS); 1.65 g ethylenediaminetetracetic acid  

(EDTA); 29.6 g NaCl.  

 

1x STE/ 15% v/v ethanol  

The composition of 1xSTE/ 15% v/v ethanol was as follows (g/L): 200 ml  5x STE 

stock solution, 150 ml 100% v/v ethanol and 650 ml DMPC water. Ethanol was added 

to the solution under the fume-hood after autoclaving. 

 

10% w/v SDS  

50 g sodium dodecyl sulphate crystal (SDS) was dissolved in 500 ml water at 68° C. 

 

Electrophoresis Buffers and Stock Solutions  

Electrophoresis buffers and stock solutions were prepared according to Sambrook et al. 

(1989). The standard solutions were: 50x TAE (2M TRIS-base; 0.05M EDTA; pH 7.8 

of the buffer was adjusted with glacial acetic acid); gel loading buffer type III (30% w/v 

sterile glycerol, 0.25% w/v bromophenol blue and 0.25% w/v xylene cyanol FF); and 

ethidium bromide solution (10 mg/ml). 
 

 

2.3 Maintenance of Fungal cultures 
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Fungal isolates and strains used are detailed within relevant chapters. They were 

maintained on CE/CYM agar plates at 4°C and sub-cultured every 3 months. 

Short/medium-term storage isolates were preserved in sterile water according to the 

Castellani’s methology (Cerezine & Kurozawa, 1992). Isolates were cultured on CYM 

or CE/CYM medium at 25°C for 2-3 weeks; 4-5 mycelial culture plugs were then 

removed from the culture and transferred to a 50 ml Falcon tube containing 20 ml of 

sterile water. Tubes were stored at room temperature for up to 2-3 years. Long-term 

cultures storage was achieved using liquid nitrogen (Challen & Elliott, 1986).  

 

2.4 Bacterial strains 
 

2.4.1 Escherichia coli 
Two strains of E. coli competent cells were used for routine cloning: E. coli DH5α, 

genotype F-φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-, mk+) phoA 

supE44 thi-1 gyrA96 relA1 λ- (Invitrogen, cat  No.18258-017); and E. coli strain XL1-

Blu, genotype recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F’ proAB 

laclqZΔM15 Tn10 (Tet’)] (Advantagen, cat No. Eco010).  

 

Competent cells of E. coli SCS110, genotype rpsL (Strr) thr leu endA thi-1 lacY galK 

galT ara tonA tsx dam dcm supE44 Δ(lac- proAB) [F’ tra36 proAB laclqZΔM15] 

(Stratagene, cat No. 200247) were used for experiments described in Chapter 6. Strain 

SCS110 is deficient for two methylases (Dam and Dcm) found in most strains of E. coli.  

 

E. coli strains were routinely cultured onto LB media with appropriate antibiotics at 37º 

C. Broth cultures were shaken at 225 rpm (New Brunswick Scientific- Edison NI USA).  

 

 

 

 

2.4.2 Agrobacterium tumefaciens 
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A. tumefaciens strain AGL-1 (Lazo et al., 1991) was used for A. tumefaciens-mediated 

transformation of A. bisporus. Strain AGL-1 was obtained from bacterial culture 

collections at Warwick HRI.  

 

Strains of Agrobacterium are defined by their chromosomal background and resident 

Ti-plasmid. Strain AGL-1 carries a C58 chromosomal background and has proved 

useful for transformation of a range of A. bisporus strains (Leach, 2004). It contains a 

nopaline/L, L- succinamopine opine-type Ti-plasmid (pTiBo542) that is hypervirulent 

in the virG locus.  

 

To prepare electro-competent cells A. tumefaciens was streaked onto LB agar 

supplemented with 25 µg/ml rifampicin and 50 µg/ml carbenicillin at 26º C, overnight. 

A single colony was inoculated to 50 ml LB broth with appropriate antibiotics. The 

culture was incubated at 26º C, 150 rpm, overnight. The cells were harvested by 

centrifugation at 3650 xg (Hermle Z382K), 10 min, 4º C and kept on ice to prevent 

further growth. A. tumefaciens cells were washed and centrifuged at 3650 xg three times 

in 50 ml of 10% glycerol. The final pellet was resuspended in 1 ml of ice-cold 10% v/v 

glycerol and 100 µl aliquots of electro-competent cells were stored at -80º C.   

 

2.5 Nucleic acid extraction methods 

 

Three different methods were used to extract nucleic acids from mushroom samples. 

Nucleic acids extraction used fungal mycelium or mushroom sporophores as starting 

material. All fungal material was freeze-dried (Edwards, Modulyo) prior to the 

extraction unless otherwise stated. Fungal mycelium (50 mg) was freeze-dried over 24 

h. Sporophore tissue (3.5 g) was freeze-dried over ca 7 days.  

 

2.5.1 dsRNA extraction (Valverde et al., 1990b; Holcroft, pers.comm.) 

This method combined a dsRNA phenol extraction with CF-11 cellulose column 

purification and was the first step for dsRNA profiling analysis. 

Mushroom sporophores were ground to a fine powder in liquid nitrogen, using mortars 

and pestels. Powdered samples were transferred to 250 ml pots containing 16 ml of 1x 
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STE, 2 ml of 10% w/v SDS, 1 ml of 2% w/v bentonite aqueous solution and 18 ml of 

acid phenol (pH 4.3; Sigma, cat. No. P-4682). The mixture was emulsified by shaking 

for 30 min at 4° C and then centrifuged for 15 min at 9,000 xg (Europa 24 M- MSE). 

Supernatants were transferred to 50 ml tubes for further centrifugation (10 min, 9,000 

xg, Hermle Z382K). Absolute ethanol was added to the purified aqueous phase to a 

final concentration of 15% v/v. For each sample two columns were prepared, 

comprising a sterile 20 ml plastic syringe plugged with glass wool, equilibrated with 25 

ml of 1x STE/ 15% v/v ethanol and 1.5 g of CF-11 cellulose (Whatman, cat. No. 

4021050). Samples were added to each column and washed with 40 ml of 1x STE/ 15% 

v/v ethanol. The dsRNA from the column was eluted by adding 10 ml of 1xSTE and 

collected in sterile tubes. Absolute ethanol was again added to each tube to a final 

concentration of 15% v/v and the wash process repeated, apart from a final elution with 

6 ml of 1xSTE. Nucleic acids were precipitated at -20°C for 2h using 20 ml of absolute 

ethanol and 1 ml of 3M sodium acetate (pH 5.2). Samples were centrifuged at 9,000 xg 

for 25 min (Hermle Z382K) and the supernatants discarded. The pellets were 

resuspended in 100 µl DMPC water and further purified using Qiaquick PCR 

purification kit (Qiagen, cat. No. 28106), following the manufacturers protocol. 

Samples were finally eluted in 30 µl DMPC water.  

 

2.5.2 TRI Reagent extraction (Chomczynski, 1993) 
TRI Reagent was used to extract total RNA from mushroom mycelium. Samples were 

ground to a fine powder using small sterile pestles in the presence of 0.15 g of glass 

beads (106 µm, SIGMA, cat. No. G-4649). TRI reagent (1 ml, SIGMA cat. No. T 9424) 

was added to each sample and tubes were shaken vigorously for 15-30 s before 

centrifugation at 12,000 xg, 10 min, 4º C (Hawk 15/05- Sanyo MSE). Supernatants were 

transferred to clean microcentrifuge tubes and 0.2 ml chloroform was added. Samples 

were shaken gently for 15-30 s and centrifuged (12,000 xg, 15 min, 4º C). The upper 

aqueous phase was transferred to a clean 1.5 ml microcentrifuge tube and 0.5 ml of 

isopropanol added. Samples were allowed to stand for at least 5 min at room 

temperature or longer at -20º C and then centrifuged. Supernatants were removed and 

the RNA pellets washed with 1 ml of 75% v/v ethanol, centrifuged (7,500 xg, 5 min, 4º 

C), air-dried for 5-10 min and then resuspended in 100 µl DMPC water. The RNA was 
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further purified using the QIAquick PCR purification kit (QIAGEN, cat. No. 28106) 

according to the manufacturer’s protocol,  prior to RT-PCR.  

 

2.5.3 Chelex extraction  
Crude DNA extraction for PCR screening was performed using a Chelex method 

(Challen et al., 2003). Five plugs were cut from the periphery of actively growing 

mycelial agar cultures and transferred to a 1.5 ml microcentrifuge tubes. Glass beads 

(0.15 g) and 1 ml Chelex-Tris suspension (3% w/v Chelex, 1 mM Tris pH 8) were 

added to each tube and then vortexed for 1 min. Macerates were treated by three 

alternate cycles of freezing in liquid nitrogen and boiling for 1 min each and a final 

prolonged boiling of 5 min.  Tubes were vortexed for an additional min, incubated at 

55° C for 30-40 min and centrifuged (12,000 xg, 5 min; Hawk 15/05- Sanyo MSE). 

Finally 100 µl of supernatant was transferred to a clean 1.5 ml microcentrifuge tube. 

Samples were stored at -20º C or used directly for PCR. 

 

2.6 Nucleic acids quantification  
 

Quantity and purity of nucleic acids were determined using the spectrophotometer 

(Nanodrop, Labtech) to read absorbance at 260 nm and 280 nm. A pure preparation of 

DNA and RNA had the ratio between the readings at 260 nm and 280 nm (OD260: 

OD280) of approximately 1.8 and 2.0, respectively. 

 

2.7 Purification of dsRNA 
 

DNA and ssRNA were removed from extracted dsRNA using DNase (1 U/µl, Promega, 

cat. No. M6101) and S1 nuclease (1 U/µl, Promega, cat. No. M5761). To remove DNA, 

8 µl of RNA sample was added to 1 µl of RQ1 RNase free DNase and 1 µl of RQ1 

RNase free DNase 10x reaction buffer. The mixture was incubated at 37° C for 15 min. 

The reaction was then stopped by addition of RQ1 DNase stop (1 µl) and incubation at 

65° C for 10 min.  
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To remove ssRNA, the RNA preparation was treated with S1 nuclease. Each RNA 

sample was added to 1 µl of S1 nuclease 10x reaction buffer and 1 µl S1 nuclease. The 

mixture was incubated at 37° C for 1 h and 30 min. The dsRNA solution was then 

purified using the QIAquick PCR purification kit (QIAGEN, cat. No. 28106) according 

to the manufacturer’s protocol.  

 

2.8 Reverse Transcription-Polymerase Chain Reaction 
 

2.8.1 Reverse Transcription (RT) 
cDNA synthesis (reverse transcription) was performed using Thermoscript RT-PCR 

System (Invitrogen, cat. No. 11146-024), unless otherwise stated. For each reaction, 2 

µl of random hexamers (50 ng/µl), 1 µg of purified RNA template and DMPC water up 

to 10 µl were mixed in a 0.5 µl microcentrifuge tube. Reactions were boiled for 5 min 

and then placed on ice. The second step-reaction was performed in 20 µl volume and 

comprised the following: 1 µl ThermoScript ™ RT (15U/µl), 4 µl of 5x cDNA 

synthesis buffer, 2 µl dNTPs mix (10 mM), 1 µl DTT (0.1M), 1 µl Rnase OUT ™ (40 

U/µl), and 10 µl template (from previous step). cDNA synthesis was progressed using a 

HYBAID MBS 0.5 G Thermal Cycler with the following parameters: 25° C for 10 min; 

50° C for 45 min; and 85° C for 5 min (termination). To remove any remaining RNA 

template, each cDNA reaction was treated with 1 µl E. coli RNase H (2U/µl) at 37° C 

for 20 min.  

 

2.8.2 Polymerase chain reaction (PCR) 
Sequence specific oligonucleotides primers for PCR were designed using the Clone 

Manager Professional Suite v 7 (Scientific & Educational software, Cary, NC). Specific 

primers used for each reaction are stated in relevant sections. PCR screenings were 

routinely carried out as follows unless otherwise stated. Reactions were prepared in 50 

µl volume using: 0.5 µl Platinum Taq DNA polymerase (5 U/µl, Invitrogen), 5 µl of 

10x PCR buffer, 1.5 µl MgCl2 (50 mM), 1 µl dNTPs (10 mM mix), 1 µl forward primer 

(10 µM), 1µl reverse primer (10 µM), 20-60 ng DNA or 3 µl cDNA obtained from 

cDNA synthesis (section 2.8.1). PCR reactions were progressed using a HYBAID MBS 
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0.2 G Thermal Cycler with the following parameters: initial denaturation at 96oC for 2 

min, followed by 30 cycles of 94oC for 30 s, 55oC for 30 s, 72oC for 1 min, and a final 

extension at 72oC for 5 min. Variations on PCR protocol are described in appropriate 

chapters/sections.  

  

2.8.3   MVX dsRNA Test 
An RT-PCR Test was previously developed at Warwick HRI to routinely screen four 
MVXdsRNA elements: MVX14.4, MVX3.6, MVX1.8 and MVX9.4a (Section 1.8.6.2.2). The 

cDNA synthesis and PCR reactions were carried out as described in Sections 2.8.1 and 

2.8.2, respectively. Specific primers amplifying MVXdsRNA elements are listed in Table 

2.2. To assess the quality of RNA templates, RT-PCR was performed using primers 

(AB18S_f1 and AB18S_r1) amplifying the A. bisporus ribosomal 18S RNA. 

 

Table 2.2- Primers amplifying MVX14.4, MVX3.6, MVX1.8, MVX9.4a, and 18S RNA 

 
 

2.9 Electrophoretic Analysis of Nucleic acids 
 

Nucleic acid samples were fractionated by electrophoresis through agarose gels 

prepared with agarose MP (Roche, cat. No. 1388991), 1xTAE buffer and gel loading 

buffer type III (Section 2.2). Ethidium bromide (0.5 mg/ml final concentration) was 

Primer Primer sequence 
Reference: Challen M.P. (pers. comm.) 

Product 

Size (bp) 

RNA 

Target 

B3c198_f2 

B3c198_r2 

5’-TCTGGCGATGTGAAACCT-3’ 

5’-CTGCCAGAAGTAGTGATTAGTAG-3’ 

 

315 

 

MVX 14.4 

B15c35_f1 

B15c35_r1 

5’-ACTAGGCAGGAGCAGATGAA-3’ 

5’-CCAACAATCGAGCGTCAGAA-3’ 

 

427 

 

MVX 3.6 

B19b_f1 

B19b_r1 

5’-GAGGTTCACTGAGAGTTG-3’ 

5’-CTCGTATGTTCATCGAC-3’ 

 

322 

 

MVX 1.8 

BH2c102_f1 

BH2c102_r1 

5’-GAAGATGAGGAC-CGGCACAGT-3’ 

5’-CTCTCGCTTCTCCGAAGGTA-3’ 

 

241 

 

MVX 9.4a 

AB18S_f1 

AB18S_r1 

5’-GGTAGGATAGAGGCCTACCA-3’ 

5’-TTCGCAGTAGTCGGTCTTGA-3’ 617 18S 
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added to agarose gel, which was then analysed under UV light using the UV 

transilluminator (UVP Biodoc-It™ System). 

 

2.9.1 Electrophoresis of PCR products  
PCR products were analysed on 1% w/v agarose gel after about 40 min run at 80 V. 

When PCR products were electrophoresed for DNA gel extraction, DNA bands were 

excised from a 0.6% w/v agarose gel, collected into 1.5 ml microcentrifuge tubes and 

gel purified using the QIAquick gel extraction kit (QIAGEN cat. No. 28704), according 

to the manufacturers protocol. 

 

2.9.2 Electrophoresis for dsRNA Profile Analysis 
Extracted dsRNA (Section 2.5.1) was fractionated on 0.8% w/v agarose gel after 

running overnight at 30V.  

 

2.10 Cloning 

 

2.10.1 pGEM®-T Easy Cloning 
Routine cloning of amplified PCR products was carried out using pGEM®-T Easy 

vector System (Promega, cat. No. A1360). Following gel purification (Section 2.9.1), 

700 ng DNA was ligated into the pGEM®-T Easy vector (Fig. 2.1 and Fig. 2.2.). 

Ligation reactions were set up in 10-12 µl final volumes using 1 µl pGEM®-T Easy 

vector (50 ng/µl), 5 µl of 2x rapid ligation buffer, 1 µl T4 ligase (3U/µl), and 3-5 µl 

PCR product and incubated overnight at 4° C. Following a brief centrifugation, 5-7 µl 

of each ligation reaction was transferred to a sterile 1.5 ml microcentrifuge tube 

containing 100 µl DH5α™ or XL-1 Blue competent cells for transformation (Section 

2.4.1).  

Competent cells were incubated on ice for 30 min, heat-shocked for 45s at 42º C and 

placed on ice for 2 min. Pre-warmed SOC broth (900 µl) was added to each tube and 

incubated in a shaking incubator (1 h at 37° C, 225 rpm, New Brunswick Scientific- 

Edison NI USA). Three aliquots (50 µl, 100 µl and 200 µl) of each transformation 

reaction were spread onto LB agar containing 100 µg/ml ampicillin and 80 µg/ml X-gal 

and incubated overnight at 37º C. Transformed colonies were isolated onto LB agar 
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with appropriate supplements, and also grown overnight in 15 ml LB broth (37º C, 225 

rpm) supplemented with ampicillin (100 µg/ml). Plasmid DNA was extracted using the 

QIAprep Spin Miniprep Kit (Qiagen, cat. No. 27106), according to the manufacturers 

protocol. To confirm the integrity of recombinants, pGEM®-T Easy clones were 

restricted using Not I endonuclease (ROCHE, cat. No. 1014706), according to the 

manufacturers protocol.  

 

 
Fig. 2.1– The pGEM®-T Easy vector. The pGEM®-T Easy vector contain T7 and SP6 RNA 
polymerase promoters flanking a multiple cloning region within the coding region of the α-
peptide enzyme β-galactosidase (lacz). Insertional inactivation of the α-peptide allows 
recombinant clones to be directly identified by colour screening on indicator plates 
 
 
2.10.2 pGREEN Cloning 
Binary Ti vectors are the plasmid vectors of choice in Agrobacterium-mediated 

transformation protocols (Hellens et al., 2000). The pGreen binary series are configured 

for easy cloning. This plasmid system allows any arrangement of selectable marker and 

reporter gene at the right and left T-DNA borders without compromising the choice of 
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Fig. 2.2- The promoter and multiple cloning sequence of the pGEM®-T Easy vector. The 
top strand of the sequence shown corresponds to the RNA synthesized by T7 RNA polymerase. 
The bottom strand corresponds to the RNA synthesized by SP6 RNA polymerase 
 
 
restriction sites for cloning, since the pGreen cloning sites are based on the well-known 

pBluescript general vector plasmids. Its size and copy number in E. coli offers increased 

efficiencies in routine cloning protocols. pGreen can replicate in Agrobacterium only if 

another plasmid, pSoup (Fig 2.3) is co-transformed into the same host. pSoup provides 

replication functions in trans for pGreen. Removal of the replication gene (RepA) has 

enabled the size of pGreen vector to be kept to a minimum. pGREEN II  (Fig. 2.4) is a 

modification of the original vector and was used in this study. Following the appropriate 

enzymatic digestion of the vector, ligation reactions and cloning of PCR products were 

carried out as described in Section 2.10.1. However, pGREEN clones were selected 

using kanamycin instead of ampicillin.  

 

2.11 Agrobacterium Electroporation 
 

A 100 µl aliquot of A. tumefaciens electro-competent cells (Section 2.4.2) was thawed 

on ice and transferred to an electroporation cuvette (0.2 cm electrode gap, Invitrogen, 

cat. No. P450-50), containing 200 ng of pGREEN II and pSOUP (1:1 ratio). Plasmid 

DNA was previously dialysed on nitrocellulose membrane (0.025 µM Millipore, cat. 

No. VSWPO4700) for 20 min before electroporation. 
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Fig. 2.3- pSOUP plasmid. pSOUP is co-transformed with pGREEN into Agrobacterium cells. 
ColE1 ori = plasmid origin for replication in E. coli; oriV = vegetative origin of plasmid 
replication; Tet-r = tetracycline resistance gene for selection of putative transformants; trfA = 
replication initiation gene; RepA = Agrobacterium replication gene 

 

   

 
 

Fig. 2.4- pGREEN II binary vector. Npt I = kanamycin resistance gene enabling most 
bacterial selection in both E. coli and Agrobacterium transformation; pSa ORI = Agrobacterium 
replication origin; LB = T-DNA left border; RB = T-DNA right border; lacZ = ß- galactosidase 
gene for blue/white bacterial colony screening; ColE1 ori = plasmid origin for replication in E. 
coli  
 

One pulse of 12 ms (2.5 kV, 25 µFD, 400 ohms) was applied and cells were 

immediately recovered in 1 ml of SOC medium followed by incubation for 6 h at 26º C, 

150 rpm (New Brunswick Scientific- Edison NI USA). Serial dilutions (10 µl, 50 µl and 
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100 µl) of each transformant were plated to LB agar supplemented with kanamycin (30 

µg/ml) and incubated at 26º C for 2-3 days. Individual colonies were then restreaked on 

the appropriate medium to confirm the transformation event prior to DNA extraction 

using QIAprep Spin Miniprep Kit (Qiagen, cat. N. 2710056). Plasmid integrity was 

determined by restriction with appropriate restriction enzymes.   

 

2.12    DNA Sequencing 
 

Sequencing reactions were performed from both ends of cloned fragments or PCR 

products using the ABI Prism® BigDye™ terminator cycle Sequencing Ready Reaction 

Kit with Amplitaq® DNA Polymerase, Fs (Perkin-Elmer Applied Biosystems, cat. No. 

403044).  

 

2.12.1 Recombinant Clone Sequencing  
The sequencing of inserts cloned in pGEM®-T Easy vector (Section 2.10.1) was 

performed in 10 µl volume reactions comprising: 2 µl ABI Prism® BigDye™ 

terminator cycle Sequencing Ready Reaction Kit with Amplitaq® DNA Polymerase, 1 

µl of 5xBuffer, 0.2 µl primer T7 or SP6 (10 pmol/µl), 800-1000 ng purified plasmid. 

Sequencing primers T7 (5- TAATACGACTCACTATAGGG-3’) and SP6 (5’-

ATTTAGGTGACACTATAGAA-3’) annealed flanking regions of the pGEM®-T Easy 

cloning site (Fig. 2.2). BigDye® terminator cycle sequence reactions were performed 

using GeneAmp 9600 Thermal Cycler according to the following parameters: 25 cycles 

of rapid thermal ramp (1o C/s) to 96o C, 96o C for 10s, rapid thermal ramp to 50o C, 50o 

C for 5 s, rapid thermal ramp to 60o C, 60o C for 4 min. Reaction products were 

sequenced in the Warwick-HRI Genomic Centre using an automated DNA capillary 

system (3130xl Genetic Analyzer, Applied Biosystems).  

 

2.12.2 Direct Sequencing of PCR products 
Amplified PCR products were processed for direct sequencing as follows: 2 µl ABI 

Prism® BigDye™ terminator cycle Sequencing Ready Reaction Kit with Amplitaq® 

DNA Polymerase, 1 µl of 5xBuffer, 0.2 µl forward primer or reverse primer (10 

pmol/µl), 60 ng of purified PCR product in a 10 µl total volume. Descriptions of 
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specific sequencing primers are stated in relevant sections of this thesis. BigDye® 

terminator cycle sequence reactions were progressed as described in Section 2.12.1. 

 

2.13    Sequence analyses 
 

Sequences were assembled and analysed using the DNAstar package (LaserGene 

version 5.07, Madison, Wisconsin). The Seqman module was used to view and 

assemble trace sequences into contigs, remove vector sequences. The Seqman program 

uses dual-end sequence data (forward and reverse sequence readings originating at 

opposite ends of the same fragments) to put contigs into groups. The Seqman program 

created new groups for each set of overlapping sequences where dual-end data implied 

physical linkage. If dual-end sequence data for a group of contigs was not available or 

inconsistent, contigs were assigned to the “unlocated contigs” group. Several 

parameters were set in the assembly of cDNA contigs, including minimum match 

percentage of overlapping bases (80%) and minimum length percentage of matching 

bases (100%).  

   

Sequence similarity and database searches were performed using the National Center 

for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/) and European 

Bionformatics Institute (EMBL-EBI, http://www.ebi.ac.uk/services/index.html) 

facilities. Blast-N analysis compared nucleotide sequences against the nucleotide 

database. Blast-X analysis compared nucleotide sequences, translated in all six reading 

frames, against protein databases. Blast-P analysis compared predicted protein against 

protein databases. The best hits in the database list were used in pairwise comparisons 

using Bl2seq (NCBI). Similarities were considered significant when the E- value was e-9 

or lower (Altshul et al., 1997).  

 

Multiple sequence and protein alignments, construction of phylogenetic trees and 

bootstrapping analysis were performed using the MegAlign DNAstar module, which 

also enabled the alignment to be viewed as CLUSTAL W (Thompson et al., 1994) 

phylogenetic tree. The GENEDOC program (version 2.6.0.2) was also used to view and 

facilitate presentation of multiple sequence alignments.  
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Predicted amino acid sequences and open reading frames (ORFs) were identified using 

the GeneQuest module (DNAstar package) and the ORF Finder program (NCBI). The 

latter proved especially useful to identify conserved domains. Protein molecular weights 

were calculated using the SMS (Sequence Manipulation Suite, 

www.bioinformatics.vg/sms). Proteins often contain several modules or domains, each 

with a distinct evolutionary origin and function. NCBI’s Conserved Domain database 

(CDD) is a collection of multiple sequence alignments of annotated functional domains 

and full-length proteins (Marchler-Bauer et al., 2005) and was used to identify 

conserved domains present in a protein sequence. CDD contains domains imported 

from SMART, Pfam and COGs. The Pfam database (Finn et al., 2006) enabled the 

identification of protein families for new putative domains.   

 

2.14    Mushroom Transformation 
 

Agrobacterium-mediated transformation was used to introduce transgenic sequences 

into A. bisporus mushrooms as previously described (de Groot et al., 1998; Challen et 

al., 2000; Chen et al., 2000; Mikosch et al., 2001; Burns et al., 2006).  

 

2.14.1 Agrobacterium  tumefaciens Culture and Induction 
All A. tumefaciens strains were cultured and transformed as described in Section 2.4.2 

and 2.11, respectively. Starter cultures were established in 50 ml LB broth 

supplemented with 30 µg/ml kan and incubated at 26º C, 150 rpm (New Brunswick 

Scientific- Edison NI USA), overnight. One aliquot (5 ml) of each LB culture was used 

to inoculate 50 ml MM broth, containing the appropriate antibiotics and incubated at 26º 

C, 150 rpm, overnight. An aliquot providing an OD660 value of 0.15 (PV8720 UV/Vis 

Scanning Spectrophotometer, Phylips) was transferred to 50 ml Falcon tubes in a 

volume of 20 ml IM broth. The culture was centrifuged for 8 min at 1000 xg (Mistral 

1000). The pellet was resuspended in 50 ml IM broth supplemented with 30 µg/ml kan 

and 40 µg/ml of freshly prepared acetosyringone, incubated at 26º C, 150 rpm, for 6 h.  

 

2.14.2 Gill Tissue Transformation 
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Chen et al. (2004) first reported Agrobacterium-mediated gill tissue transformation as 

an effective method to transform A. bisporus. Mushrooms used for gill tissue 

transformation were grown in the Warwick HRI (Wellesbourne) Mushroom Unit and 

harvested at developmental stages 3 and 4 (button and closed cup, Fig. 2.5), which had 

pink gill lamellae, spore maturation largely absent and veil not opened yet (Burns et al., 

2006).  

 
Fig. 2.5- Button mushroom at developmental stage of closed cup. Mushrooms used for gill tissue 
transformation were grown in the Warwick HRI (Wellesbourne) Mushroom Unit and harvested at 
developmental stages 3 and 4 (button and closed cup). Stage 4 is differentiated by pink gill lamellae, 
spore maturation largely absent and veil stretched but intact  
 
 
Gill tissue was aseptically excised in 2-5 mm pieces using a scalpel and suspended in 10 

ml of induced A. tumefaciens cells and vacuum infiltrated (600 mmHg, Dry Seal 

Disseccator, General Electric) for 10 min. The gill tissue (20 pieces) was then 

transferred to IM agar covered with sterile cellophane membrane (A.A. Packaging 

Limited, cat. No. M/60756/VO), supplemented with  40 µg/ml of freshly prepared 

acetosyringone and incubated at 20º C for 2 days. A. bisporus tissue was transferred to 

MPA supplemented with 200 µg/ml cefotaxime and the appropriate antibiotic for the 

selection of putative transformants. Cultures were incubated at 25º C for up to 2 weeks 

and then transferred to MPA for another 3 weeks. 
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3. Summary 
This chapter describes the molecular techniques used to fully sequence and characterize MVX14.4 

dsRNA. RT-PCR fill in and Single Primer Amplification techniques were carried out prior to 

cloning and sequencing. Sequence analyses showed that MVX14.4 is the first Endornavirus infecting 

edible mushrooms to be characterized.  

 

3.1 Introduction 

 

3.1.1 Double-stranded RNA elements 
DsRNAs elements have a wide incidence in fungi: they have been reported in all major 

taxonomic groups (Buck, 1986; Nuss & Koltin, 1990; Section 1.8.2). They can be either 

encapsidated in mainly spherical particles of 25-30 nm or unencapsidated (Zhang et al., 

1994). When dsRNAs occur in the absence of detectable virus-like particles, dsRNA 

genomes appear associated with cytoplasmic structures, such as lipid-rich host vesicles 

(Hansen et al., 1985; Lefebvre et al., 1990; Nuss & Koltin, 1990), mitochondria or 

chloroplasts (Rogers et al., 1987; Valverde et al., 1990a; Ishihara et al., 1993; Koga et al., 

2003). This cytoplasmic location of mycoviruses is a consequence of their limited means of 

transmission. No known vectors or evidence for their existence outside the host cytoplasm 

has been reported (Zhang et al., 1994). Because of the high frequency of mating among 

fungi (Deacon, 1984), virus transmission through anastomosis is very efficient (Wickner, 

1992) making the presence of a viral capsid unnecessary. For this reason, cytoplasmic 

genetic elements are the biological equivalent of conventional viruses for fungi (Wickner, 

1992; Hong et al., 1998). The intracellular life cycle of mycoviruses might also play an 

important role in pathogenicity. Fungi and mycoviruses have co-evolved and co-adapted in 

such a way that most mycoviruses are symptomless or even benign (Section 1.8.5).  

 

In recent decades the scientific community has become increasingly aware of the presence 

of unecapsidated, linear dsRNA molecules in a wide variety of organisms, including a wide 

range of plants such as the common bean (Wakarchuk & Hamilton, 1985; Mackenzie et al., 
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1988), cassava (Gabriel, 1987), alfalfa (Fairbanks et al., 1988), pepper (Valverde et al., 

1990a; Valverde & Fontenot, 1991), cultivated rice (Moriyama et al., 1995; Fukuhara et al., 

1995), wild rice (Moriyama et al., 1995; Fukuhara et al., 1995), broad bean (Pfeiffer, 

1998); green algae (Ishihara et al., 1992; Koga et al., 1998; Koga et al., 2003); insects 

(Miyazaki et al., 1996) and protozoa (Wang & Wang, 1986, 1991; Stuart et al., 1992). 

These elements have been termed endogenous dsRNAs (Fukuhara, 1999).  

 

Although most plants and fungi possess endogenous dsRNA elements, fewer protozoa and 

animals appear to harbour such molecules (Miyazaki et al., 1996). This observation led to 

the hypothesis that cell walls might serve as a barrier to the release of dsRNAs from cells 

(Brown & Finnegan, 1989). These dsRNA elements, ranging in size from 1.5 kbp to 20 kbp 

(Fukuhara, 1999) have some intriguing plasmid-like properties, which differ from those of 

conventional plant viruses (Moriyama et al., 1999), but appear more similar to the 

mycovirus features: 1) they mostly have no obvious effects on their hosts; 2) their 

inheritance is mainly vertical; 3) they are present at a low constant concentration in their 

host cells (ca 100 copies/cell); 4) they are not associated with virus-like particles; 5) they 

are not transcripts of cellular DNAs (Moriyama et al., 1995; Moriyama et al., 1999).  

 

Sequencing of some large endogenous RNAs longer than 10 kbp (Pfeiffer, 1998; Fukuhara, 

1999, Coutts, 2005; Hacker et al., 2005; Valverde & Guttierez, 2005; Fukuhara et al., 2006; 

Osaki et al., 2006; Tuomivirta & Hantula, 2006) has revealed important information about 

a new viral group of virus, the Endornavirus, that infect plants, fungi and protists (Gibbs et 

al., 2000; Fukuhara et al., 2006; ICTVdB Management, 2006; Section 1.8.2).  

 

3.1.2 A new virus genus: Endornavirus 
 

3.1.2.1 Endornavirus and Symptoms 

Endornaviruses have been mainly reported in plants, such as barley, bell pepper, broad 

bean, kidney bean, melon, bottle gourd, malabar, rice, spinach, seagrass (Pfeiffer, 1998; 

Gibbs et al., 2000; Coutts, 2005; Fukuhara et al., 2006; Valverde & Gutierrez, 2005). 
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However, some non-plant endornaviruses have been recently reported in protists such 

Phytophtora spp. isolate P441 (Hacker et al., 2005) and fungi such as Helicobasidium 

mompa and Gremmeniella abietina type B (Osaki et al., 2006; Tuomivirta & Hantula, 

2006). Endornaviruses successfully fully sequenced have been described in cultivated rice 

(Oryza sativa spp. japonica; Moriyama et al., 1995), wild rice (Oryza rufipogon; Moriyama 

et al., 1999), broad bean (Vicia faba cv. 447; Pfeiffer, 1998), the ascomycete G. abietina 

(Tuomivirta & Hantula, 2006), and the basidiomycete H. mompa (Osaki et al., 2006). 

Endornaviruses are similar to cryptoviruses (Boccardo et al., 1987; Milne & Natsuaki, 

1994; Section 1.8.2) in that they are efficiently transmitted through seed in the absence of 

vectors and are not associated with disease symptoms, with the exception of broad bean 

(Pfeiffer, 1993) and H. mompa (Osaki et al., 2006). However, unlike the cryptoviruses, 

which produce particles containing a dsRNA bipartite genome about 2-3 kbp long, none of 

the endornaviruses have been reported to be associated with particles and their dsRNA 

genome is longer than 10 kbp (Gibbs et al., 2000). 

 

In broad bean line ‘447’ a cytoplasmic male sterility (CMS) trait (Pfeiffer, 1998) deviates 

from the classical pattern of genetic male sterility described in several plants (Dewey et al., 

1986; Young & Hanson 1987; Lewings, 1993). The latter results from a mitochondrial 

dysfunction restricted to anther tissues leading to plants unable to shed viable pollen. At 

molecular level, CMS correlates with the expression of non-functional variant polypeptides 

produced as a consequence of mitochondrial rearrangements (Belliard et al., 1979; 

Boeshore et al., 1985). The ‘447’ CMS line of Vicia faba is unusual in that CMS does not 

result from mitochondrial DNA rearrangements, but rather correlates with the presence of a 

new dsRNA virus, named Vicia faba endornavirus (VFV; Pfeiffer, 1998; ICTVdB 

Management, 2006). This virus is transmitted exclusively in a vertical mode and is 

permanently lost after restoration of male fertility by crossing with a restorer line, or as a 

consequence of spontaneous reversion to fertility (Scalla et al., 1981). Early electron 

microscopy observations (Edwardson et al., 1976) revealed that all tissues of male-sterile 

plants contain cytoplasmic membranous vesicles, which disappear after restoration of male 

fertility. These membranous structures do contain dsRNA molecules associated with RdRp 
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activity. They possibly represent a virus lacking capsid protein, maintained in the form of a 

replicative complex and contained in host-derived membranous vesicles rather than virions, 

very reminiscent of Cryphonectria parasitica hypovirus (Hansen et al., 1985; Section 1.8.2 

and Section 1.8.5.2). However, the involvement of VFV in the CMS trait remains 

circumstantial, since sequencing information to support this hypothesis has not been found 

and all attempts to convert fertile plants to male sterility by inoculation failed (Turpen et 

al., 1988).     

 

Helicobasidium mompa endornavirus 1-670 was identified as a hypovirulence factor in the 

basidiomycete H. mompa, causing violet root rot disease on more than 100 plant species 

(reviewed by Osaki et al., 2006). Hypovirulence can be demonstrated by two experimental 

results: i) enhanced virulence after elimination of dsRNA virus and ii) reduction of 

virulence after reintroduction of the dsRNA virus (Ikeda et al., 2003). Ikeda et al. (2003) 

demonstrated the relation between HmEV1-670 and hypovirulence in H. mompa removing 

the endornavirus by hyphal tip isolation technique and then reintroducing it by pairing the 

strain with an HmEV1-670 donor. Hypovirulence factor is increasingly proposed as a 

biocontrol agent (Section 1.8.5.2) for fungal pathogens such as Rhizoctonia solani 

(Castanho & Butler, 1978), Ophiostoma ulmi (Rogers & Buck, 1986), Leucostoma 

persoonii (Hammar et al., 1989), Cryphonectria parasitica (Nuss, 1992), 

Helminthosporium victoriae (Huang & Ghabrial, 1996), Sclerotinia homoeocarpa (Zhou & 

Boland, 1997), and Fusarium graminearum (Chu et al., 2002).  

 

3.1.2.2 Endornavirus and Molecular Structure    

The double-stranded nature of Endornaviruses has been confirmed by several authors 

through column chromatography on CF-11 cellulose and treatment with nucleases (Morris 

& Dodds, 1979; Schuster & Sisco, 1986; Lefebvre et al., 1990). The dsRNAs are resistant 

to DNase I and RNase A in high-salt buffer, but sensitive to RNase A in low-salt buffer 

(Fukuhara, 1999). Although purification of virus-like particles was attempted by several 

procedures, no viral capsids have ever been detected by electron microscopy (Fukuhara, 

1999). Differential centrifugation and sucrose density-gradient centrifugation were used to 
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determine subcellular localization of dsRNAs. Detailed examinations have revealed that 

endornaviruses are localized in cytoplasmic vesicles (Mackenzie et al., 1988; Lefebvre et 

al., 1990; Moriyama et al., 1996) and are associated with their replicase (Lefebvre et al., 

1990). This enzyme is able to pursue in vitro RNA synthesis on preinitiated complexes, 

even after these have been released from the membranous vesicles by treatment with non-

ionic detergent (Pfeiffer et al., 1993). Labelled NTPs are incorporated exclusively into the 

dsRNA and resist RNase digestion at high salt concentrations. Newly synthesized RNA 

therefore remains associated with its template, indicating that RNA replication proceeds by 

a strand displacement mechanism according to a semi-conservative replication model 

(Pfeiffer et al., 1993; Section 1.8.3).  

 

3.1.2.3  Endornavirus and Genome Structure  

Endornaviruses have a dsRNA genome longer than 10 kbp (Horiuchi & Fukuhara, 2004) 

encoding for a single open reading frame (ORF). Conserved motifs for RNA-dependent 

RNA polymerase (RdRp) and RNA helicase (Hel) have been found within all Endornavirus 

ORFs. An UDP glycosiltransferase (UGT) domain has also been found in Oryza sativa 

endornavirus (OSV), Oryza rufipogon endornavirus (ORV), Phytophthora endornavirus 1 

(PEV1, Hacker et al., 2005) and Helicobasidium mompa endornavirus 1-670 (Osaki et al., 

2006). The large putative proteins encoded by endornaviruses are assumed to be 

polyproteins that are processed by virus-encoded proteinases according to cleavage 

mechanisms reported for other viruses (Seipelt et al., 1999; Adams et al., 2005). However, 

proteinase motifs or proteolytic cleavage sites have not yet been reported for 

endornaviruses (Hacker et al., 2005; Osaki et al., 2006).  

 

Previous laboratory work carried out at Warwick HRI produced 558 bp of cDNA sequence 

from the MVX14.4 dsRNA element (MVX14.4) using random-primed cloning (Section 

1.8.6.2.2). The chapter describes how MVX14.4 was fully sequenced and characterized 

revealing its Endornavirus features.   
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3.2 Materials and Methods 
 

3.2.1 Isolations and Purifications of MVX14.4 dsRNA 
MVX14.4 infected-A. bisporus isolates were obtained from the epidemiological experiment, 

SSI experiment, carried out at Warwick HRI and described further in Chapter 4. The main 

source of MVX14.4 used was a single-spore isolate (SSI 61), which harboured only MVX14.4 

as MVXdsRNA element. Thus, MVX14.4 was extracted from SSI 61 mushrooms using the 

dsRNA extraction method described in Section 2.5.1, digested with DNase and S1 nuclease 

(Section 2.7) to remove any remaining traces of DNA and ssRNA, and used as template for 

downstream RT-PCR fill in protocol. 

 

3.2.2 RT-PCR fill in 

Earlier work at Warwick HRI yielded 558 bp of MVX14.4 sequence (Adie et al., 2004). 
MVXdsRNAs were extracted, purified and used as template for random-primed cDNA 

synthesis, cloning and sequencing. The identity of generated sequences was confirmed 

using Northern blotting.  

 

In the present study, RT-PCR fill in using sequence-specific primers was used to expand 

the MVX14.4 sequence and bridge the gaps between non-overlapping clones. Given that the 

orientation and relative position of contigs were unknown, ca 80 primers targeting various 

contigs were designed and used as a pool (maximum 5 primers-pool) in RT-PCR fill-in. 

Primers were designed in such a way to span at least 100 bp of the known sequence. 

 

cDNA synthesis reactions were prepared as follows: 0.5 µl of each 10 µM PA primer 

(designed for a target contig) were mixed with 0.5 µl of each 10 µM PB primer (designed 

for a different contig), 300 ng of purified RNA template and DMPC water up to 10 µl total 

volume. Reactions were boiled for 5 min and then placed on ice. The second step-reaction 

was performed in 20 µl volume and comprised the following: 1 µl Superscript™ II Reverse 

Transcriptase (200 U/µl, Invitrogen cat. No.18064-022), 4 µl of 5x cDNA synthesis buffer, 
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2 µl dNTPs mix (10 mM), 1 µl DTT (0.1M), 1 µl Rnase OUT ™ (40 U/µl, Invitrogen cat. 

No.11146-024), and 10 µl template (from the previous step). cDNA synthesis was 

progressed using a HYBAID MBS 0.5 G Thermal Cycler with the following parameters: 

50° C for 45 min (cDNA synthesis), 85° C for 5 min (termination). To remove any 

remaining RNA template, each cDNA reaction was treated with 1 µl E. coli RNase H (2 

U/µl, Invitrogen) at 37° C for 20 min. 

 

PCR amplification of cDNA products were performed in 50 µl volume reactions as follows: 

0.5 µl Expand Long Template enzyme mix (Roche, cat. No. 1681834), 5 µl of 10x buffer I, 

2 µl dNTPs (10 mM mix), 0.5 µl of 10 µM PA primer (already used for cDNA synthesis), 

0.5 µl of 10 µM PB primer (already used for cDNA synthesis), 3 µl cDNA. PCR reactions 

were progressed using a HYBAID MBS 0.2 G Thermal Cycler according to the following 

parameters: initial denaturation at 94o C for 2 min, followed by 10 cycles of 94o C for 15 s, 

50o C for 30 s, 68o C for 8 s, subsequently 20 cycles of 94o C for 15 s, 50o C for 30 s, 68o C 

for 8s with 5 s increment each cycle, and a final extension at 72o C for 5 min. 

 

3.2.3 Single Primer Amplification Technique (SPAT) 
To determine the MVX14.4 dsRNA termini, an adaptation of the SPAT technique published 

by Shapiro et al. (2005) and modified by A. Soares (Warwick HRI) was performed (Fig. 

3.1 and Fig. 3.2). Extracted dsRNA (500 ng, Section 3.2.1) was ligated to an anchor, 5’-

GACCTCTGAGGATTCTAAAC/iSp9/TCCAGTTTAGAATCC-3’ (iSp9 is a carbon chain 

spacer) using 10  U T4 RNA ligase in a 10 µl reaction (New England Biolabs, cat. No 

M0204S). The ligation reaction was incubated at 10o C for 12 h and the product was 

precipitated at room temperature using Pellet Paint® NT Co-Precipitant (Novagen, cat. No. 

70748) in 100 µl total volume as follows: 2 µl of Pellet Paint® were added to the ligation 

reaction, followed by 0.1 volume of 3M sodium acetate and 2 volumes of 100% ethanol. 

After gently mixing, the reaction was centrifuged at 12,000 xg for 5 min. The pellet was 

rinsed with 2 volumes of 75% v/v ethanol, centrifuged again and air-dried prior to 

resuspension in 8 µl of water to the pellet. 
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Fig. 3.1- Single Primer Amplification Technique to determine the 5’ end. DsRNA was 
ligated to an anchor by T4 RNA ligase in order to carry out the cDNA synthesis using also a 
sequence-specific primer (complementary to the positive RNA strand). PCR was subsequently 
performed using the sequence-specific primer (used for the cDNA synthesis) and a single anchor 
primer (complementary to the anchor)     
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Fig. 3.2- Single Primer Amplification Technique to determine the 3’ end. DsRNA was 
ligated to an anchor by T4 RNA ligase in order to carry out the cDNA synthesis using also a 
sequence-specific primer (complementary to the negative RNA strand). PCR was subsequently 
performed using the sequence-specific primer (used for the cDNA synthesis) and a single anchor 
primer (complementary to the anchor)     
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Following addition of 2 µl of specific primer (20 µM), the tube was boiled for 5 min and 

then kept on ice. MVX14.4 specific primers used in the successful RT-PCR protocol were as 

follows: c655R376 primer (5’- AAGCTGCCACGTCGTTGTAG-3’) and Band3R268 (5’- 

GACTTCCGTGACTCCTGTTG-3’) to determine the 5’-end, or c655F11909 (5’-

TATGCTGTTGCTGGGTGATG-3’) to determine the 3’-end. 

 

The cDNA was synthesized using 1 µl Superscript™ II Reverse Transcriptase (200U/µl, 

Invitrogen cat. No.18064-022), 4 µl of 5x cDNA synthesis buffer, 2 µl dNTPs mix (10 

mM), 1 µl DTT (0.1M), 1 µl Rnase OUT ™ (40 U/µl, Invitrogen cat. No.11146-024), and 

10 µl ligation reaction (from the previous step). cDNA synthesis was progressed using a 

HYBAID MBS 0.5 G Thermal Cycler with the following parameters: 42° C for 60 min 

(cDNA synthesis); 70° C for 15 min (termination). Finally, each cDNA reactions were 

treated with E. coli RNase H (Section 3.2.2). 

 

Synthesized cDNA was purified using Pellet Paint® precipitation as above. PCR reactions 

were performed in 50 µl volumes using: 1 µl Expand Long Template enzyme mix (Roche, 

cat. No. 1681834), 5 µl of 10x buffer I, 2 µl dNTPs (10 mM mix), 2 µl of 20 µM anchor’s 

single primer (5’-GAGGGATCCAGTTTAGAATCCTCAGAGGTC-3’), 2 µl of 20 µM 

specific primer (already used for cDNA synthesis), 26.5 µl cDNA. PCR reactions were 

progressed using a HYBAID MBS 0.2 G Thermal Cycler according to the following 

parameters: initial denaturation at 96o C for 2 min, followed by 35 cycles of 94o C for 30 s, 

55o C for 30 s, 72o C for 3 min, and a final extension at 72o C for 10 min. 

 

3.2.4 cDNA Cloning, Sequencing and Sequence Analysis 
Amplified RT-PCR products were gel purified (Section 2.9.1) and ligated into pGEM®-T 

Easy vector (Section 2.10.1). Ligation reactions and transformation of DH5α™ or XL1-

Blue E. coli competent cells were performed as described in Section 2.10.1. To confirm the 

presence of the clonal inserts, pGEM®-T Easy clones were restricted using Not I 

endonuclease (Roche, cat. No. 1014706), according to the manufacturer’s protocol. 

Sequencing reactions were performed to generate sequences from both ends of clonal 
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inserts using ABI Prism® BigDye™ Terminator cycle Sequencing Ready Reaction Kit 

with Amplitaq® DNA Polymerase, Fs (Perkin-Elmer Applied Biosystems, cat. No. 

403044).  

 

3.2.5 Searching for MVX14.4 sequence in Agaricus bisporus DNA 
In order to determine specificity of MVX14.4 dsRNA sequences, PCR screening was 

performed on A. bisporus DNA using 6 pairs of primers designed for MVX14.4 RdRp and 

helicase regions (Table 3.1). A. bisporus DNA template was Chelex purified as described in 

Section 2.5.3. Primers designed were preliminary tested by RT-PCR using a control 

template (isolate SSI 61, further described in Chapter 4). 

 

Table 3.1- Primers amplifying the MVX14.4 helicase and RdRp regions 
Primer Primer sequence 

Reference: this thesis 

Product 

Size (bp) 

DNA/RNA 

Target  

B3f321 

B3r634 

5’-GGACAACTCAGAAACTAATG-3’ 

5’-ATCGGAGAGCTAAAGAAATG-3’ 
314 

MVX 14.4 

helicase 

B3f114 

B3r634 

5’-AACGGTTTCAACAACAATCG-3’ 

5’-ATCGGAGAGCTAAAGAAATG-3’ 
521 

MVX 14.4 

helicase 

B3f92 

B3r673 

5’-CCTCGTTACCTTGGTAACTG-3’ 

5’-GTATCATCGCTATGACTTCC-3’ 
582 

MVX 14.4 

helicase 

B3f2980 

B3r3564 

5’-TTTGGCGCAAGACACATGAG-3’ 

5’-GCTGCATCATTCGTCATACC-3’ 
585 

MVX 14.4 

RdRp 

B3f3038 

B3r3319 

5’-AAGTTGGATGCGTCTCACTG-3’ 

5’-GACATACTGCCGTCTTGTTG-3’ 
282 

MVX 14.4 

RdRp 

B3f2823 

B3r3332 

5’-GAATTGGCAGCCAGAATGAG-3’ 

5’-GTCAGGACAGACAGACATAC-3’ 
510 

MVX 14.4 

RdRp 

 

Further assessment for sequence homology between MVX14.4 dsRNA and A. bisporus DNA 

led to sequence similarity analysis (BLAST search) of the MVX14.4 RdRp against cellular 

RdRps, present in public database (NCBI). 
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3.3 Results 
 

3.3.1 Nucleotide sequence of MVX14.4 and deduced amino acid sequence 

The completed consensus sequence of MVX14.4 dsRNA, assembled from more than 130 

overlapping RT-PCR fill in sequences (Fig. 3.3 and Fig. 3.4) was 12750 bp (Annex 3.1). 

All regions were sequenced from more than two independently synthesized clones (Fig. 

3.5). The MVX14.4 dsRNA termini were determined from at least three cDNA clones 

recovered from independent dsRNA extractions. For the 5’ end, 7 sequences were 

generated, whereas 12 sequences were recovered for the 3’end. Integrity of the assembled 

consensus sequence was confirmed by RT-PCR screening using primers that span different 

regions of the entire sequence.  

 

 
 

 

 

 

A single open reading frame (ORF) was found in the plus strand (Annex 3.2), starting at nt 

29 and ending at nt 12679, which encodes a putative protein of 4216 aa (369.13 kDa). This 

would imply a 5’-untranslated region (UTR) of 28 nt. The first methionine codon nt 29-31 

is in a favourable context for translation initiation, with purine (A) residues at the -3 and +1 

positions, according to Kozak’s rules for ribosomal scanning (Kozak, 1986; Lütcke et al., 

1987).  

           M  1    2      3          4               5 

1000 bp 

 
 
 
 
 
 200 bp 

Fig. 3.3- RT-PCR fill in products. Examples of RT-PCR fill 
in products on 1% agarose gel. Lane 1-3 = RT-PCR fill in 
products; lane 4 = RT-PCR positive control (strain SSI 61); 
lane 5 = RT-PCR negative control (water); M = hyperladder I 
(Bioline)  
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The 3’-untranslated region (UTR) is 71 bp long, including a run of seven G residues at the 

3’ terminus. Other significant ORFs were not detected in alternative reading frames of the 

plus and minus strands of MVX14.4 dsRNA. A BLASTX search using the complete 

 
Fig. 3.5- Consistency of insert for the Not I digestion of RT-PCR fill in clones. Not I enzyme cut 
the insert (811 bp) out from pGEM®-T Easy vectors (3015 bp). Lane 1-6 = Not I-digested products 
of purified plasmids on 1.5% agarose gel; M = hyperladder I (Bioline)  
    

                     1         2           3              4                 5  6     M 

∼ 3015 bp 
 
 
 
 
 
 
 
 
 
∼ 811 bp 

Fig. 3.4- Map of the major cDNA clones of MVX14.4 from A. bisporus. Specific-primed cDNA 
clones are represented by open boxes, random-primed cDNA clones are indicated by hatched 
shading boxes, and SPAT cDNA clones of the extremities by filled boxes    
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sequence of the MVX14.4 dsRNA showed significant similarity to putative polyprotein 

sequences encoded by members of the novel virus genus Endornavirus, recently accepted 

by the ICTV (ICTVdB Management, 2006; Section 1.8.2 and 3.1.2). The best sequence 

similarity identified was with Helicobasidium mompa endornavirus 1-670 (HmEV1-670, 

composite E value = 11e-132), followed by Vicia faba endornavirus (VFV, composite E 

value = 5e-118), Phytophthora endornavirus 1 (PEV1, composite E value = 15e-115), Oryza 

sativa endornavirus (OSV, composite E value= 8e-111) (Annex 3.1-CD). Other than the 

Endornavirus genus, the next most similar alignments were with regions of RdRp of 

several viruses belonging to the Closteroviridae family, such as Mint vein banding virus (E 

value = 4e-11) and Strawberry chlorotic fleck associated virus (E value = 3e-10). The size of 
MVX14.4 (12750 bp) was most similar to PEV1 (13883 bp) (Fig. 3.6). The amino acid 

sequence of MVX14.4 showed a wide range of similarity with non-plant and plant 

endornaviruses (Table 3.2).  

 
Table 3.2- Regions of significant similarity between MVX14.4 and PEV1, HmEV1-670, OSV, 
and VFV amino acid sequences identified by pairwise comparison using NCBI database 
 

AMINO ACID RESIDUES IDENTITY (%) SIMILARITY (%) 
MVX14.4 PEV1   

543-1580 543-1673 21% 38% 
2737-2802 3106-3171 31% 53% 
3716-4214 4117-4612 35% 53% 

 
MVX14.4 HmEV1- 670   

488-2796 933-3577 20% 36% 
2800-3700 - No identity No similarity 
3723-4198 4883-5357 34% 54% 

    
MVX14.4 GaEV   
1-3700 - No identity No similarity 

3727-4158 2913-3343 26% 45% 
    

MVX14.4 OSV   
495-1614 558-1785 21% 38% 

1615-3600 - No identity No similarity 
3604-4208 3984-4566 33% 51% 

    
MVX14.4 VFV   
294-818 1593-2226 22% 40% 
820-3700 - No identity No similarity 

3722-4184 5239-5736 34% 52% 
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Fig. 3.6- Comparison of genome organization of MVX14.4, Phytophthora endornavirus 1, 
Oryza sativa endornavirus, Helicobasidum mompa endornavirus 1-670, and Vicia faba 
endornavirus. Small boxes indicate the positions of the helicase-like (diagonally hatched), UGT-
like (dotted), and RdRp-like (filled) regions within the polyprotein. Horizontal lines on either side 
of the long rectangular boxes (ORFs) indicate the 5’- and 3’-UTRs. ORF lengths are indicated in 
brackets   

24 bp 62 bp 
Gremmeniella abietina endornavirus (10375 bp) 

(3429 aa) 

(5825 aa) 

41 bp Vicia faba endornavirus (17635 bp) 119 bp 

(5373 aa) 

Helicobasidium mompa endornavirus 1-670 (16614 bp) 
10 bp 485 bp 

 40 bp 199 bp 
Phytophthora endornavirus 1 (13883 bp) 

(4548 aa) 

166 bp  70 bp 
Oryza sativa endornavirus (13952 bp) 

(4572 aa) 

29 bp 
MVX14.4 (12750 bp) 

71 bp 
bp 

(4216 aa) 
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Although the upstream region between aa 294 and aa 818 showed the highest similarity 

with VFV (identity = 22%; similarity = 40%); the other two-thirds of the polyprotein 

showed highest similarity with PEV1 and HmEV1-670. 

 

3.3.2 RdRp-like, Helicase-like, and UGT-like regions 

The region of MVX14.4 dsRNA polyprotein with the highest sequence similarity to 

Endornavirus was located near the C-terminus. Inspection of this sequence showed that 

conserved motifs characteristic of RNA-dependent RNA polymerase (RdRp) were present 

in MVX14.4 dsRNA. Motifs found (between ca aa 3700 and aa 4150) represented the 

signature of ssRNA virus superfamily III (Koonin & Dolja, 1993). Fig. 3.7 shows 

alignment of MVX14.4 with other 8 amino acid sequences within the conserved RdRp motifs 

III-VI (Koonin, 1991; Koonin & Dolja, 1993). MVX14.4 RdRp motifs showed high 

conservation with those of other endornaviruses. Neighbour-joining phylogenetic analysis 

of RdRp (motifs III-VI) of various endornaviruses and ssRNA viruses showed that MVX14.4 

clustered within an Endornavirus clade (79% bootstrap support, Fig. 3.8). Preliminary 

phylogenetic analyses, using more diverse RdRps confirmed the highest similarity between 

endornaviruses and ssRNA viruses belonging to the alpha-like superfamily (data not 

shown). Pairwise identity analysis indicated a plant endornavirus (OSV) RdRp as the most 

similar to the MVX14.4 RdRp (59% similarity; Annex 3.3).  

 

Another region of MVX14.4 polyprotein with high similarity to endornaviruses was located 

near the N-terminal part of the protein. Further inspection of this region (between ca aa 

1300 and aa 1580) showed conserved motifs characteristic of RNA helicases of superfamily 

I (Koonin & Dolja, 1993, Fig. 3.9). When MVX14.4 sequence identified as helicase motif I-

VI was used for BLASTP searching and pairwise identity analysis, the best match was with 

PEV1 (E value = 5e-15, 31% similarity; Annex 3.2-CD and Annex 3.3), which has 

previously been reported to contain helicase-like domains (Hacker et al., 2005). The next 

most similar alignment was with helicase-like regions of Phaseolus vulgaris dsRNA 

element (E value = 3e-14) and VFV (E value = 2e-13).  
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Fig. 3.7- MVX14.4 RdRp motifs. A multiple alignments of the amino acid sequences within 
the conserved RdRp motifs III-VI (Koonin, 1993) was constructed for 9 endornaviruses, 
including MVX14.4 using ClustalW algorithm. MVX14.4 RdRp motifs showed to be consistent 
with those of other endornaviruses. VFV: Vicia faba endornavirus; CmEv: Cucumis melo 
endornavirus; LsEV: Lagenaria siceraria endornavirus; ORV: Oryza rufipogon 
endornavirus; OSV: Oryza sativa endornavirus; PEV1: Phytophthora endornavirus 1; 
HmEV1-670: Helicobasidium mompa endornavirus 1-670; GaEV: Gremmeniella abietina 
endornavirus; MVX14.4: MVX14.4  
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Fig. 3.8 – Phylogenetic tree of alpha-like ssRNA viruses and endornaviruses based on the RdRp domain. A Neighbour-joining phylogenetic tree of 
RdRp-like regions (motifs III-VI) of endornaviruses and ssRNA alpha-like viruses was constructed using the MegAlign package via ClustalW algorithm. 
Bootstrap support values (% of 10000 resamplings) over 50% are indicated on the branches. MVX14.4 clustered within the Endornavirus clade with 79% 
bootstrap support. CmEV: Cucumis melo endornavirus; LsEV: Lagenaria siceraria endornavirus; ORV: Oryza rufipogon endornavirus; OSV: Oryza sativa 
endornavirus;; PEV1: Phytophthora endornavirus 1; MVX14.4: MVX14.4; HmEV: Helicobasidium mompa endornavirus 1-670; GaEV: Gremmeniella 
abietina endornavirus; BYSV: Beet yellow stunt virus (Closterovirus); GLRaV2: Grape leafroll-associated virus 2 (Closterovirus); CMV: Cucumber mosaic 
virus (Cucumovirus); EMoV: Elm mottle virus (Ilarvirus); TMV: Tobacco mosaic virus (Tobamovirus); MBV: Mushroom bacilliform virus (Barnavirus)  
 



Chapter 3                               Molecular characterization of MVX14.4 
 

 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9- MVX14.4 helicase motifs. A multiple alignment of the amino acid sequences within 
the conserved helicase motifs I-VI (Koonin, 1993) was constructed for 7 endornaviruses, 
including MVX14.4 using ClustalW algorithm. ORV: Oryza rufipogon endornavirus; OSV: 
Oryza sativa endornavirus; VFV: Vicia faba endornavirus; PEV1: Phytophthora 
endornavirus 1; GaEV: Gremmeniella abietina endornavirus; HmEV: Helicobasidium mompa 
endornavirus 1-670; MVX14.4: MVX14.4   
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             Fig. 3.9- (cont.) 

 

A BLAST search also revealed that the region between the helicase and RdRp domains of 
MVX14.4 polyprotein (between ca aa 2450 and aa 2750) had significant homology with 

glycosyltransferases related to UDP-glucuronosyltransferases found in bacteria and fungi 

(Pfam COG1819). Fig. 3.10 shows the amino acid sequence alignment of the putative 

UDP-glycosyltransferases (UGTs) motif IV (Hacker et al., 2005) found in MVX14.4 

polyprotein with other viral, fungal and plant UGTs. The highest similarity for MVX14.4 

UGT was found to be with PEV1 (41% identity), followed by the basidiomycete Ustilago 

maydis UGT (39% identity). Identity with the homobasidiomycete Coprinus cinereus was 

26% (Annex 3.4).  

 

Sequence similarity analysis outside the conserved RdRp, helicase, and UGT domains 

identified by BLASTP search confirmed similarity with HmEV1-670, except for the region 

between aa 2700-3700, which exhibited similarity with a retrotransposable element of the 

homobasidiomycete Phanerochaete chrysosporium (Table 3.3). The absence of capsid-like 

domain in the AbEV1 sequence was consistent with microscopy analyses as well as 

literature reported for other endornaviruses.   

 

MOTIF V 

MOTIF VI 
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Table 3.3- Similarities identified by BLASTP search (NCBI) between the MVX14.4 amino acid 
sequence and the database outside the conserved domains regions  
 

AMINO ACID RESIDUES IDENTITY (%) SIMILARITY (%) 
MVX14.4 DATABASE   

1- 1350 HmEV1-670 22% 38% 

1600-2400 HmEV1-670 20% 38% 

2700-3700 

Phanerochaete 
chrysosporium RP-78 

retrotransposable 
element  

26% 43% 

 

Pairwise comparison using BLASTP search (NCBI) was conducted in order to look for 

proteinase sequence similarity within MVX14.4 polyprotein. Analysis was carried out with 

chymotrypsin related cysteine, serine and papain-like cysteine proteases. No protease 

motifs, cysteine-rich regions nor cleavage sites were identified in MVX14.4 polyprotein.  

Fig. 3.10- MVX14.4 UGT motif IV. A multiple alignment of viral, fungal and plant amino acid 
sequences within the conserved UGT motifs IV (Hacker et al., 2005) was constructed using 
ClustalW algorithm. Os: Oryza sativa (plant); At: Arabidopsis thaliana (plant); Mb: 
Mycobacterium bovis (bacterium); Ms: Mycobacterium smegmatis (bacterium); Sc: 
Saccharomyces cereviseae; (Ascomycete); Gc: Glomerella cingulata (Ascomycete); Cc: 
Coprinus cinereus (Homobasidiomycete); Cn: Cryptococcus neoformans (Heterobasidiomycete); 
Mg: Magnaphorte grisea (Ascomycete); Um: Ustilago maydis (Heterobasidiomycete); PEV1: 
Phytophthora endornavirus; ORV: Oryza rufipogon endornavirus; OSV: Oryza sativa 
endornavirus; Bm_virus: Bombix mori nuclear polyhedrosisvirus (virus); Mb_virus: Mamestra 
brassicae nucleopolyhedrovirus (virus); MVX14.4: MVX14.4 
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Sequence similarity, phylogenetic and conserved motifs analyses, all supported inclusion of 

the MVX14.4 dsRNA element in the genus Endornavirus. 

 

3.3.3 Searching for MVX14.4 sequence in Agaricus bisporus DNA 
No MVX14.4 sequences were detected in A. bisporus DNA using PCR screening, whereas 

18S-PCR product yielded the appropriate amplicon (data not shown). In order to test the 

reliability of the primers used, a preliminary RT-PCR was performed using MVX14.4-

infected control material as template, giving positive results (data not shown). 

 

No similarities were observed from BLAST searches between the MVX14.4 RdRp and 

eukaryotic RdRps (data not shown).  

 

3.4 Discussion 
 

3.4.1 Agaricus bisporus endornavirus 1   
Sequence analysis, homology searches, phylogenetic analysis, and genomic organization, 

all support the conclusion that MVX14.4 is a new species of the genus Endornavirus. 

Agaricus bisporus endornavirus 1 (AbEV1) is proposed as an appropriate nomenclature for 

this virus.   

 

Initial estimate of AbEV1 size using DNA molecular marker in agarose gel electrophoresis 

was ca 14.4 kbp (Gorgan et al., 2003; Adie et al., 2004). As a result of sequencing work 

carried out in this project, the correct size of AbEV1 was 12750 bp. This inconsistency was 

not unexpected, since RNA moves slower than DNA of the same molecular size in low 

density-gels (Livshits et al., 1990). 

 

Endornaviruses have been reported in plants (Wakarchuk & Hamilton, 1990; Fukuhara et 

al., 1993; Pfeiffer, 1998), protists (Hacker et al., 2005) and a few fungi, such as 

Helicobasidium mompa strain 670 (Osaki et al., 2006) and Gremmeniella abietina type B 
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(Tuomivirta & Hantula, 2006). However, this is the first molecular characterization of an 

endornavirus that infects a homobasidiomycete and AbEV1 is the first dsRNA element 

from the MVX complex to be fully sequenced and characterized. Amongst fungal 

endornaviruses, AbEV1 has the second largest genome following HmEV1-670 (16614 bp). 

In full-length sequence comparison, AbEV1 sequence was most similar with HmEV1-670; 

however in Blast searches different regions of the genome showed various similarities with 

different endornaviruses. All regions containing functional domains (RdRp, helicase, and 

UGT) showed higher homology with non-plant endornaviruses, although the AbEV1 RdRp 

motifs sequence showed higher homology with plant endornaviruses in pairwise identity 

analysis. All regions of the AbEV1 polyprotein exhibited homology with endornaviruses, 

except for the non-coding region between aa 2700 and aa 3700, in which similarity with a 

homobasidiomycete retrotransposable element (Phanerochaete chrysosporium RP-78) was 

observed. These inconsistencies may be indicative of general genome heterogeneity in the 

Endornavirus genus, possibly due to RNA recombination occurring through horizontal 

transmission between parasitic and host organisms (Osaki et al., 2006). Alternatively, it 

may be the result of limited Endornavirus sequences in the public databases as this is a 

virus genus only recently recognised.  

 

AbEV1 showed a typical Endornavirus genomic organization. Its 5’ UTR was consistently 

short (28 bp) as those of other endornaviruses. No significant sequence similarity was 

found between the AbEV1 5’ UTR and 3’ UTR, and those of other endornaviruses. A run 

of seven G residues was identified at the 3’ UTR of AbEV1 sequence (TAG TGT GTG 

TGT GTG GGG GGG). The 3’ends of endornaviruses appeared to be rich in pyrimidines, 

e.g. OSV (GGG CAC CCC TCC CAA ACC CCG G) and VFV with three terminal G 

residues (TAC CAT CGG G).  

 

The start codon at 29 bp was in a favourable context (AAC AAA ATG AAC), with purine 

(A) residues at -3 and +1 positions (Lutcke et al., 1987). The presence of an A residue at 

position -3 appears to modulate the efficiency and rate of initiation for protein translation 

(Kozaz, 1986). A similar context was found in Gremmeniella abietina endornavirus 
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(GaEV) where the consensus sequence for the translation initiation was the same as that 

most often observed in animals (TAC ACC ATG CAT; Lutcke et al., 1987).  

 

3.4.2 Phylogeny of Agaricus bisporus endornavirus 1 
Members of the genus Endornavirus exhibit no significant homology with dsRNA viruses 

outside their genus, but rather their RdRp and helicase domains are most closely related to 

ssRNA viruses of alpha-like superfamily (Gibbs et al., 2000; Fukuhara et al., 2006; Hacker 

et al., 2005). The latter includes various genera defined on the basis of several features 

(Koonin & Dolja, 1993; Goldbach & de Haan, 1994) such as: i) the presence of ssRNA 

genome with a 5’cap; ii) production of subgenomic RNA encoding a virion protein; iii) 

homologous RdRp and helicase amino acid sequences. Since some of these features are 

also shared by viruses not assigned to this supergroup, the best feature specifying the alpha-

virus superfamily is the homology of the helicase and RdRp sequences (Gibbs et al., 2000).  

 

RNA viruses are rapid in evolution and this is reflected in enormous sequence divergence 

even among apparently closely related viruses (Holland et al., 1982; Domingo et al., 1985; 

Steinhauer & Holland, 1987). As a rule, only short amino acid sequence motifs thought to 

be involved in enzymatic functions are conserved (Koonin & Gorbalenya, 1989). An 

important element of the research strategy in comparative studies is ‘gene context analysis’ 

where both the sequence motifs in an individual protein, and the gene order and distance 

are conserved (Koonin & Dolja, 1993). Specific motifs within the RdRp domains of ssRNA 

viruses are highly conserved. Although overall sequence similarity among the ssRNA viral 

polymerases is quite low, three motifs (IV, V, and VI) defined as ‘RdRp motif core’ show 

unequivocal conservation throughout the whole class (Koonin & Dolja, 1993). 

Counterparts to the core RdRp motifs have been also detected in RNA dependent DNA 

polymerases, DNA-dependent DNA polymerases, and RdRps of negative-strand RNA 

viruses (Poch et al., 1989; Delarue et al., 1990; Xiong & Eickbusch, 1990). Clustering of 

the AbEV1 RdRp with other endornaviruses and alpha-like superfamily viruses is 

consistent with previous findings (Gibbs et al., 2000; Hacker et al., 2005; Fukuhara et al., 

2006; Osaki et al., 2006). No significant similarities were observed between the AbEV1 
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RdRp and those of other dsRNA viruses such as cryptoviruses and hypoviruses previously 

suggested as related to endornaviruses for the mode of transmission and morphology, 

respectively (Pfeiffer, 1998; Fukuhara, 1999). The presence of RdRp motifs further 

confirms the relatedness between AbEV1 and other endornaviruses. The actual function of 

RdRp motifs is not known (Koonin & Dolja, 1993). However, Koonin (1991) suggested the 

direct involvement of motifs V and VI in substrate binding as demonstrated by site-directed 

mutagenesis (Inokuchi & Hirashima, 1987; Kroner et al., 1989).  

 

The identification of a typical helicase domain of superfamily I in AbEV1, upstream of the 

polymerase gene is also consistent with the endornaviruses (Osaki et al., 2006) and closely 

related alpha-like viruses (Koonin & Dolja, 1993). All positive-stranded RNA viruses with 

genome size longer than 6 kbp encode for a putative RNA helicase thought to be involved 

in duplex unwinding during viral RNA replication, and maybe also translation (Gorbalenya 

and Koonin, 1989b). The presence of a helicase domain is a typical feature for dsRNA 

viruses such as endornaviruses, while the UGT domain is not always present (Hacker et al., 

2005). AbEV1 along with PEV1 (Hacker et al., 2005), OSV (Hacker et al., 2005) and 

HmEV1-670 (Osaki et al., 2006) harbour a putative UDP-glycosyltransferases (UGT) 

domain within the polyprotein.  

 

UGT genes have been identified in several families of DNA viruses (Markine-Goriaynoff et 

al., 2004) and they have also been recently reported in RNA hypoviruses (Linder-Basso, 

2002) as well as endornaviruses (Hacker et al., 2005). Analysis of the AbEV1 UGT amino 

acid sequence revealed the presence of motif IV, but not the motif I reported in other 

endornaviruses (Hacker et al., 2005). Sequence similarity analysis of UGT motif IV of 

AbEV1 showed the highest identity with PEV1, followed by a cellular UGT from U. 

maydis. Viral encoded UGT genes are considered to be have been acquired from their hosts 

during the evolutionary process (Markine-Goriaynoff et al., 2004).  Although Hacker et al. 

(2005) reported a fungal UGT from U. maydis as the most closely related to that of PEV1, 

in AbEV1 the best similarity was with another endornavirus (PEV1) suggesting that the 

UGT gene might not be a recent acquisition in AbEV1. UGTs have been suggested to be 
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beneficial to the virus interfering with host metabolism (O’Reilly, 1995). For example, 

baculovirus ecdysteroid glucosyltransferases inactivate ecdysteroid hormones by 

glucosilating them, thereby preventing moulting and pupation of infected larvae and 

increasing virus yield and spread (O’Reilly, 1995). It has also been suggested that UGTs 

maybe involved in pathogenicity mechanisms of plant pathogenic fungi (Hacker et al., 

2005). Since cellular sterol UGT genes are known to be required in plant pathogenic fungi 

(Sweigard et al., 1998; Kim et al., 2002), the expression of a viral UGT gene might 

modulate the pathogenicity of the host by gene silencing or other mechanisms (Hacker et 

al., 2005; Osaki et al., 2006). The role of the UGT domain in AbEV1 is not known, but it 

might interfere in some way with the mushroom development during MVX infection.  

 

The long endornavirus polyproteins are believed to be processed by virus-encoded 

proteases via cleavage mechanisms (Seipelt et al., 1999; Adams et al., 2005). However, 

proteinase motifs, cysteine-rich regions and proteolytic cleavage sites were not identified in 

the AbEV1 polyprotein. Numerous RNA viruses produce functional proteins via proteolytic 

processing of polyprotein precursors (reviewed by Koonin & Dolja, 1993). The polyprotein 

expression strategy provides economy by encoding multiple proteins from a single open 

reading frame (Section 1.8.4). Since all proteins within a polyprotein are generated in equal 

amounts, differential proteolytic processing may provide a mechanism for regulating the 

availability of functional proteins required for early or late stages of infection (de Groot et 

al., 1990). Virus-encoded proteases can be involved in the autoproteolytic cleavage of the 

viral polyprotein and can also interfere with the host metabolism preventing cellular protein 

synthesis initiation (Devaney et al., 1988). Picornaviral proteinases are responsible for 

specific proteolysis of the eukaryotic initiation factor (eIF)4G, which is involved in the 

recruitment of capped cellular mRNA to the ribosome. The cleavage of eIF4G impairs this 

process and leads to the inability of the cell to initiate protein synthesis of its own mRNA 

(Seipelt et al., 1999). In CHV1-EP713 the papain-like protease p29 located within N-

terminal portion of ORF A, has been reported to be responsible for viral symptoms such as 

loss of pigmentation and reduction in asexual sporulation (Suzuki et al., 1999). It appears 

that p29 alters host phenotype both directly through action of the protease on host factors 
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and indirectly by contributing to viral RNA accumulation. A large superfamily of virus-

encoded proteases related to chymotrypsin-like cellular serine proteases has been described 

(Bazan & Fletterick, 1989; Gorbalenya et al., 1989a). Some of these viral proteases have 

the substitution of Cys for the principal catalytic site, not found in cellular enzymes. The 

existence of classical cysteine proteases related to papain-like cellular proteases has been 

reported in several positive-stranded RNA viruses (Gorbalenya et al., 1991) as well as 

some dsRNA viruses, e.g. hypoviruses (Suzuki et al., 2003). The sequences of cellular and 

viral papain-like proteases are quite variable. The only reliable conserved region is a stretch 

of approximately ten amino acid residues centred at the catalytic Cys and no other 

conserved motifs could be detected (Gorbalenya et al., 1991). Cysteine-rich regions have 

been described in PEV1 (Hacker et al., 2005) and HmEV1-670 (Osaki et al., 2006), but 

protease or proteolytic cleavage signatures have not yet been reported in endornavirus 

polyproteins. Due to their low degree of conservation, protease functions are difficult to be 

identified in viral sequences (Koonin et al., 1992) and they are generally inferred from 

functional studies and site-directed mutagenesis that allow assignment of catalytic residue 

and target sequences.    

 

Although endornaviruses have been reported in various plants, their presence in other 

organisms has not been extensively studied. Few reports have described endornaviruses in 

fungi. Results reported in this study support the hypothesis that MVX14.4 is the first ever 

endornavirus to be characterized in edible fungi. 
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4. Summary 
This chapter describes the epidemiological experiments set up to study the transmission via spores 

and anastomosis of MVX14.4, characterized and named as Agaricus bisporus endornavirus 1 

(AbEV1). In order to demonstrate the vertical transmission of AbEV1, single spore isolates were 

cropped and analysed for the presence of MVXdsRNA elements. An in vitro dual-culture experiment 

was also set up to study AbEV1 horizontal transmission.  
 

4.1  Introduction 
 

4.1.1 DsRNAs Transmission via spores 

Transmission of mycoviruses through spores is well known, but the efficiency of virus 

transmission differs between spore types (Ghabrial, 1998). In most cases transmission of 

dsRNAs through asexual spores (conidia) is very efficient (Buck, 1986, 1998). The vertical 

transmission rate of the most extensively studied mycovirus, Cryphonectria parasitica 

hypovirus (CHV), varies considerably among isolates showing a transmission of rate up to 

100% in conidia (Enebak et al., 1994; Melzer et al., 1997; Russin & Shain, 1985), while 

there is no transmission of CHV via ascospores (Anagnostakis, 1988). Ca 10% of 

ascospore progenies from infected Magnaporthe grisea strain can contain dsRNA elements 

(Chun & Lee, 1997). Low transmission rates of dsRNAs into ascospores of Aspergillus 

nidulans have been reported, while conidia are always infected (Coenen et al., 1997). 

Yeasts differ from most filamentous ascomycetes in that vertical transmission of dsRNA 

into ascospores is very efficient  (Brewer & Faugman, 1980). 

 

There is less information available about the transmission of mycoviruses in 

basidiomycetes. Many basidiomycetes do not produce conidia, but there are exceptions. For 

example, Heterobasidion annosum do produce conidia, which can transmit dsRNA 

elements with 3-55% efficiency (Ihrmark et al., 2002). A high proportion of basidiospores 

was reported to contain dsRNAs in Rhizoctonia solani (Castanho & Butter, 1978) and 

Ustilago maydis (Day & Dodds, 1979). In A. bisporus basidiospores are considered the 

primary source of infection in the epidemiology of La France disease (Romaine et al., 
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1993; Section 1.8.6.2.1); the spore infection rate range from 33% to 100% among the 

diseased basidiocarps, and diseased basidiospores show an increased rate of germination 

and viability (Schisler et al., 1967; Dieleman van Zaayen, 1970; Romaine et al., 1993). 

Lentinus edodes basidiospores can also transmit virus-like particles (Van Zaayen, 1979), 

whereas for the basidiomycete Agrocybe aegerita, the transmission of dsRNAs via 

basidiospores is very inefficient or non-existent (Barroso & Labarere, 2000).    

 

4.1.2 DsRNA Transmission via fungal anastomosis 

Mycoviruses can be transmitted horizontally through anastomosis (Osaki et al., 2004). The 

ability of hyphae to anastomose (cell fuse) is well known in fungi and is especially 

developed in the ascomycetes and basidiomycetes (Deacon, 1984). During anastomosis 

there is complete fusion of hyphal walls and migration of cytoplasmatic particles in both 

directions through the hyphal bridges (Giovannetti et al., 1999).  

 

Anastomosis enables mycoviruses to exist intracellularly and is the only way for 

mycoviruses to be transmitted horizontally. No transmission vectors are known (Buck, 

1986; Ghabrial, 1998). Plants, like fungi, have a cell wall, which acts as a barrier for virus 

penetration. Plant viruses circumvent the problem of transmission by exploiting vectors, 

e.g. insects, nematodes, chytrids, and protozoa (Brown et al., 1995; Campbell, 1996; 

Perring et al., 1999).  The possibility that insects and nematodes play a similar role in fungi 

cannot be ruled out, but there are no reports so far. Fungal viruses have adopted a different 

strategy by not entering through the cell wall, but rather passing intracellularly (Wicker, 

1992; Hong et al., 1998). Numerous attempts to infect fungal mycelia with purified virus 

extracts have been made (Hollings, 1962; Hollings et al., 1963, Dieleman-Van Zaayen & 

Temmink, 1968), but all have been either unsuccessful or have yielded spurious results due 

to possible infected spore contaminations (Ghabrial, 1980; Buck, 1986).  

 

Removal of the cell wall may increase viral infection in vitro but not always, suggesting 

that the cell wall is not the only barrier viruses need to overcome during their infection 

process. Protoplasts of Pennicillium stoloniferum could be infected at 10% rate with virus 
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extracts, according to Lhoas (1971). Pallett (1976) got similar results for Penicillium 

chrysogenum, Marasmius androsaceus and Mucor hiemalis. In other cases, protoplast 

infection with virus extracts gave very low frequency of infection as in Cryphonectria 

parasitica (Van Alfen et al., 1984; Pleurotus ostreatus (van der Lende et al., 1995b) and 

Helminthosporium victoriae (Ghabrial, 1986). It has also proved possible to infect 

protoplasts by fusing virus-infected with virus-free protoplasts as shown for Pyricularia 

oryzae (Lecoq et al., 1979), Gaeumannomyces graminis (Stanway & Buck, 1984) and 

several Aspergillus spp. (Varga et al., 1994; Coenen et al., 1997; van Diepeningen et al., 

1998). El-Sherbeim & Bostian (1987) also reported infection of the yeast Saccharomyces 

cerevisiae during cell mating in a solution with virus particles. Although the infection rate 

was extremely low (6%), the experiment might suggest the intriguing possibility of a 

natural extracellular transmission route for mycoviruses during particular circumstances, 

such as mating, when the cell wall partially breaks down.  

 

Anastomosis usually occurs between compatible strains (Osaki et al., 2004). This involves 

the fusion of cell walls and mixing of cytoplasm between the paired isolates, which results 

in the formation of heterokaryotic filaments that contain a mixture of the nuclei of both 

parental strains in a common cytoplasm between the hyphal bridges (Begueret et al., 1994). 

Such a reaction is typical of self-pairings. Perfect anastomosis is a rare event in non-self 

pairings because of incompatibility mechanisms (Hietala et al., 2003).    

 

4.1.3 Incompatibility Systems in Fungi 
In fungi there are three different incompatibility systems. The first system, also referred to 

as heterogenic compatibility, makes it possible for unrelated individuals of the same species 

to anastomose, recombine and produce sexual spores, only if they have different alleles of 

mating-type genes (mt or mat; Begueret et al., 1994). A second system is the interspecific 

incompatibility, which inhibits anastomosis between hyphaes from different species 

(Paoletti et al., 2006). A third system, the somatic or vegetative incompatibility system, is 

controlled by vic or het genes, allowing anastomosis between individuals with the same 

alleles in most cases (Begueret et al., 1994).  
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In many species incompatibility between strains cultured on a medium can be detected by 

the presence of a barrage, an abnormal contact in the region where the incompatible 

mycelia fuse (Begueret et al., 1994). Indeed, the hyphae of incompatible strains can fuse, 

but the heterokaryotic cells are rapidly destroyed by a lytic and degenerative reaction 

(Beisson-Schecroun, 1962; Boucherie et al., 1981; Saupe et al., 1995). Hyphal fusion 

between incompatible individuals results in a rapid compartimentation, organelle 

degeneration, shrinkage of the plasma membrane, septal plugging and death of the hyphal 

fusion cells and often surrounding cells (Glass & Kaneko, 2003). A similar lethal reaction 

has also been described in myxomycetes after plasmodia have fused (Carlile & Dee, 1967). 

In other cases, instability of the heterokaryon can lead to a post-fusion event, such as the 

specific loss of one of the two parental nuclei (Pittenger & Browner, 1961).  

 

Genetic control of vegetative incompatibility has been well studied in several species of 

ascomycetes: eleven genes, including those at the mating-type locus, control somatic 

incompatibility in Neurospora crassa (Perkins, 1988), nine in Podospora anserina 

(Begueret et al., 1994) and eight in Aspergillus nidulans (Croft & Dales, 1984). Detailed 

information concerning somatic incompatibility is lacking for most of Basidiomycetes, 

although several multiallelic loci have been suggested in Heterobasidion annosum (Hansen 

et al., 1993), a single locus in Phellinus gilvus (Rizzo et al., 1995), two loci in Armillaria 

ostoyae (Guillaumin, 1998) and three to four in Collybia fusipes (Marçais et al., 2000). In 

contrast to somatic incompatibility reactions that occur between homokaryons in 

ascomycetes, those in basidiomycetes take place between secondary (heterokaryotic) 

mycelia (Hietala et al., 2003). Mechanisms controlling somatic incompatibility have not 

been identified in A. bisporus. However, roughly 10-20% of pairings in this species might 

show behaviour consistent with some forms of somatic incompatibility (Hietala et al., 

2003).    

 

The significance of vegetative incompatibility in the biology of fungal populations is not 

clear. Begueret et al. (1994) suggested a possible role for somatic incompatibility as a 

mechanism of genetic isolation and a barrier to cytoplasmic exchange; thus reducing the 
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spread of mycoviruses, mitochondria, plasmids and undesired cytoplasmic material within a 

fungal population. Vegetative incompatibility would contribute to population structure by 

limiting outbreeding and favouring evolution of isolated groups within a species (Esser & 

Blaich, 1973). The efficiency of transmission of mycoviruses between fungal isolates 

through anastomoses is dependent on the incompatibility (Buck, 1998). This has been 

extensively studied in Cryphonectria parasitica, where it has been shown that mycovirus 

transmission occurs most readily between isolates with the same vic genes, and decreases 

with increasing numbers of vic genes (Liu & Milgroom, 1996). Similar results have been 

presented for Ophiostoma ulmi (Brasier, 1986) and Aspergillus nidulans (Coenen et al., 

1997).  

 

In A. bisporus, dsRNAs associated with La France disease have been shown to be readily 

transmissible between commercial strains (Sonnenberg & van Griensven, 1991), but the 

horizontal transmission from commercial to wild strains is restricted, probably due to 

vegetative incompatibility between strains (Sonnenberg et al., 1995).  

 

This chapter describes experiments carried out to examine the vertical and horizontal 

transmission of AbEV1 in A. bisporus. Preliminary analyses carried out at Warwick HRI 

involving crop infection has shown that dsRNAs associated with the MVX disease could be 

readily transmitted from MVX-infected to healthy compost irrespective of whether the 

infection occurs at spawning, at the end of the spawn-run or at casing (Grogan et al., 2004). 

However, the expression of symptoms seems to depend both on the type of dsRNAs present 

in the infected mycelium and the time of infection. Further work suggested that MVX14.4 

(AbEV1) could infect spores of A. bisporus very efficiently (Adie et al., 2004). Thus, in 

order to investigate the vertical transmission and partitioning through spores of specific 
MVXdsRNA elements, single spore isolates (SSIs) of an MVX-infected strain (strain 1283, 

isolated from commercial mushrooms in the UK) were cropped. Harvested mushrooms 

were screened for the presence of MVXdsRNAs. Preliminary horizontal transmission 

experiments between commercial MVXdsRNAs-infected donors and genetically marked 

carboxin resistant mutants (Challen & Elliott, 1987) suggested that not all the acceptor 



Chapter 4                                Vertical and Horizontal Transmission of AbEV1 
 
 

95 

 

strains were equally receptive to the uptake of MVXdsRNAs, possibly because of vegetative 

incompatibility (Adie et al., 2004). In this chapter details will be given about an in vitro 

transmission experiment set up in order to assess the transmission of AbEV1 from a donor 

to some acceptor strains of A. bisporus. 

 

4.2 Materials and Methods 

 

4.2.1 MVXdsRNAs Transmission via spores 

MVX infection trials were performed in collaboration with Dr H.M. Grogan of Warwick 

HRI using single spore isolates that had previously been shown to contain MVXdsRNA 

elements (Adie et al., 2004). 

  

4.2.1.1   MVX ‘strain’ material 

MVX-infected mushroom ‘strains’ (mushroom crops with different dsRNA patterns or 

dsRNA profiles) used for the experiments, are listed in Table 4.1 according to information 

provided by H.M. Grogan.  

 

     Table 4.1- MVX ‘strains’  

MVX strain Year isolated Symptoms reported MVXdsRNA 
present 

1283 2000 
40-80% yield reduction; 
patchy crop with large 

bare areas and crop delay 

AbEV1, MVX9.4a, 
MVX 7.0, MVX 3.6, 
MVX 3.5, MVX 2.4a  

A15 2002 none 
MVX 18.3, MVX 16.2a, 

MVX 2.4a 

  

Strain 1283 was isolated in 2000 from UK mushroom farms experiencing MVX disease 

symptoms. Symptoms consisted mainly of yield loss and crop delay. Strain A15 was an 

isolate from the commercial Sylvan spawn, that contained only asymptomatic MVXdsRNAs 

(MVX16.2a and MVX 2.4a) and MVX18.3 dsRNA, occasionally found in non-symptomatic 

mushrooms samples from sites with no history of MVX disease or recovered from this 
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disease (Grogan et al., 2004). Preliminary hybridization analyses carried out at Warwick 

HRI are also consistent with the idea that MVX18.3 might be linked to an asymptomatic 
MVXdsRNA, MVX16.2a (Adie et al., 2004). 

  

4.2.1.2  SSIs Cropping 

Single spore isolates (SSIs) were obtained from the MVX infected mushroom strain 1283 

in earlier experiments at Warwick HRI (Adie et al., 2004). Sixty single spore isolates were 

selected and grown on CE/CYM plates for 2-3 weeks at 25°C.  Mycelia were previously 

tested for the presence of MVX14.4 (AbEV1) by RT-PCR and 47 spores (78%) proved 

positive. 

 

In the present study, 10 SSIs were selected for a cropping experiment. The SSIs tested 

were: SSI 9, 27, 84, 127, 134 (AbEV1 negative), and SSI 1, 61, 121, 140, 160 (AbEV1 

positive). The positive control for the presence of AbEV1 was 1283-2, an isolate of strain 

1283. The negative control was A15-1, an isolate of the commercial strain A15.  

 

Grain rye-spawn cultures (Elliott, 1985c) were prepared for compost inoculation. Agar 

plugs were cut from CE/CYM cultures and used to inoculate screw–capped glass jars, 

containing 150 g of sterilized, pre-cooked rye grain (Elliott, 1985c). Jars were incubated at 

25°C for 2-4 weeks with weekly shaking to ensure a homogeneous colonization of all 

grains (Fig. 4.1). Colonised spawn (ca 20 g) was mixed with 3-3.5 kg phase II compost 

from the Warwick HRI Mushroom Unit in pots (ca 40 cm in diameter). For each treatment 

3 replicates were prepared and 2 flushes harvested. A total of 36 pots were filled in and 

positioned in the growing chamber using a randomised plot statistical design (Greenland, 

1990), developed in consultation with a Warwick HRI biometrician (Mead, pers. comm.). 
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Single Spore Isolate Experiment 
                        

                        

  Single spores collected and screened by RT- 

PCR for the presence of AbEV1 (Adie et   al., 

2004) 
 

 

                              Germination and in vitro cultures 

 

 

 

Spawn 

 

 

 

                                Mushroom cropping for each SSI 

 
 

 

 

               

 
                                      MVXdsRNA Test        dsRNA Profiling 

   
Fig. 4.1- Schematic diagram showing the SSI experiment 
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4.2.1.3 SSIs Molecular Analyses 

Total RNA was extracted from harvested mushrooms by the TRI reagent method (Section 

2.5.2) and used as template for the MVXdsRNA Test (Section 2.8.3). Additionally, the same 

mushroom samples were used for dsRNA Profile analysis (Section 2.9.2). 

 
4.2.2 Horizontal Transmission of AbEV1 

 
4.2.2.1  Strains 

Dual-culture transmission experiment was conducted using the AbEV1-donor SSI 61 and 

two different AbEV1-free acceptor strains (A15-1 and C63-carb422). The MVX donor, SSI 

61, was a single spore isolate obtained from the SSI experiment (Section 4.2.1.2), 

harbouring only AbEV1. The acceptor A15-1 was an isolate of a commercial strain 

(Section 4.2.1.2). The acceptor C63-carb422 was a mutant hybrid variety showing 

resistance to the fungicide carboxin (Challen & Elliott, 1987; Challen et al., 1989) and was 

obtained from the fungal culture collections at Warwick HRI.    

 

4.2.2.2 In vitro Transmission   

Donors and acceptors were grown on CE/CYM agar (Calvo-Bado et al., 2000) at 25º C for 

8 weeks. The donor and acceptor plugs were positioned in the same plate ca 2 cm apart, so 

that advancing mycelia could anastomose. Two replicates for each dual culture assay were 

made. Sample isolations were made from the acceptor and donor colonies and let grow in 

CE/CYM broth for 2 weeks. Two sample isolations per plate (one from the donor and one 

from the acceptor mycelium, respectively) were taken at half way distance between the 

anastomosis zone and the periphery of the growing mycelium. Carboxin resistant acceptor 

isolates were grown on CE/CYM medium supplemented with carboxin (15 µg/ml) to 

confirm provenance of the mycelium.  

 

The transmission of AbEV1 was assessed using RT-PCR (Section 2.8.3) with specific 

primers amplifying MVX14.4 dsRNA and 18S ribosomal RNA. RNA templates were 

prepared by the Tri Reagent extraction method (Section 2.5.2). 
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4.3 Results 
 

4.3.1 MVXdsRNAs Transmission via spores 
Mushrooms produced from the four MVX infected-single spore isolates (SSI 61, SSI 121, 

SSI 140, SSI 160), all proved positive for AbEV1 using the MVXdsRNA Test (Fig. 4.2) and 

the dsRNA Profile analysis (Fig. 4.3). Mushrooms produced from the five AbEV1-free 

SSIs, were not positive for AbEV1 as expected using the MVXdsRNA Test (Fig. 4.4) and the 

dsRNA Profile analysis (Fig. 4.5).  

 

 

 

   
 

 

 

 

 

 

 

Fig. 4.2- RT-PCR screening in AbEV1 positive SSI mushrooms. First (lanes 1, 3, 5, and 7) and 
second replicates (lanes 2, 4, 6, and 8) of single spore isolate SSI 61, SSI 121, SSI 140, and SSI 160 
were all positive for the presence of AbEV1. Lane 9 = parent strain 1283-2 (first replicate); lane 10 
= RT-PCR positive control (strain 1283), lane 11 = RT-PCR negative control (water); M = 100 bp 
DNA ladder (Invitrogen) 
 

 

Furthermore, all isolate mushrooms (SSI 9, SSI 27, SSI 84, SSI 127, SSI 134, SSI 61, SSI 

121, SSI 140, and SSI 160) were free of asymptomatic MVXdsRNAs or other elements 

present in the 1283-2 parent strain (Table 4.2). One isolate, SSI 140, showed MVX3.5 in 

addition to AbEV1 (Fig 4.6).  No differences were observed between 1st flush and 2nd flush 

mushroom samples.  

 

  SSI 61  SSI 121             SSI 140             SSI 160      1283-2 

    M              1           2              3            4              5             6               7             8             9           10        11         

315 bp 
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Fig. 4.4- RT-PCR screening in AbEV1 negative SSI mushrooms. First (lanes 1, 3, 5, 7, and 9) 
and second replicates (lanes 2, 4, 6, 8, and 10) of single spore isolate SSI 9, SSI 27, SSI 84, SSI 
127, and SSI 134 were all negative for the presence of AbEV1. Lane 11 = A15-1 strain (first 
replicate); lane 12 = RT-PCR positive control (strain 1283), lane 13 = RT-PCR negative control 
(water); M = 100 bp DNA ladder (Invitrogen) 
 

SSI 9       SSI 27 SSI 84         SSI 127         SSI 134      A15-1 

   M         1         2           3          4            5          6          7          8          9         10      11       12      13     

315 bp 

Fig. 4.3– dsRNA Profile of 
SSI mushrooms (first 
replicates) derived from 
AbEV1-infected spores. Lane 
1= SSI 160; lane 2 = SSI 61; 
lane 3 = SSI 121; lane 4 = 
parent strain 1283-2 (1 g); M = 
λDNA/HindIII ladder + 100 bp 
ladder (Invitrogen). DsRNA 
was extracted from 1.5 g 1st 
flush mushrooms. Since the 
parent strain 1283-2 (1 g) did 
not clearly reveal all 
MVXdsRNAs, an overloaded 
sample (2 g, from a separate 
gel, lane = 5) is shown to 
illustrate the dsRNA profile. 
Only AbEV1 dsRNA was 
detected in SSI 160, SSI 61 
and SSI 121  

  1            2           3            4          M 

∼14.4 kbp 

        5       M 
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Table 4.2- Summary of RT-PCR analysis and dsRNA Profiles of SSI mushrooms. SSI 9, SSI 
27, SSI 84, SSI 127, SSI 134 showed no presence of MVXdsRNAs. SSI 1 did not produce any 
mushrooms. SSI 61, SSI 121, SSI 160 harboured only AbEV1. SSI 140 exhibited both MVX3.5 and 
AbEV1. A15-1 was the negative control for the AbEV1 presence and contained only asymptomatic 
MVXdsRNAs (MVX 18.3, 16.2a, 2.4a). 1283-2 was the MVX-infected parent strain  
 

SSI CULTURE 
MVXdsRNAs 

(dsRNA Profile) 

MVXdsRNAs 
(RT-PCR) 

SSI 9 - - 

SSI 27 - - 

SSI 84 - - 

SSI 127 - - 

SSI 134 - - 

SSI 1 no mush. no mush. 

SSI 61 AbEV1 AbEV1 

SSI 121 AbEV1 AbEV1 

SSI 140 AbEV1, MVX3.5 AbEV1 

SSI 160 AbEV1 AbEV1 

A15-1 

(negative control) 
MVX 18.3, 16.2a, 2.4a - 

1283-2 

(parent strain) 

AbEV1, MVX7.0, 3.6, 3.5, 9.4a 

2.4a 
AbEV1, MVX3.6, 9.4a 

                 - = no detectable signal; No mush = no mushrooms produced 

    1        2         3         4         5          6         M 

∼ 14.4 kbp 

Fig. 4.5– dsRNA Profile for SSI 
mushrooms (first replicates) derived from 
AbEV1-free spores. Lane 1= SSI 9; lane 2 = 
SSI 27; lane 3 = SSI 84; lane 4 = SSI 127; 
lane 5 = SSI 134; lane 6 = parent strain 1283-
2; M = λDNA/HindIII ladder (Invitrogen). 
MVXdsRNAs were not detected in SSI 9, SSI 
27, SSI 84, SSI 127, and SSI 134  
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SSI cultures on CE/CYM agar did not show any gross morphological abnormalities neither 

reduced growth unlike the parent strain (Fig. 4.7), with the exception of SSI 121 and SSI 

140, which exhibited slower growth (data not shown).  

 

 

 

 

 

Fig.  4.6– dsRNA Profile for various SSI mushrooms. dsRNA was extracted 
from 3.5 g 1st flush mushrooms (second replicates). Isolates SSI 127 and SSI 
134 showed no presence of MVXdsRNAs. Isolates SSI 121 and SSI 160 exhibited 
only AbEV1 dsRNA. SSI 140 exhibited both MVX3.5 and AbEV1. A15-1 was 
the negative control and contained only asymptomatic MVXdsRNAs (MVX 18.3, 
16.2a, 2.4a). 1283-2 was the MVX-infected parent strain. M = λDNA/HindIII 
ladder + 100 bp ladder (Invitrogen) 
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Fig.  4.7- 1283-2 and SSI 61 agar cultures. Strains 1283-2 and SSI 61 were cultured on CE/CYM 
agar for 30 days. Growth of strain SSI 61 was not as slow as that of the parent strain 1283-2  
 
 
4.3.2 AbEV1 Horizontal Transmission 
Donor and acceptor agar plugs were positioned in the same plate ca 2 cm apart, so that 

advancing mycelia could anastomose (Fig. 4.8).  
 

 
 
Fig. 4.8- In vitro dual culture assay for SSI 61 x A15-1. Donor (SSI 61; A) and acceptor (A15-1; B) 
cultures were allowed to anastomose on CE/CYM agar for 8 weeks. Contact zone between the two 
cultures has been magnified in the right hand sided photo 
 
 

 

SSI 61 1283-2 

A B 
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Sample isolations were made from the acceptor and donor colonies and let grow in 

CE/CYM broth for 2 weeks (Fig. 4.9). All carboxin resistant isolations were able to grow 

on CE/CYM medium supplemented with carboxin (15 µg/ml) confirming their provenance, 

whereas donor isolations from the same culture plate could not.  
 
 

 
 
Fig. 4.9- A15-1 culture in CE/CYM broth. Sample isolations were made from the acceptor (A15-
1) side of the dual culture plate and incubated in CE/CYM broth for 2 weeks 
 

 

All samples tested yielded the appropriate 18S RT-PCR product and all donor isolations 

proved positive for AbEV1 by RT-PCR. Both A15-1 and C63-carb422 acceptor strains 

were infected by AbEV1 after anastomosis (Fig. 4.10).  
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Fig. 4.10- RT-PCR screening for the AbEV1 presence in dual culture assay. Both A15-1 and 
C63-carb422 acceptor strains were infected by AbEV1 after 8 weeks-anastomosis. Indeed, A15-1 
and C63- carb422 acceptors showed the appropriate 315 bp-amplicon in each replicate (photos in 
the first row) after anastomosis. All samples also yielded the appropriate 18S RT-PCR product 
(photos in the second row). Lane PC= RT-PCR positive control (strain SSI 61); lane NC= RT-PCR 
negative control (water) 
 
 

4.4  Discussion 
 

4.4.1 Vertical Transmission  
Fruiting of various MVX infected-single spore isolates (SSIs) was used to demonstrate 

vertical transmission and stability of MVXdsRNA elements to A. bisporus offspring. 

Although MVX infected-SSI cultures were previously obtained (Adie et al., 2004), stability 

of MVXdsRNAs throughout A. bisporus life cycle (spore-mycelium-mushroom) had not been 

previously demonstrated. 

 

Mushrooms harbouring only AbEV1 were recovered from SSIs cropping (Table 4.2). The 

inability to detect AbEV1 in all SSI cultures (Adie et al., 2004) and the loss of numerous 

A15-1 
 

     C63carb422 
        PC            NC 

315 bp 

617 bp 
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other MVX elements up to the fruiting stage suggested that partitioning of MVXdsRNAs 

may take place during basidiospore development. Segregation of viral elements during 

sexual sporogenesis has been reported in other fungi, e.g. Ophiostoma ulmi and 

Gaeumannomyces graminis (Brasier, 1983; McFadden, et al., 1983; Rogers et al., 1986). 

Segregation of dsRNA viruses during conidiogenesis has also been described in 

Cryphonectria parasitica (Romaine et al., 1993), Penicillium stoloniferum (De Marini et 

al., 1977), and Saccharomyces cerevisiae (Bruenn, 1986). Thus, vertical transmission of 

MVX elements could represent a stage where disease is transmitted, but also a moment of 

‘recovery’ from MVX elements for some A. bisporus spores. Screening of single spore 

progeny can therefore be used to identify virus-free strains. 

 

The transmission of AbEV1 as an independent element suggested its ability to replicate and 

survive as a unique virus. AbEV1 is often observed in high titre compared to other elements 

of the MVX complex and this might also play a role in the transmission efficiency as 

observed in Heterobasidion annosum (Ihrmark et al., 2002). Moriyama et al. (1999) 

reported a copy number increase of more than 10-fold for Oryza sativa endornavirus in 

pollen grains compared to leaves, roots and seedlings. They suggested that this increase 

might be related to the high efficiency of dsRNA transmission via pollen.  

 

Most of the infected SSI cultures (4/5) fruited regularly. However, one SSI culture (SSI 1) 

did not produce any mushrooms in fruiting trials. It is not known whether this was a 

consequence of viral infection. It is well known that some mycoviruses reduce fertility in 

the host (Anagnostakis, 1987; Brasier, 1986), while others seem to enhance their vertical 

transmission (Schisler, 1967). Agaricus bisporus mycelium infected with La France virus 

often produces basidiospores, which can germinate more frequently and more quickly than 

those from healthy mushrooms (Schisler, 1967). The mechanism of this response is not 

known, but it has been hypothesized that spores produced by diseased mushrooms 

germinate more quickly because they have less pigment and thinner walls (Schisler, 1967). 

Another effect is the production of taller mushrooms (elongated stems) that mature earlier 

and discharge spores ahead of healthy mushrooms (Schisler et al., 1967; van Zaayen, 
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1979). In case of early infection of La France disease, fruiting can be suppressed over the 

entire bed or in well-defined areas (Schisler et al., 1967). The inability of one MVX 

infected single spore isolate to fruit in the study described in this chapter could not be 

entirely correlated with the viral infection since it is well known that some A. bisporus 

spores are incapable of fruiting (Elliott, 1985b; Section 1.3.2).  

 

In the present study AbEV1 was transmissible to the next progeny with a rate of 78% since 

47 out of 60 spores harboured the virus (Adie et al., 2004) and 100% (4/4) mushrooms 

produced from the infected single spore isolates exhibited the presence of AbEV1. This is 

consistent with the high transmission rate observed with other endornaviruses. Fukuhara 

(1999) found a transmission efficiency of 94% via pollen and 100% via eggs in rice 

infected with large endogenous dsRNAs. Transmission via spores/seeds is considered the 

main mode for endornaviruses. In plants, endornaviruses are transmitted to plant progeny 

only via seeds in a biparental (via pollen and ova) and non-Mendelian mode (Pfeiffer et al., 

1993; Moriyama et al., 1995; Fukuhara, 1999). The observed inheritance of large-

endogenous dsRNAs seems to be different from the so-called ‘uniparental’ or ‘maternal 

inheritance’ found for cytoplasmic components (e.g. chloroplasts and mitochondria), which 

are usually inherited only via eggs (Birky, 1995). The biparental transmission of 

endornaviruses also confirms the viral nature of these elements, in contrast with the early 

interpretation of large endogenous dsRNAs as plasmid-like elements (Turpen et al., 1988; 

Fukuhara, 1999; Fukuhara et al., 2005), localized in the cytoplasm (Lefevre et al., 1990; 

Moriyama et al., 1996; Koga et al., 2003). Indeed viruses such as cryptoviruses (Section 

1.8.2), which show some similarities with endornaviruses are only transmitted through 

seeds in a biparental mode; the transmission is generally found to be about 50% efficient 

when non-carrier plants are pollinated by carriers (Boccardo et al., 1987).   
 

All single spore isolate mushrooms harbouring AbEV1 routinely displayed reduced yields 

and 1-2 days crop delay  (Grogan, pers. comm.), symptoms similar to the parent strain 1283 

reported on farm. However, nothing is known about the molecular or physiological 

mechanisms causing these symptoms. Other studies have suggested that some viral 
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symptoms are caused indirectly by the rapid replication of the virus, which debilitates 

mushroom growth and fruiting rather than the direct activity of the virus (Wessels, 1994).  

 

Virus replication might interfere with translation of highly expressed genes resulting in a 

diminished concentration of rare amino-acyl tRNAs. During fruiting and substrate 

colonisation proteins needed in high quantities such as hydrophobins might be affected by a 

viral disease. Hydrophobins have been identified in A. bisporus (Lugones et al., 1996). 

ABH1p hydrophobin is particularly abundant at the surface of fruiting bodies; ABH3p 

hydrophobin is found in colonising mycelium of A. bisporus. These proteins, which occur 

uniquely in mycelial fungi, allow them to escape their aqueous environment, confer 

hydrophobicity to fungal surfaces in contact with air and mediate the attachment of hyphae 

to hydrophobic surfaces. Van der Lende (1995a) suggested that limitations of these and 

other hydrophobins could very well cause the decreased ability to colonise the substrate and 

failure to form abundant and normal-shaped fruiting bodies. Powel & Van Alfen (1987a, b) 

demonstrated the downregulation of specific host gene transcripts, such as the crypanin and 

laccase mRNAs in infected Cryphonectria parasitica. Virus regulated fungal genes have 

been identified in Cryphonectria parasitica (Fahima et al., 1993), indicating the active role 

of viral genome at cellular level. In the case of the chestnut blight fungus hypovirus it has 

shown that pathogenicity traits result from a double effect between a general debilitation of 

the host due to the physical presence of the replicating virus and the differential regulation 

of specific viral coding domain (Choi & Nuss, 1992; Pfeiffer, 1998). Specifically, viral 

ORF A (Section 1.8.2) was identified as the determinant for altered fungal phenotype, such 

as reduced pigmentation, reduced laccase and crypanin accumulation and suppressed 

conidiation. The presence of a viral encoded protease (p29) in ORF A results in loss of 

pigmentation and reduction of sporulation as demonstrated through gene expression studies 

(Suzuki et al. 1999). This protein shares similarity with the N-terminal portion of the 

potyvirus-encoded helper component-protease (HC-Pro), a multifunctional protein 

implicated in aphid-mediated transmission, genome amplification, polyprotein processing, 

long-distance movement and suppression of PTGS.  
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However, symptoms shown by SSI mushrooms in this study were less severe than that 

shown by the parent strain 1283, and in vitro cultures did not generally show any reduced 

growth, apart from two SSI strains (Grogan, pers. comm.). This might suggest that other 
MVXdsRNAs may contribute more strongly to the yield reduction and crop delay symptoms 

observed on farms in MVX-infected 1283 mushrooms.    

 

4.4.2 Horizontal transmission via mycelium 

Anastomosis reactions lead to exchange of cellular material on a different scale according 

to the fungal species involved. Although bilateral nuclear migration is considered quite 

common in many basidiomycetes (Hintz et al., 1988; Ihrmark et al., 2002), nuclear 

migration does not occur in A. bisporus during anastomosis (Raper & Raper, 1972; 

Sonnenberg et al., 1991). The two pairing heterokaryotic mycelia remain as two discrete 

entities and new heterokaryons are only formed in the junction zone (Challen, pers. 

comm.). The absence of nuclear migration in A. bisporus has been confirmed using 

carboxin resistant strains as MVX acceptor markers. The efficiency of mycovirus 

transmission between fungal isolates through anastomosis can be dependent on the 

vegetative compatibility of the isolates (Buck, 1998). However, nuclear and virus 

exchanges have also been reported between incompatible isolates of the basidiomycete H. 

annosum (Ihrmark et al., 2002; Johannesson & Stenlid, 2004). Vegetative incompatibility 

may have a role in the transmission of MVX complex between different strains of A. 

bisporus. Not all strains seem equally receptive to the uptake of MVXdsRNA elements (Adie 

et al., 2004; Challen, pers. comm.). This apparent ‘tolerance’ of some strains is an 

interesting observation, but it is not yet proven whether it is robust resistance or a delayed 

transmission.     

 

In this study, AbEV1 was transmitted to both acceptor strains (A15-1 and C63-carb422) 

within 60 days. However, it is noteworthy that some early acceptor sub-culture samplings 

taken from the very periphery of the growing mycelium showed no presence of AbEV1, 

although isolates from the inner colony were positive. This result may be explained by the 

usual absence of virus in the hyphal tips of growing mycelium (Mori et al., 1978; Nuss & 
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Koltin, 1990; Varga et al., 1994; Ikeda et al., 2003). Prolonged storage and subculturing 

might also result in increased virus concentration and in its presence in hyphal tip isolates 

(Varga et al., 1994). Sonnenberg & van Griensven (1991) reported that dsRNAs 

concentration in samples depends on the time of contact and distance of the sampling point 

to the contact zone. Despite horizontal transmission of endornaviruses has not been 

demonstrated in plants (Wakarchuk & Hamilton, 1985; Valverde et al., 1990; 

Zabalgogeazcoa & Gildow, 1992; Moriyama et al., 1996; Gibbs et al., 2000), Ikeda et al. 

(2003) showed transmission via anastomosis for the fungal endornavirus Helicobasidium 

mompa endornavirus 1-670. These authors demonstrated that HmEV1-670 can be removed 

from infected strains by hyphal tip isolation and then reintroduced by anastomosis using an 

HmEV1-670 infected donor (Ikeda et al., 2003; Osaki et al., 2006).   

 

The results of the current study represent the first report of horizontal transmission for 

AbEV1 to commercial mushroom strains, making the virus an ‘infectious threat’ for the 

mushroom industry. Commercial mushrooms can be more readily infected than wild 

mushrooms because of the favourable environment for virus spread, high host population 

density and low genetic variability. All these elements can be excellent selection factors for 

the evolution of viruses and can render viruses even more virulent (Milgroom, 1999).  
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5. Summary 

This chapter describes the various techniques and experiments carried out to investigate the 

presence of MVX-like dsRNA elements in mycelial cultures derived from wild mushroom 

collections. Different Agaricus collections were screened for MVX dsRNA elements by RT-PCR 

(MVXdsRNA Test) and an AbEV1-type element from collection ARP250 was further characterized 

by sequence analysis.    

 

5.1  Introduction  

 
Mycoviruses are widespread in fungal hosts, ranging from pathogenic fungi to edible 

mushrooms (Section 1.8.1). Their biological significance to their hosts is still poorly 

understood, since a large number of fungal viruses are associated with latent infections 

(Ghabrial, 1994). Fungal viruses do not have an extracellular phase, therefore they are 

transmitted intracellularly during cell division, sporogenesis and cell fusion. As a result of 

these modes of transmission the natural host range of mycoviruses is limited to individuals 

within the same or closely related vegetative compatibility groups (Anagnostakis, 1982). 

The presence of mycoviruses and unencapsidated dsRNAs has been reported for a large 

number of different plant fungal pathogens including Ustilago maydis (Wood & Bozarth, 

1973), Rhizoctonia solani (Castanho et al., 1978; Zanzinger et al., 1984; Finkler et al., 

1985), Gaeumannomyces graminis (Stanway, 1985), Pyricularia oryzae (Hunst et al., 

1986), Periconia circinata (Matzumoto, 1987), Phytophthora infestans (Tooley et al., 

1989), Ophiostoma ulmi (Hong et al., 1998), Cryphonectria parasitica (Choi & Nuss, 

1992), Sclerotinia sclerotiorum (Li et al., 1999), Septoria nodorum (Newton, 1987), 

Helminthosporium victoriae (Soldevila et al., 2000), Heterobasidion annosum (Ihrmark et 

al., 2001), Discula destructiva (Rong et al., 2002), Botrytis cinerea (Castro et al., 2003), 

Coniothyrium minitans (Cheng et al., 2003), Helicobasidium mompa (Osaki et al., 2004), 

Phytophthora spp (Hacker et al., 2005), Fusarium graminearum (Chu et al., 2004) and 

others. 
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Despite the broad number of mycoviruses reported in plant fungal pathogens, very little is 

known about the presence of dsRNAs in edible mushrooms. Van der Lende et al. (1995b) 

described dsRNAs and virus particles in slow growing cultivated Pleurotus ostreatus. 

Diseased oyster mushrooms were shown to harbour 7 dsRNA elements. One of these 

dsRNA, 2.4 kbp dsRNA, was associated with infective viral particles and could be 

horizontally transmitted to virus-free mycelium (van der Lende et al., 1995b). In some 

cases, lack of an apparent correlation between the presence of dsRNAs and host phenotype 

has been reported. Lim et al. (2005) have described a new dsRNA virus with distinct 

similarities to partitivirus, named P. ostreatus virus 1 (PoV1) infecting P. ostreatus 

latently. Despite most viruses infecting mushrooms have a dsRNA genome, Yu et al. 

(2003) reported a new virus with ssRNA genome of 5.784 kbp and a coat capsid of 

approximately 28.5 kDa. This virus, named oyster mushroom spherical virus (OMSV) was 

isolated from cultivated oyster mushrooms with severe epidemic oyster mushroom Die-

back disease. Only three other ssRNA mycoviruses have been reported so far. The first, 

mushroom bacilliform virus (MBV) was found in A. bisporus (Tavantzis et al., 1980). The 

second, Selerophthora macrospora virus B (SmVB) was isolated in S. macrospora, the 

pathogenic fungus responsible for downy mildew in gramineous plants (Honkura et al., 

1983; Yokoi et al., 1999). The third Botrytis virus F (BVF) infects Botrytis cinerea, an 

important fungus affecting a large number of economically important vegetables, flowers 

and fruit crops (Robyn et al., 2001). Mycoviruses have been found also in Lentinus edodes 

(Inoue, 1970) and in another cultivated basidiomycete, Agrocybe aegerita (Barraso & 

Labarere, 1990). Virus-like particles have been found in some wild mushrooms, such as 

Lentinus lepideus, Collybia peronata and Phaeolepiota aurea (Mori et al., 1978). Mycelial 

growth and malformations of fruiting bodies were observed. 

 

Little is known about viruses in wild populations of A. bisporus (Milgroom, 1999).  

Sonnenberg et al. (1995) screened 133 wild isolates of A. bisporus, but they could not find 

any indications for the presence of viral dsRNAs associated with La France disease in the 

natural population. However, Adie et al. (2004) at Warwick HRI screened 40 commercial 
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varieties and 109 Agaricus isolates of various origin (mainly A. bisporus) for the presence 

of three MVXdsRNAs (AbEV1, MVX3.6 and MVX1.8) using RT-PCR, and within these 

collections only one isolate, ARP250 was positive for AbEV1.  

 

5.2 Materials and Methods  
 

5.2.1 Mushroom Isolates 
The ARP250 isolate was kindly provided by R. Kerrigan (Sylvan Research, Pennsylvania, 

USA) and is a culture sample distributed through the ARP (Agaricus Resource Program) 

collection of wild strains. The wild ARP250 isolate was originally collected near Asilomar, 

California. A mycelium plug was grown on CE/CYM plates for 2-3 week at 25°C and the 

resulting mycelium gently collected in a 1.5 ml microcentrifuge tube.  

 

Two other mushroom isolates were collected in Warwickshire (UK), P44 (harvested by R. 

Gaze near Warwick, Warwickshire) and W52-B (collected by R. Noble in Barford, 

Warwickshire, Fig. 5.1). Tissue cultures were prepared growing ca 1 cm-pieces of explant 

from pileus tissue of wild mushrooms on CE/CYM agar plates for 2-3 week at 25°C and 

the resulting mycelia were collected in a 1.5 ml microcentrifuge tube. 

 

5.2.2 ARP250dsRNAs Screening 

5.2.2.1 Cropping Experiment 

A cropping experiment was set up with the ARP250 isolate. Grain rye-spawn culture 

(Elliott, 1985c) was prepared for compost inoculation. Agar plugs were cut from ARP250 

agar cultures and used to inoculate screw–capped glass jars, containing 150 g of sterilized, 

pre-cooked rye grain (Elliott, 1985c). Jars were incubated at 25°C for 2-4 weeks with 

weekly shaking to ensure a homogeneous colonization of all grains. Colonised spawn (ca 

20 g) was mixed with 3-3.5 kg phase II compost from the Warwick HRI Mushroom Unit in 

pots (ca 40 cm in diameter). A total of 3 replicates were prepared and the first flush 



Chapter 5     Detection of MVX-like dsRNAs in few mycelial cultures of 
      wild Agaricus collections  
 
 
 

 115 

harvested. DsRNA was extracted from harvested mushrooms as described in Section 2.5.1, 

and analysed through electrophoresis in order to obtain a dsRNA Profile.  

 

 
Fig. 5.1- Agaricus bisporus isolate (W52-B) collected in Warwickshire. Agaricus bisporus 
mushrooms (W52-B) collected in Barford, Warwickshire, UK. Mushrooms presented scaly and 
brown-coloured cap (photo kindly provided by M. Challen)     

 

5.2.2.2 Molecular Characterization of an AbEV1-like element in ARP250 isolate 

The ARP250 isolate was cultured on CE/CYM agar medium and the resulting mycelium 

collected after 2-3 weeks to obtain the starting material for total RNA extraction (TRI-

Reagent, Section 2.5.2). Recovered total RNA was then used as a template for RT-PCR 

analysis (MVXdsRNA Test, Section 2.8.3).  

 

An AbEV1-like element (ARP25014.4) was found in ARP250 isolate. In order to characterize 

it sequencing work was carried out. Total RNA extracted by Tri-Reagent from ARP250 

culture was used as a template for the RT-PCR assay (Section 2.8.1 and 2.8.2). Primers 

used (Table 5.1) were designed on specific AbEV1 regions sequences (helicase, 

polymerase and glycosyltransferase domains, Section 3.3.2).  
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Table 5.1- Primers amplifying helicase, RdRp, and GT regions in both AbEV1 and ARP25014.4  

Primer Primer sequence 
Reference: this study 

Product 

Size (bp) 

RNA Target 

B3f92 

B3r673 

5’-CCTCGTTACCTTGGTAACT-3’ 

5’-GTATCATCGCTATGACTTCC-3’ 
ca 582 ARP25014.4 helicase 

RDRP11027 

RDRP11933 

 5’-CGAAGTTCCAGGTAGGATTG-3’ 

5’-ATCATCACCCAGCAACAG-3’ 
ca 907 ARP25014.4 RdRp 

B3-F7654 

B3-R7934 

 5’-TGACGGCATACACCGAAGAG-3’ 

 5’-GTTCTGCAAACCGGCAATGG-3’ 
ca 281 

ARP25014.4 

glycosyltransferase 

 

Obtained RT-PCR products were electrophoresed, gel purified and sequenced directly as 

previously described (Section 2.12.2) using primers listed in Table 5.1. Additional primers 

(RDRPr190, 5’-TCTGGCTGCCAATTCTTCA-3’; RDRPf57, 5’-TCGTGCACCAAACAA 

TGC-3’) were used to complete the sequencing of the long RdRp amplicon (∼ 900 bp). All 

regions were obtained from more than four independently sequencing reactions. Sequences 

obtained were analysed as described in Section 2.13.  

 

5.2.3 DsRNA Screening in other Isolates 

Total RNA was extracted from cultures of P44 and W52-B isolates by TRI reagent 

extraction (Section 2.5.2) and used as a template for the RT-PCR assay (MVXdsRNA Test, 

Section 2.8.3).    

 

5.2.4 Isolates Characterization 
Nucleic acids from isolates described in Section 5.2.1 were extracted using the Chelex 

method (Section 2.5.3) and used as a template for the PCR assay (Section 2.8.2) amplifying 

the Internal Transcribed Spacer (ITS) regions of Agaricus ribosomal DNA (rDNA). Primer 

its1extB (5’-AACAAGGTTTCCGTAGGTGAACCTGC-3’) and its4extA (5’-

TTCTTTTCCTCCGCTTATTGATATGC-3’) amplified a product of ca 700 bp for the 

rDNA region. Obtained PCR products were electrophoresed, gel purified and sequenced 

directly as previously described (Section 2.12.2). Direct sequencing reactions were 
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performed in order to generate sequences for the region between the small ribosomal 

subunit and 5.8S subunit using primer its1 (5’-TCCGTAGGTGAACCTGCGG-3’) and its2 

(5’-GCTGCGTTCTTCATCGATGC-3’), and the region between the large ribosomal 

subunit and 5.8S subunit using primer its3 (5’- GCATCGATGAAGAACGCAGC-3’) and 

its4 (5’- TCCTCCGCTTATTGATATGC-3’) (White et al., 1990). Phylogenetic analysis 

based on ITS sequences, obtained from 4 independent sequencing reactions per sample, 

were analysed and compared to ITS sequences from other well defined Agaricus isolates 

(Challen et al., 2003). A neighbour-joining phylogenetic tree of ITS sequences was 

constructed using the MegAlign package via ClustalW algorithm (Thompson et al., 1994). 

 

5.3 Results  
 

5.3.1 ARP250 Isolate  
ARP250 mushrooms cropped at Warwick HRI had brown-coloured, slightly scaly caps 

(Fig. 5.2, Fig. 5.3, and Fig. 5.4).  

 

 
Fig. 5.2- ARP250 isolate fruiting in compost culture.  Brown-coloured pins of ARP250 isolate 

emerging from colonised casing   
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           Fig. 5.3 - ARP250 mushrooms. Two ARP250 mushrooms harvested from Warwick HRI       
          Mushroom Unit and showing brown and scaly caps 
 

 
     Fig. 5.4- ARP250 mushroom close-up. ARP250 cap with visible brown-coloured scales 
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Extracted dsRNA from harvested mushrooms was used to obtain a dsRNA Profile, which 

revealed the presence of a ca 14.4 kbp-band and two further RNA elements, one at ca 2.2 

kbp (ARP2502.2) and a second at ca 16.2 kbp (ARP25016.2) (Fig. 5.5). These appeared 

equivalent in size to MVX elements found in MVX-infected cultivated mushrooms, 
MVX16.2a, MVX14.4 (AbEV1), and MVX2.2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RT-PCR analysis using the MVXdsRNA Test confirmed the presence of a possible AbEV1-

like element, yielding an amplicon of 315 bp. The isolate yielded the appropriate 18S RT-

PCR product, but amplicons for the MVX3.6, MVX1.8 and MVX9.4a were not recovered (Fig. 

5.6).  

 

RT-PCR amplicons of ca 582 bp, 907 bp, and 281 bp were recovered for the ARP25014.4 

helicase, RdRp and glycosyltransferase regions, respectively. RT-PCR products were gel 

purified and sequenced directly. A ‘consensus’ sequence of 482 bp from the sequencing 

work was produced for the ARP25014.4 helicase region. The sequence showed 98% similarity 

Fig. 5.5- dsRNA Profile for the 
ARP250 isolate. The ARP250 isolate 
showed the presence of some 
MVXdsRNA-like elements similar to 
MVX16.2a, MVX14.4 (AbEV1), and MVX2.2 
found in MVX-infected cultivated 
mushrooms. These elements have been 
named ARP25016.2, ARP25014.4, and 
ARP2502.2, respectively. None of the other 
MVXdsRNAs-like were found. Lane 1 = 
ARP250 mushroom sample; M1 = 
molecular weight marker (500 bp ladder, 
Invitrogen); M2= molecular weight 
marker (λDNA/HindIII ladder + 100 bp 
ladder, Invitrogen).  
 

      1               M1            M2 

∼ 2.2 kbp 

∼ 14.4 kbp 
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with AbEV1 at the DNA level (Annex 5.1). A mutation from C to T in nt position 404 (aa 

135) results in a mutation in the second position of the translated codon turning the amino 

acid threonine found in AbEV1 into isoleucine in ARP25014.4  (Fig. 5.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.6- RT-PCR screening using the MVXdsRNA Test for ARP250 isolate. The 
ARP250 isolate was found positive only using primers for MVX14.4 (lane 1). Amplicons 
for MVX3.6 (lane 3), MVX1.8 (lane 5), and MVX9.4a (lane 7) were not recovered. The isolate 
yielded the appropriate 18S RT-PCR product (lane 9). A positive control (strain 1283) was 
used for each pair of primers (lanes 2, 4, 6, and 8). Lane 10 = RT-PCR negative control 
(water); M = molecular weight marker (Hyperladder IV, Bioline) 
 

Fig. 5.7 -Pairwise alignment of ARP25014.4 and AbEV1 amino acid sequence in the helicase 
region. The alignment was constructed using the MegAlign package and displayed via 
GENEDOC program. The two sequences share 99% identity. Identities are highlighted in 
yellow, while dissimilarities are highlighted in blue (arrow). ARP250: ARP25014.4   

 

 

300 bp 

600 bp 

  M           1             2            3            4             5             6            7           8            9          10          M         

MVX14.4 MVX3.6 MVX1.8 MVX9.4a       18S 
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This threonine     isoleucine change does not occur in the helicase conserved motifs 

(Section 3.3.2) (Fig. 5.8). Other polymorphisms detected in the DNA sequence would not 

result in any translational change in amino acid residues. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Fig. 5.8 - ARP25014.4 helicase motifs. Multiple alignment of amino acid sequences within the 
conserved helicase motifs II, III, IV (Koonin, 1993) was constructed for 7 endornaviruses, 
including ARP25014.4 using ClustalW algorithm. ARP250: ARP25014.4; CmEV: Cucumis melo 
endornavirus; AbEV1: Agaricus bisporus endornavirus 1; ORV: Oryza rufipogon 
endornavirus; OSV: Oryza sativa endornavirus; PEV1: Phytophthora endornavirus 1; VFV: 
Vicia faba endornavirus. ARP250 sequence showed an isoleucine amino acid (I) in position 
138 which did not match with the AbEV1 threonine in the same position (arrow) 

MOTIF II 

MOTIF III MOTIF IV 
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Sequence similarity was also found for the ARP25014.4 polymerase domain. The region 

amplified (895 bp) through sequencing showed 97% similarity with AbEV1 at the DNA 

level (Annex 5.2). Mutations were homogenously distributed throughout the DNA 

sequence and occurred in the third position of the translated codons resulting in no 

differences (100% similarity) with AbEV1 RdRp amino acid sequence (Fig. 5.9). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 5.9- Multiple alignment of ARP25014.4, AbEV1 and OSV amino acid sequence in the 
RdRp region. The alignment was constructed using the MegAlign package and displayed 
via GENEDOC program. The ARP25014.4 and AbEV1 sequences share 100% identity, while 
the identity is 54% between ARP25014.4 and a different endornavirus such as OSV within the 
RdRp region  
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The amino acid ARP25014.4 deduced sequence exhibited the usual RdRp conserved motifs 

III, IV, V, VI (data not shown, Section 3.3.2). 

 

A ‘consensus’ sequence of 256 bp was produced for the ARP25014.4 glycosyltransferase 

region. The sequence showed 98% similarity with AbEV1 at the DNA level (Annex 5.3) 

and 100% similarity for the deduced amino acid sequence (Annex 5.4).  

 

ARP250 sequences from the ITS region were also obtained. Phylogenetic analyses based 

on ITS sequences of ARP250 isolate and other various wild Agaricus isolates allowed the 

identification of ARP250 isolate as A. bisporus. Isolate ARP250 clustered within the A. 

bisporus clade with 90 % bootstrap support (Fig. 5.10) and showed 100% identity with 

isolate BISP_RWK 1885 (data not shown).  

 

5.3.2 Mushrooms from the Warwickshire 
The two isolates collected in Warwickshire (P44 and W52-B) did not yield any MVX-like 

elements in the RT-PCR screening (data not shown). ITS sequences were obtained for P44 

and W52-B isolates and phylogenetic analyses revealed that P44 was an A. vaporarious 

collection (with 100% bootstrap support) and that W52-B was an A. bisporus collection 

(with 90 % bootstrap support; Fig. 5.10).  
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Fig. 5.10– Phylogenetic tree of Agaricus isolates inferred from ITS sequences. A neighbour-joining phylogenetic tree of ITS sequences was constructed 
using the MegAlign package via ClustalW algorithm. Bootstrap values (% of 1000 resamplings) over 65% are indicated on the branches. ITS sequences of 
isolates ARP250, W52-B, and P44 are compared with established Agaricus ITS sequences (Challen et al., 2003). Isolates ARP250 (highlighted in violet) and 
W52-B (highlighted in torquoise) clustered within the A. bisporus clade with 90 % bootstrap support, whereas the isolate P44 (highlighted in green) clustered 
within A. vaporarious clade with 100% bootstrap support  
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5.4 Discussion  
 

Agaricus bisporus has been cultivated for over a century, first in Europe (primarily France), 

then in eastern North America and most recently in western North America (Petersen & 

Hughes, 1999).  

 

In the present study three different Agaricus collections (isolates P44 and W52-B from the 

UK and isolate ARP250 from California) were identified using phylogeny analysis based 

on ITS sequences. ITS sequences are ribosomal repeat units encoding for ribosomal RNA 

(rRNA). Nuclear RNA genes in fungi are arranged as tandem repeats with several hundred 

copies per genome. In filamentous fungi, each repeat ranges from 7.7 to 12 kbp in size 

(White et al., 1990). Each rRNA repeat unit contains three rRNA genes: the small nuclear 

(18S-like) rRNA, the 5.8S rRNA, and the large nuclear (28S-like) rRNA. Within each 

repeat unit, 5.8S region is flanked by bipartite internal transcribed spacers (ITS), ITS1 and 

ITS2, which separate the 5.8S rRNA gene from the 18S and 28S gene, respectively. Since 

ITS regions tend to be highly polymorphic, they have been used extensively in fungal 

taxonomic and phylogenetic studies (Calvo-Bado et al., 2000). Phylogeny analysis revealed 

that isolates ARP250 and W52-B were A. bisporus collections, whereas isolate P44 was an 

A. vaporarious collection.  

 

RT-PCR screening of the three Agaricus isolates for MVX-like elements revealed the 

presence of AbEV1-like virus only in isolate ARP250. The presence of this element was 

further confirmed through dsRNA profile analysis, showing dsRNA molecules with very 

similar molecular size to those present in cultivated MVX-infected isolates  (16.2 kbp, 14.4 

kbp and 2.2 kbp). Sequence similarity analyses of the 14.4 kbp element (ARP25014.4) found 

in ARP250 isolate showed moderate differences at DNA level (97-100% identity) with 

AbEV1 sequence for conserved domains (helicase, RdRp and glycosyltransferase).  
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It is generally accepted that viruses, especially RNA viruses mutate quite easily since RdRp 

replicate their genome with lower fidelity than DNA polymerase (Wang et al., 2005). It has 

been reported that RNA enzymes are less accurate than DNA enzymes because they lack 

proofreading activities resulting in an error rate of replication several order of magnitude 

higher than that affecting DNA replication (Drake & Holland, 1999). The average mutation 

rate of RNA viruses ranks in the order of 10-4 to 10-5 misincorporation for nucleotide acid 

per round of copying. This means that each daughter genome will contain on average one 

or two mutations when compared to the parental sequence (Batschelet et al., 1976). 

However, due to the degeneracy of the genetic code, mutations of nucleotide bases do not 

always correspond to mutations at amino acid level. ARP25014.4 sequence was highly 

conserved at amino acid level (100% identity) in the ARP25014.4 polymerase and 

glycosyltransferase domains, despite the mutations in DNA sequence. However, one 

mutation appeared in the helicase region showing a change from threonine to isoleucine. 

These two amino acids have quite different properties; threonine is a polar uncharged 

amino acid, isoleucine is a hydrophobic amino acid. The amino acid change did not occur 

in the helicase conserved motifs and would not be expected to play a critical role in enzyme 

function.  

 

Virus isolates, whose genomes differ by 3-4 % have been reported as belonging to the same 

virus species (Schwemmle et al., 1999). Gessain et al. (1993) reported an amino acid 

sequence variability ranging between 3 and 25% for different strains of human T-cell 

leukaemia retrovirus type I. Wild rice endornavirus (ORV) polymerase amino acid 

sequence exhibits 92% identity with the cultivated rice endornavirus (OSV) polymerase 

sequence (this study). The minor difference between AbEV1 and ARP25014.4 suggests that 

these viruses are closely related and that ARP25014.4 may represent a wild accession of 

AbEV1. 

 

The ‘wild’ ARP250 isolate, obtained through the activities of the Agaricus Resource 

Program (Kerrigan, 1991, 1996), was collected near Asilomar, California.  In wild isolates 
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from California, Kerrigan et al. (1995) differentiated two strains based on RFLP patterns. 

One strain, usually found fruiting in lawns, was similar to the commercial strains originally 

domesticated in Europe, whereas the other strain, fruiting at the margin of native woods, 

was unique and probably endemic to California. Other populations of A. bisporus with 

European RFLP patterns have probably escaped from commercial production sources and 

from home compost piles. Very little is known about European and UK wild mushroom 

diversity.  

 

Although it is possible that the presence of ARP25014.4 could have arisen through 

contamination of laboratory cultures, a number of different observations suggest that this is 

not the most likely explanation. The observation that an AbEV1-type RT PCR product 

could be amplified from ARP250 tissue culture derivatives was first made independently in 

an USA laboratory. The USA mushroom industry has not experienced outbreaks of the 

MVX disease and the laboratory concerned did not handle large numbers of MVX infected 

strains (Challen, pers. comm.). Two other wild collections from independent locations in 

Greece have also been found to yield RT PCR amplicons using primers for MVX3.6. Several 

different laboratories have observed that total dsRNA extractions from many different wild 

mushroom collections often reveal very complex dsRNA profiles (Kerrigan, 2004). 

Collectively these observations suggest that it is quite likely that MVXdsRNA elements can 

occur in wild mushroom collections, but screening of nucleic acid preparations isolated 

directly from wild mushroom collections would be required to eliminate chance of 

contamination.    

 

Recently, the ARP25014.4 was transmitted from ARP250 isolate to commercial A. bisporus 

strains through dual culture assay, demonstrating the potential of wild isolates as dsRNA 

donor (Holcroft, pers. comm.). Conversely, no horizontal transmission has been 

demonstrated yet from commercial to wild Agaricus strains (Challen, pers. comm.).        
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Future studies aiming at the screening of further wild Agaricus collections might reveal the 

geographic and genetic diversity of AbEV1-like strains, and provide further insight into the 

origin of MVX infection. Moreover, it would be interesting to extend the screening for 
MVXdsRNAs to other genera since virus transmission through anastomosis has been 

reported between incompatible Heterobasidion annosum isolates (Ihrmark et al., 2002).    
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6. Summary 
This chapter describes experiments carried out to examine homology-dependent gene silencing 

(HDGS) pathways in A. bisporus. ‘Hairpin vectors’ with self-complementary AbEV1 sequences 

were introduced into A. bisporus mushrooms using Agrobacterium-mediated transformation 

technique and recovered transformants screened by PCR and RT-PCR analyses. Progress in the 

development of alternative selectable marker (resistance to phleomycin) for mushroom 

transformation is also described. Furthermore, the effect of different compounds (hygromycin 

and cyclic adenosine monophosphate) on AbEV1 replication has been evaluated.  

 
 

6.1 Introduction 
 
6.1.1 Homology-Dependent Gene Silencing in fungi 
 
During the past decade it has become evident that different organisms can react to the 

introduction of foreign nucleic acids by inducing gene silencing mechanisms that are 

based on the recognition of nucleic acids sequence homology (Meyer & Saedler, 1996; 

Cogoni & Macino, 2000). Gene silencing is achieved via diverse strategies: 

homologous sequences can be inactive at the transcriptional level involving DNA 

methylation (Vaucheret et al., 1998) or at post-transcriptional level involving sequence-

specific RNA degradation/translation repression (Olsen & Ambros, 1999; Heneghan et 

al., 2007). Fungi appear particularly well equipped to fight against parasitic sequences 

(Cogoni & Macino, 1999). In Neurospora crassa at least two gene silencing 

mechanisms exist, quelling and repeat-induced point mutation, which act during the 

vegetative and reproductive cycles respectively.  

 

6.1.1.1 Post-Transcriptional Gene Silencing in fungi 

Quelling is the post-transcriptional gene silencing (PTGS) phenomenon first described 

in N. crassa (Romano & Macino, 1992; Section 1.9). Wild-type (orange) strains of N. 

crassa were transformed with albino (al-1, al-2, al-3) transgenes, required for 

carotenoid biosynthesis. Transformed strains frequently showed white (albino) 

phenotypes, indicating that both the endogenous albino gene and the albino transgene 

were inactivated. Since then, quelling has been observed for several different genes 

(reviewed by Cogoni & Macino, 1997). Analysis of quelled Neurospora albino-1 (al-1) 
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transformants revealed drastic gene-specific reductions in levels of al-1 mRNA. Using 

nuclear run-off assays it was found that quelled strains produce the same amount of al-1 

primary transcript as the wild type strain in the nucleus indicating that quelling does not 

affect transcription, but acts at a post-transcriptional level (Cogoni et al., 1996). 

Quelling is a dominant phenomenon in heterokaryons with nuclei from quelled and 

wild-type strains, suggesting the presence of mobile signal spreading across cells 

(Cogoni et al., 1996).  

 

Studies on quelling-deficient (qde) mutants of N. crassa along with studies on other 

eukaryotes have paved the way for the identification of genes required for PTGS in 

different organisms (Cogoni & Macino, 2000). Homology between the N. crassa qde-1 

gene (Cogoni & Macino, 1999), a tomato gene (Schiebel et al., 1998), the Arabidopsis 

SDE1/SG2 gene (Dalmay et al., 2000; Mourrain et al., 2000), and the C. elegans ego-1 

gene (Smardon et al., 2000) provided the first experimental evidence that PTGS 

phenomena are mechanically related across kingdoms (reviewed by Cogoni & Macino, 

2000). Similarly, the protein product encoded by the second qde gene, qde-2, was 

shown to be a piwi-PAZ domain (PPD or Argonaute) protein (Catalanotto et al., 2000), 

an essential and conserved component of the RNA silencing pathway in a variety of 

eukaryotic organisms. The qde-3 gene encodes a putative RecQ-type DNA helicase 

(Cogoni & Macino, 1999), which has been recently shown to play a role in 

recombination repair (Pickford et al., 2003; Kato et al., 2004). PTGS has also been 

reported in other fungi including fungi from the Ascomycota, Basidiomycota, and 

Zycomycota (Liu et al., 2002; Kadotani et al., 2003; Fitzgerald et al., 2004; Mouyna et 

al., 2004; Rappleye et al., 2004; Hammond et al., 2005) as well as the Oomycota 

(Latijnhouwers et al., 2004). RNA silencing pathways have been reported in fungi 

including Aspergillus nidulans (Hammond & Keller, 2005), Candida albicans (De 

Backer et al., 2001), Coprinus cinereus (Heneghan et al., 2007), Magnaporthe oryzae 

(Kadotani et al., 2003), Neurospora crassa (Romano & Macino, 1992), and 

Schizophyllum commune (de Jong et al., 2006).  
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6.1.1.2 Transcriptional Gene Silencing in fungi 

Repeat-Induced Point Mutation (RIP), a form of transcriptional gene silencing (TGS) 

was characterised in N. crassa (Cambareri et al., 1989; Cambareri et al., 1991). RIP is 

highly regulated, occurring in the premeiotic phase (Selker, 1990) where the two nuclei 

of opposite mating type share a common cytoplasm in dikaryotic cells before 

karyogamy. RIP can inactivate the expression of unpaired DNA sequences in each 

nucleus (reviewed by Nakayashiki, 2005). RIP takes place as mutagenesis of unpaired 

sequences by G: C to A: T transition and methylation of the remaining cytosines (Fig. 

6.1, Selker et al., 1993). A similar phenomenon was discovered in Ascobolus immersus, 

methylation-induced premeiotically (MIP, Rhouhim et al., 1992; Rossignol & 

Faugeron, 1995). MIP also occurs in the sexual phase but involves only DNA 

methylation (Barry et al., 1993), which like RIP inhibits transcription elongation (Fig. 

6.1).   

 

 

 

 

 

 

Fig. 6.1- RIP and MIP gene silencing 
mechanisms. Paired DNA hybrids (b) 
between partially homologous sequences 
are the substrate for specific de novo 
DNA methyltransferases in Ascobolus 
during the methylation induced 
premeiotically process (c) or are 
hypermutagenized by repeat induced 
premeiotically process in Neurospora via 
C to T transitions (d). DNA methylation is 
maintained even in the absence of 
continuous DNA-DNA pairing (e). In 
Neurospora mutagenized sequences (f) 
constitute substrate for methyltransferases 
(g). In both Neurospora and Ascobolus, 
DNA methylation has been demonstrated 
to interfere with transcription elongation 
probably by inducing chromatin 
condensation 
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6.1.2 Gene Silencing as a Virus Resistance Mechanism 

There are a growing number of indications that support the idea that various homology-

dependent gene silencing (HDGS) phenomena correspond to host-defence responses 

against parasitic nucleic acids such as transposons, RNA, or DNA viruses and viroids 

(Baulcombe, 1999; Matzke et al., 2000). Several lines of research indicate that gene 

silencing at PTGS is a general antiviral defence mechanism in plants (reviewed by 

Vance & Vaucheret, 2001) and is considered an RNA-based gene silencing 

phenomenon. The strongest evidence in support of this comes from the silencing of 

RNA viruses performing their life cycle exclusively in the cytoplasm of the host cell 

(Lindbo & Dougherty, 1992). Further support resides in the observations that dsRNA 

molecules are inducers of PTGS in several organisms (Fire et al., 1998; Kennerdell & 

Carthew, 1998; Montgomery et al., 1998; Ngô et al., 1998; Misquitta & Paterson, 1999; 

Sanchez-Alvodoro & Newmark, 1999). Although dsRNA does not naturally occur in a 

cell and is not a product of normal gene expression, it can be produced as a replication 

intermediate form by RNA viruses (reviewed by Fire, 1999).  

 

In the last few decades PTGS has been strongly linked to the historically known 

pathogen-derived resistance (PDR, reviewed by Rovere et al., 2002; Goldbach et al., 

2003; Zadeh & Foster, 2004), which confers protection to plants against viral infections 

by transferring of virus-derived transgene into the plant host. Some of these PDR events 

can be explained at a molecular level by the PTGS phenomenon resulting in the 

degradation of both viral RNA and virus-derived transgene, and resistance of the plant 

to the virus (Baulcombe, 1999). Early in infections, transgene expression is unaffected 

by the virus and the normal viral symptoms are produced. As infection progresses upper 

leaves are free of virus, resistant to secondary viral infection, and contain lower 

concentration of transgene transcript. The plant exhibiting this response is called 

‘recovered’ (Lindbo et al., 1993).    

 

Although PTGS was first described and understood in artificial systems, this 

phenomenon is considered a natural defence mechanism against viral infection and 

transposons mobilization (reviewed by Chicas & Macino, 2001). This notion is 

supported by several observations. Firstly, plants can recover from natural viral 
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infections via a process similar to PTGS (Matthews, 1992; Covey et al., 1997; Ratcliff 

et al., 1997; Al Kaff et al., 1998; Ratcliff et al., 1999). Secondly, the finding that many 

viruses encode proteins that suppress RNA silencing (Beclin et al., 1998; Brigneti et al., 

1998; Baulcombe, 1999) supports indirectly the idea that RNA silencing is a natural 

defence mechanism, which viruses have to counteract (Anandalakshmi et al., 2000). 

Further evidence has come from plant mutants defective in PTGS showing hyper-

susceptibility to virus infection (Mourrain et al., 2000).  

 

No virus system is available for fungi and our understanding of RNA silencing in fungi 

comes primarily from gene expression studies (Cogoni, 2001; Catalanotto et al., 2004; 

Heneghan et al., 2007). Although RNA silencing has not been shown to serve directly 

as an antiviral defence mechanism in fungi, Segers et al. (2006) demonstrated that the 

fungal virus, hypovirus CHV1-EP713 (Section 1.8.5.2) encodes a protein suppressing 

the RNA silencing pathway in Cryphonectria parasitica and in a heterologous plant 

system, providing additional evidence for cross-kingdom conservation of RNA 

silencing mechanisms.  

 

6.1.3 PTGS Viral Suppressors 

The hypothesis that PTGS can form an important part of the innate response was first 

supported by the observation that many plant viruses encode proteins that inhibit PTGS 

(Voinnet et al., 1999). Tomato bushy tombusvirus and Turnip mosaic virus have both 

been shown to encode suppressors of RNA silencing, which reduce cellular antiviral 

effects allowing the respective viruses to accumulate to high titres (Vance & Vaucheret, 

2001; Zamore, 2004; Dunoyer & Voinnet, 2005). Silencing suppressors have also been 

identified for a large number of other plant viruses and a growing number of animal 

viruses, including (+) and (-) ssRNA, and ssDNA viruses (Silhavy & Burgyan, 2004). 

Recently a gene silencing viral suppressor was characterised in the fungal virus, 

Cryphonectria hypovirus 1-EP713 (Segers et al., 2006).  

 

Theoretically, viruses could inhibit RNA silencing by: i) inhibiting viral siRNAs 

generation; ii) interfering with silencing effector complexes; iii) interfering with the 

synthesis of movement silencing signal (Silhavy & Burgyan, 2004). A striking feature 
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of PTGS suppressors is the huge diversity in sequence and structure and their presence 

in virtually any type of virus (reviewed by Moissiard & Voinnet, 2004). Such diversity 

is an example of evolutionary convergence and can be explained by the fact that 

silencing suppressors evolved as an additional feature of unrelated proteins that already 

had diverse functions (reviewed by Moissiard & Voinnet, 2004). Given the diversity in 

sequence of silencing viral suppressors, currently such proteins are best identified 

through functional assays. Because of its simplicity the reversal assay is largely used 

(reviewed by Moissiard & Voinnet, 2004). The virus carrying the putative suppressor 

protein is inoculated into the organism showing silencing for a stably integrated reporter 

gene, e.g. green fluorescent protein (GFP, Fig. 6.2). In the absence of silencing 

suppressor, the silenced GFP phenotype is unaffected. In the presence of a suppressor it 

reverts and GFP is expressed (Voinnet et al., 2000; Dunoyer et al., 2002; Hamilton et 

al., 2002; Bucher et al., 2003;). The reversal assay provides evidence that silencing viral 

suppressors are not sequence specific and interfere with PTGS pathways already 

triggered (Brigneti et al., 1998).  

 

Anandalakshmi et al. (2000) suggested the involvement of calcium in regulating PTGS 

suppression. They identified a cellular PTGS suppressor, which is a plant calmodulin-

related protein functionally similar to the helper component-proteinase (Hc-pro) of 

potyviruses, suppressing PTGS in plants. Since calmodulin and related proteins 

normally act by binding calcium, this finding points to a role for calcium in PTGS 

pathway. 

 

 

 

  

                                                                                                                                                                                                                                                                                                     

 
  
 
 
 

 
 

GFP transgenic      Reversal of silenced  
       silenced 

Fig. 6.2- Reversal GFP assay in plant 
system. In the reversal assay (above panel), 
the Tombusvirus silencing suppressor, p19 is 
expressed from a recombinant PVX vector 
that is inoculated into a silenced green-
fluorescent protein (GFP) transgenic plant. 
The protein p19 leads to the reversal of the 
silencing phenomenon shown in the drawing 
by green fuorescence in the upper leaves. 
(Below panel): (a) leaf of a transgenic plant 
where GFP is uniformly silenced, therefore 
red under UV illumination; (b) initial 
reversal of GFP silencing induced in a new 
emerging leaf by infection of PVX 
expressing the p19 protein (from Voinnet, 
2001)   
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6.1.4 RNA Silencing Technology 
 

Double-stranded RNAs are potent activators of RNA silencing and can be used to 

trigger sequence-specific degradation of target RNAs (Tenllado et al., 2004). Different 

methods can be used to induce RNA silencing depending on the organism to transform: 

i) injection of dsRNA molecules into the organism (Fire et al., 1998; Wang et al., 

2005); ii) soaking the organism in a solution containing the dsRNAs (Tabara et al., 

1998); iii) transformation with transgenes expressing self-complementary RNA 

molecules (Waterhouse et al., 1998; Hamilton et al., 1998). Although RNA silencing is 

still a relatively novel technique (Weld et al., 2006), it has been recently used to down-

regulate genes in filamentous fungi (Nokayashiki, 2005; Heneghan et al., 2007; Section 

6.1.1). One approach is to use ‘hairpin’ vectors, which integrate ectopically. They 

contain regions of the target gene transcribed as self-complementary hairpin structure, 

which comprises a double-stranded loop region and a base-paired stem. This structure 

mimics a dsRNA molecule, which can trigger a RNA silencing mechanism. Hairpin 

constructs have been used to silence gfp gene in various fungi, e.g. Magnaporthe oryzae 

(Kadotani et al., 2003), Venturia inequalis (Fitzgerald et al., 2004), Coprinus cinereus 

(Heneghan et al., 2007). Several fungal endogenous genes have also been silenced, 

including genes involved in fungal virulence (Latijnhouwers et al., 2004; Mouyna et al., 

2004; Rappleye et al., 2004).    

 

In the past decades one of the major technical limitations for this technology has been 

the transformation of fungi. Transformation is a powerful technology whereby genes 

can be transferred within or between different species (Challen et al., 2000). It may 

reduce the need for traditional breeding, enabling direct modification of the genome. It 

can be used to add new genes, delete or modify the expression of existing genes. 

Successful transformation of fungi has been achieved by: i) protoplasts electroporation 

(Ward et al., 1989; Ozaki et al., 1994; Ruiz-Diez and Martinez-Suarez, 1999; Kuo et 

al., 2004; Amey et al., 2002), ii) particle bombardment (Lorito et al., 1993; Parker et 

al., 1995; Davidson et al., 2000; Hazell et al., 2000), iii) and A. tumefaciens-mediated 

transformation (Amey et al., 2002; Michielse et al., 2005; Burns et al., 2006).  
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Application of biotechnology to the basidiomycete A. bisporus was hampered until 

recently by the lack of an efficient transformation system. Although protoplast-based 

transformation was reported for this fungus (van de Rhee et al., 1996a, b), this proved 

relatively ineffective (Challen et al., 2000). It was not until A. tumefaciens mediated-

transformation was developed that an efficient and reproducible method became 

available (de Groot et al., 1998; Chen et al., 2000; Mikosch et al., 2001; Burns et al., 

2005). Agrobacterium-mediated transformation has been shown to produce a 

significantly higher frequency of transformation and more stable transformants in fungi 

(Meyer et al., 2003; Idnurm et al., 2004). Under appropriate conditions, A. tumefaciens 

is able to transfer DNA (T-DNA) to a wide range of fungi and fungal tissues. 

Agrobacterium tumefaciens is a plant pathogen soil-borne bacterium causing the crown 

gall tumor in a wide range of plants (Mikosch et al., 2000). The bacterium transfers a 

part, the T-DNA, of its tumor inducing (Ti) plasmid to plant cells. The T-DNA then 

integrates into the plant nuclear genome. The induction of T-DNA transfer depends on a 

set of virulence (vir) genes, which are located on the Ti plasmid. The vir genes are 

induced by compounds secreted from wounded plant cells, such as acetosyngone (Kado 

et al., 1991). This natural transformation system has been used in plant research for 

more than 25 years and has recently been used to transform filamentous fungi (de Groot 

et al., 1998; Dunn-Coleman and Wang, 1998). Fungi that were recalcitrant to 

transformation by other systems have been successfully transformed by co-cultivation 

with Agrobacterium (Challen et al., 2000; Foster et al., 2004; Mills et al., in press; 

reviewed by Weld et al., 2006).  

 

To date the only successful selective marker for Agrobacterium-mediated 

transformation of A. bisporus is the E. coli hygromycin resistance gene, hph (Burns et 

al., 2006). To progress the development of alternative selective marker for A. bisporus, 

the phleomycin resistance gene (ble, Drocourt et al., 1990) was tested in this project. 

Phleomycin is a glycopeptide antibiotic of the bleomycin family (Gatignol et al., 1988), 

isolated from a mutant strain of Streptomyces verticillus. It binds and intercalates DNA, 

thus destroying the integrity of the double helix. The phleomycin resistance gene was 

initially isolated from the bacterium Streptoalloteichus hindustatus (Drocourt et al., 

1990) and encodes a small protein with strong affinity for the phleomycin antibiotics 
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family (Gatignol et al., 1988). When these antibiotics are bound by the Sh ble proteins, 

phleomycins can no longer be activated by ferrous ions and oxygen to break down DNA 

(Gotignol et al., 1988).  

  

6.2 Materials and Methods 
 

6.2.1 Silencing of Agaricus bisporus endornavirus 1  
A homologous-dependent gene silencing study was carried out using ‘hairpin 

constructs’ with specific sequences from AbEV1. Constructs with AbEV1 self-

complementary sequences were introduced through Agrobacterium-mediated 

transformation into two types of A. bisporus strains: i) AbEV1-infected strains and ii) 

AbEV1-free strains. AbEV1-free transformants were subsequently challenged in an in 

vitro dual-culture assay using an AbEV1 donor. Positive transformants from both sets 

of mushroom strains were screened for the presence of the virus in order to detect 

possible silencing. 

   

6.2.1.1 Mushroom strains 

Gill tissue of two A. bisporus strains was used for fungal transformation. Strain SSI 61 

was obtained from the epidemiological experiment (SSI Experiment) described in 

Section 4.2.1 and was used to produce AbEV1-infected transformants. The commercial 

strain A15 (Section 4.2.1.1) and a carboxin resistant mutant C63-carb422 (Section 

4.2.2.1) were used to produce AbEV1-free transformants. 

 

6.2.1.2 Construction of Silencing Vectors 

Silencing vectors (hairpin vectors) were constructed using the hairpin expression vector 

pRNAiDE001 (Eastwood et al., unpublished; Fig. 6.3), which contained the A. bisporus 

glyceraldehyde-3-phosphate dehydrogenase II (Ab gpdII) promoter (350 bp), 

Aspergillus nidulans tryptophan synthetase (An trpC) terminator (766 bp), Escherichia 

coli uidA (β-glucuronidase, GUS ) intron (325 bp), and an ampicillin resistance gene 

as selectable marker for bacterial cloning. The hairpin cassette was constructed inserting 

twice in opposite orientations (sense and antisense) the same RT-PCR product in order 

to obtain inverted repeats.  
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Fig. 6.3- pRNAiDE001. This plasmid is 4390 bp long and contains an ampicillin resistance 
gene (b-lac) as selectable marker for bacterial cloning. Ab gpdII= Agaricus bisporus gpdII 
promoter, An trpC = Aspergillus nidulans trpC terminator  
 

Three different AbEV1 regions of the RNA-dependent RNA polymerase (RdRp) and 

helicase domains (Section 3.3.2) were recovered using RT-PCR amplification and 

primers (Table 6.1) to introduce appropriate SpeI-BglII and SwaI-AscI restriction sites.  

 

Table 6.1- Primers amplifying the AbEV1 helicase and RdRp regions 

Primer Primer sequence 
Reference: this thesis 

Restriction 
enzymes Product 

Size (bp) 
RNA 

Target Frag 

B3f89ext 

B3r516ext 

5’-GACAAGATCTACTAGT-CGGCCTCGTTACCTTGGTAACTG -3’ 

5’-AGAGGCGCGCCATTTAAAT-TGACGGAGTGTTGGTTCTC -3’ 

BglII/SpeI 

AscI/SwaI 

 

463 

AbEV1 

helicase 
F1 

B3f89ext 

B3r311ext 

5’-GACAAGATCTACTAGT-CGGCCTCGTTACCTTGGTAACTG -3’ 

5’- AGAGGCGCGCCATTTAAAT-CCCGGAATTATGTGTCATCC-3’ 

BglII/SpeI 

AscI/SwaI 

 

258 

AbEV1 

helicase 
F2 

B3f90ext 

B3r522ext 

5’- GACAAGATCTACTAGT-GGCCTCGTTACCTTGGTAATG -3’ 

5’- AGAGGCGCGCCATTTAAAT-ACCATTTGACGGAGTGTTG -3’ 

BglII/SpeI 

AscI/SwaI 

 

468 

AbEV1 

helicase 
F3 

B32793ext 

B3r3317ext 

5’- GACAAGATCTACTAGT-TGCGTGTATGCCGACGGCTTC-3’ 

5’- AGAGGCGCGCCATTTAAAT-CATACTGCCGTCTTGTTGTTGG 

BglII/SpeI 

AscI/SwaI 

 

560 

AbEV1 

RdRp 
F4 

B3f2985ext 

B3r3333ext 

5’- GACAAGATCTACTAGT-CGCAAGACACATGAGAATTGG -3’ 

5’- AGAGGCGCGCCATTTAAAT-AGTCAGGACAGACAGACATAC-3’ 

BglII/SpeI 

AscI/SwaI 
384 

AbEV1 

RdRp 
F5 

B3f2793ext 

B3r3061ext 

5’- GACAAGATCTACTAGT-TGCGTGTATGCCGACGGCTTC -3’ 

5’- AGAGGCGCGCCATTTAAAT-TGTCCAGTGAGACGCATCCAAC-3’ 

BglII/SpeI 

AscI/SwaI 
304 

AbEV1 

RdRp 
F6 

Frag = AbEV1 RT-PCR amplicon; RdRp = RNA-dependent RNA polymerase. Restriction sites 
are underlined in each oligonucleotide 
 

 

 

 

(617 bps)
Bgl II
Spe I

Swa I
Asc I

ASL1seq

DE001_ASL1ab

5566 bps

BamHI
KpnI

NcoI
SpeI

SwaI

AscI
SwaI

SpeI
BglII
BamHI

KpnI

Ab GPD2

ASL1sense

ASL1antisense

An trpC

b-lac

pRNAiDE001

4390 bps
BamHI
KpnI

NcoI
SpeI
SwaI

AscI
BglII
BamHI

KpnI

Ab GPD2

An trpC

b-lac

hph1_ASL1_RNA

9893 bps

BglII
KpnI

SpeI

SwaI

AscI
SwaI

SpeI
BglII

KpnI

SpeI

BglII

LB

Ab GPD2

ASL1seq

ASL1seq

An trpC

An gpdA

hph

An trpC

RB

Npt I

   Ab gpdII 
RT-PCR 

FRAGMENTS 
INSERTION SITES 



Chapter 6            AbEV1 Silencing  
 
 

 140 

Amplified AbEV1 fragments were ligated into pRNAiDE001 plasmid using SpeI-SwaI 

and BglII-AscI restriction digests and cloned into E. coli competent cells (Section 

2.10.1). The overall organization for the hairpin cassette was: Ab gpdII promoter, sense 

AbEV1 insert, spacer (GUS intron), antisense AbEV1 insert, and An trpC terminator 

(see Results, Fig. 6.5). Hairpin expression cassettes were excised by enzymatic 

digestion with KpnI (Roche, cat. No. 899186) and inserted into pGREENhph01 vectors 

(Eastwood et al., unpublished).  

 

The pGREENhph01 vector (Fig. 6.4) comprised a klenow modified 3984 bp BglII-

HindIII AngpdA-hph-AntrpC expression cassette encoding the hygromycin B resistance 

gene, excised from pAN7-1 (Punt et al., 1987), cloned into EcoRV site of pGREENII 

(Hellens et al., 2000). The pGREENhph01 plasmid was linearized and dephosphorilated 

by enzymatic digestion with KpnI and shrimp alkaline phosphatase (Roche, cat. No. 

1758250) respectively. The resulting hairpin constructs were cloned into E. coli 

competent cells (Section 2.10) and purified plasmids were restricted using BglII (Roche, 

cat. No. 348767) to confirm the presence and orientation of inserts.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 6.4- The pGREENhph01. It comprises a klenow modified 3984 bp BglII-HindIII 
AngpdA-hph-AntrpC expression cassette encoding the hygromycin B resistance gene 
 
 

pGREEN_hph01

7292 bps

Bgl II

KpnI
Hin dIII

StuI

EcoRIHIBam

IMlu

IXba
RIEco
HIBam
IXba

IStu
IIBgl

ca.LB

An GPD pro

hph

An trpC ter

ca.RB An gpdA   

An trpC  
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6.2.1.3 Agrobacterium-mediated Transformation of Agaricus  bisporus 
 
Hairpin vectors and the pSOUP helper plasmid (Section 2.11) were co-transformed into 

A. tumefaciens by electroporation (Shen & Forde, 1989; Section 2.11). pGREENhph01 

only was also electroporated into A. tumefaciens to obtain a control strain, NC. Purified 

plasmids (QIAprep Spin Miniprep kit, Qiagen, cat. No. 27106) were digested with BglII 

to assess their integrity and screened by PCR (Section 2.8.2) with appropriate primers 

(Table 6.2).  

 
Table 6.2- Primers amplifying sense and antisense fragments in Agrobacterium 
transformants. Primers amplified either the sense insert by annealing with the gpdII promoter 
and the GUS spacer region, or the antisense insert by annealing with the trpC terminator and the 
GUS spacer region 
 

  

Primers amplified either the sense fragment by annealing with the gpdII promoter and 

the GUS spacer region, or the antisense fragment by annealing with the trpC terminator 

and the GUS spacer (see Results, Fig. 6.5). Primers altHYG1 (5’-

CTCTCGGAGGGCGAAGAATC-3’) and altHYG2 (5’-GGGCGTCGGTTTCCACTA 

TC-3’) amplified the hygromycin resistance cassette giving an amplicon of 987 bp. 

Positive Agrobacterium transformants were cultured and induced for virulence as 

Primer 
Primer sequence 

Reference: this thesis 

Product 

Size (bp) 
DNA Target 

GPDGUS-2210 

GPDGUS-1420 

5’-TTCCGGTCACATCCACCATC-3’ 

5’-CCGGTTCGTTGGCAATACTC-3’ 
724 F1 sense insert 

GUSTRPC-769 

GUSTRPC-1433 

5’-TGCCAACGAACCGGATACCC-3’ 

5’-GCGGTCGGCATCAGATCTAC-3’ 
598 F1 antisense insert 

GPDGUS-2210 

GPDGUS-1420 

5’-TTCCGGTCACATCCACCATC-3’ 

5’-CCGGTTCGTTGGCAATACTC-3’ 
519 F2 sense insert 

GUSTRPC-769 

GUSTRPC-1433 

5’-TGCCAACGAACCGGATACCC-3’ 

5’-GCGGTCGGCATCAGATCTAC-3’ 
393 F2 antisense insert 

GPDGUS-2210 

GPDGUS-1420 

5’-TTCCGGTCACATCCACCATC-3’ 

5’-CCGGTTCGTTGGCAATACTC-3’ 
645 F5 sense insert 

GUSTRPC-769 

GUSTRPC-1433 

5’-TGCCAACGAACCGGATACCC-3’ 

5’-GCGGTCGGCATCAGATCTAC-3’ 
519 F5 antisense insert 

GPDGUS-2210 

GPDGUS-1420 

5’-TTCCGGTCACATCCACCATC-3’ 

5’-CCGGTTCGTTGGCAATACTC-3’ 
565 F6 sense insert 

GUSTRPC-769 

GUSTRPC-1433 

5’-TGCCAACGAACCGGATACCC-3’ 

5’-GCGGTCGGCATCAGATCTAC-3’ 
439 F6 antisense insert 
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described in Section 2.14.1. Induced Agrobacterium transformants were used for gill 

tissue transformation of AbEV1-infected and AbEV1-free mushroom strains as 

described in Section 2.14.2. Agaricus gill tissue was cultured on MPA supplemented 

with 200 µg/ml cefotaxime and 25 µg/ml hygromycin for 2 weeks at 25º C and then 

MPA supplemented with 25 µg/ml hygromycin for another 3 weeks. 

    

6.2.1.4 Analysis of Putative Agaricus Transformants 

Putative Agaricus transformants were recovered and assessed by PCR for presence of 

transgene using the appropriate primers already used for Agrobacterium transformants 

screening (Section 6.2.1.3) after DNA extraction (Chelex method, Section 2.5.3). PCR 

screening was performed according to the protocol reported in Section 2.8.2. 

 

6.2.1.5  Virus Inoculation 

In vitro dual-culture anastomoses were set up in duplicates between AbEV1-free 

transformants and an AbEV1 donor strain (SSI 61) on CE/CYM medium for 60 days as 

described in Section 4.2.2.2. Transformants were also challenged with the AbEV1-free 

donor, A15 as negative control.  

 

The dual-culture challenge was replicated twice for all transformants. Subculture 

isolations from the carboxin resistance acceptors (C63-carb422) were also tested on 

CE/CYM medium supplemented with carboxin (15 µg/ml) to confirm the integrity of 

acceptor strain.  

  

6.2.1.6 Analysis of Hairpin Expression and Viral RNA 

Transcript analyses were conducted on Agaricus transformants. Total RNA was 

extracted from samples by TRI-Reagent method (Section 2.5.2) and then subjected to 

DNase treatment (Section 2.7) to remove any traces of contaminating DNA. 

Transformants were screened by RT-PCR (Section 2.8.1 and 2.8.2) for expression of the 

hairpin construct using the appropriate primers (Table 6.3), which spanned the spacer 

and the specific AbEV1 insert. Given the difficulties to detect the hairpin transcript a 

second pair of primers (PTGS-1118, 5’-GTTGGATGCGTCTCACTG -3’; PTGS-

1393c, 5’-TACTGCCGTCTTGTTGTTGG-3’) targeting only the viral insert of 
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fragment 5 (F5) was designed to yield a RT-PCR product of 276 bp. Primers altHYG1 

(5’-CTCTCGGAGGGCGAAGAATC-3’) and altHYG2 (5’-GGGCGTCGGTTTCCAC 

TATC-3’) amplified the hygromycin resistance cassette giving an amplicon of 987 bp.  

 
Table 6.3- Primers amplifying the hairpin cassette in Agaricus Transformants. Primers 
annealing with the GUS spacer region and AbEV1 inserts  
 

 

AbEV1-free transformants were screened for the expression of hairpin construct before 

and after the in vitro dual-culture challenge. Absence of contaminating DNA was 

confirmed using primers for the A. bisporus succinate dehydrogenase gene (sdh), 

SDHF1 (5’-AGTGCATTCTCTGCGCTTGT-2’) and SDHR1 (5’-TTGCGTTGAGCAC 

CATGAGT-3’), designed around the intron sdh gene to differentiate 194 bp genomic 

DNA products from 137 bp cDNA amplicons. In some cases results were confirmed 

using RT-PCR analysis with 100 µM primer concentration when 10 µM primers 

concentration did not show any detectable amplicon.   

 

To determine whether AbEV1 was silenced in Agaricus transformants total RNA was 

extracted using the Tri-Reagent method (Section 2.5.2). RT-PCR screening was 

Primer 
Primer sequence 

Reference: this thesis 

Product 

Size (bp) 
RNA Target 

PTGS-2792c 

GPDGUS-1420 

5’-CCTCGTTACCTTGGTAACTG -3’ 

5’-CCGGTTCGTTGGCAATACTC-3’ 
653 F1 sense insert 

GUSTRPC-769 

PTGS-1583 

5’-TGCCAACGAACCGGATACCC-3’ 

5’-CCTCGTTACCTTGGTAACTG -3’ 
571 F1 antisense insert 

PTGS-2792c 

GPDGUS-1420 

5’-CCTCGTTACCTTGGTAACTG -3’ 

5’-CCGGTTCGTTGGCAATACTC-3’ 
448 F2 sense insert 

GUSTRPC-769 

PTGS-1583 

5’-TGCCAACGAACCGGATACCC-3’ 

5’-CCTCGTTACCTTGGTAACTG -3’ 
366 F2 antisense insert 

PTGS-1118 

GPDGUS-1420 

5’-GTTGGATGCGTCTCACTG -3’ 

5’-CCGGTTCGTTGGCAATACTC-3’ 
522 F5 sense insert 

GUSTRPC-769 

PTGS-2066 

5’-TGCCAACGAACCGGATACCC-3’ 

5’-AGTTGGATGCGTCTCACTG -3’ 
441 F5 antisense insert 

PTGS-1118 

GPDGUS-1420 

5’-GTTGGATGCGTCTCACTG -3’ 

5’-CCGGTTCGTTGGCAATACTC-3’ 
250 F6 sense insert 

GUSTRPC-769 

PTGS-2066 

5’-TGCCAACGAACCGGATACCC-3’ 

5’-AGTTGGATGCGTCTCACTG -3’ 
169 F6 antisense insert 
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performed according to the protocol reported in Section 2.8.1 and 2.8.2, using primers 

B3198f2 and B3198r2 (Section 2.8.3), which enabled to discriminate the AbEV1 

sequence from the hairpin construct. Absence of contaminating DNA was assessed by 

screening for A. bisporus sdh gene as described above. In some cases it was necessary 

to use 100 µM of primer concentration during the RT-PCR analysis rather than the 

usual 10 µM primer concentration.  

 

6.2.1.7 Quantitative Evaluation of AbEV1 Silencing and Hairpin Expression 

Quantification of the viral RNA was assessed by Reverse Transcription and 

Quantitative PCR (RT-qPCR) in AbEV1-free transformants after the challenge with 

AbEV1 donor. Quantification of hairpin transcripts was assessed by RT-qPCR in 

AbEV1-free transformants before and after the challenge with AbEV1 donor. Total 

RNA from all transformants was obtained as described in Section 2.5.2 and cDNA 

synthesised (Section 2.8.1) using Superscript™ II Reverse Transcriptase (200 U/µl, 

Invitrogen cat. No.18064-022) instead of Thermoscript™ RT.  

 

qPCR reactions were performed using the SYBR Green I technology. To detect the 

AbEV1 RNA, qPCR primers (Table 6.4) amplifying a region distinct from the hairpin 

sequence were designed. These primers spanned the AbEV1 helicase region. qPCR 

detection of the hairpin was also performed using primers annealing with the ‘antisense’ 

transcript in the region between the AbEV1 insert and the trpC terminator.  

 

Table 6.4- Primers used for the qPCR screening 

Primer 
Primer sequence 

Reference: this thesis 

Product 

Size (bp) 
RNA Target 

Hel-f469 

Hel-r578 

5’-ACCGTTCACAGTTACCAAGGT-3’ 

5’-GCGGCTGAGATCACATACTTT-3’ 
110 

AbEV1 helicase 

RNA 

F1-f107 

F1-r184 

5’-GTAACGAGGCCGACTAGTAGATCTG-3’ 

CGTCAAGCTGTTTGATGATTTCAG-3’ 
78 

F1 antisense 

transcript 

F5-f84 

F5-r160 

5’-CGTCAAGCTGTTTGATGATTTCA-3’ 

5’-TGTGTCTTGCGACTAGTAGATCTGATG-3’ 
77 

F5 antisense 

transcript 

F18S 

R18S 

5’-ACGAACGAGACCTTAACCTGC-3’ 

5’-GACGCTGACAGTCCCTCTAAGAA-3’ 
78 18S rRNA 
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Primers were designed using the Primer Express package (Applied Biosystem PRISM, 

version 2.0). Quantification was performed against an external standard curve (Ingham 

et al., 2001), made with a serial dilution (1, 1/4, 1/16, 1/64) of either a control 

transformant (non-silenced) or a non-transformed sample for detection of the AbEV1 

silencing, or a plasmid containing the hairpin construct for detection of hairpin 

cassettes. Expression of target genes were normalized against the endogenous A. 

bisporus 18S rRNA (F18S and R18S primers, Table 6.4). Reactions to amplify AbEV1 

helicase RNA and 18S rRNA were performed simultaneously.  

 

qPCR reactions were prepared in 15 µl reaction volumes: 2x qPCR Mastermix 

(Eurogentec, cat. No. RT-SN2x-03WOU+), 0.75 µl of each primer (10 µM), and 3 µl 

diluted cDNA (1:3). Two replicates of each sample were aliquoted in 384-well reaction 

PCR microplates (Axygen Scientific, cat. No. 3212905) and the plate sealed with 

optically clear heat seal film (Applied Biosystems, cat. No. 4314320).  

 

qPCR reactions were performed using the ABI PRISM 7900HT Sequence Detection 

System (Perkin Elmer-Applied Biosystem) according to the following parameters: 

initial denaturation at 50° C for 2 min; 95° C for 10 min; followed by 40 cycles of 95° C 

for 15s, 60° C for 1 min; and a final dissociation stage of 95° C for 15s, 60° C for 15s 

and 95° C for 15s. Negative controls (water and non-transformed A. bisporus) were 

included in each experiment. Two independent RNA extractions were performed for 

each transformant tested. For the AbEV1 silencing assay RNA was extracted from two 

independent dual-culture anastomosis challenges. 

   

6.2.2 Antiviral compounds  
Two hygromycin resistant transformants, SSI61_NC_10 and SSI61_NC_1 (control 

transformants of AbEV1-infected Agaricus strain, cultured on hygromycin selective 

medium for 30 days, Section 6.2.1.4) were used to determine whether hygromycin had 

an effect on virus replication. Transformant SSI61_NC_10 was positive for AbEV1, 

whereas SSI61_NC_1 was negative for AbEV1 using RT-PCR screening after 30 days 

culture on MPA supplemented with 25 µg/ml hygromycin (Results, Section 6.3.1.2). 

Both transformants were cultured for further 60 days in duplicate on MPA and 
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CE/CYM media, with and without 25 µg/ml hygromycin. Total RNA was then 

extracted by Tri-Reagent (Section 2.5.2), and subjected to RT-PCR (Section 2.8.1 and 

2.8.2) using primers B3c198_f2 and B3c198_r2, and primers AB18S_f1 and AB18S_r1 

to screen for the presence of AbEV1 RNA and 18S rRNA, respectively (Section 2.8.3).  

 

Similarly, to determine if 3’: 5’-cyclic adenosine monophosphate (cAMP, Sigma, cat. 

No. 6885) induced any MVX defence response, A. bisporus MVX-infected isolates (SSI 

61 and 1283 strains, Section 4.2.1.2) were cultured on CE/CYM medium with and 

without cAMP (1mM) for 3 months in triplicate. Isolations of the two cultures were 

then transferred onto CE/CYM with and without 8-bromoadenosine 3’: 5’-cyclic 

monophosphate (Br-cAMP, 10 µM, Sigma-Aldrich, cat. No. B77880) for a further 3 

months. Total RNA was extracted by Tri-Reagent (Section 2.5.2) and subjected to RT-

PCR (Section 2.8.1 and 2.8.2) periodically (2, 4, and 6 months) to screen for the 

presence of AbEV1 RNA, 3.6 kbp dsRNA, and 18S rRNA using the following primer 

combinations: B3c198_f2 and B3c198_r2; B15c35_f1 and B15c35_r1; and AB18S_f1 

and AB18S_r1 (Section 2.8.3).  

 

6.2.3 Phleomycin Resistance Marker 
 

6.2.3.1 Phleomycin Sensitivity Test 

To determine the sensitivity of A. bisporus to phleomycin, sensitivity tests were 

performed. Mycelium and gill tissue of strain A15 (Section 4.2.1.1) were cultured on 

MPA and CE/CYM supplemented with phleomycin at different concentrations (25 

µg/ml, 50 µg/ml, 100 µg/ml, 200 µg/ml, and 250 µg/ml) for 30 days. Gill tissue was 

also cultured on MM and MPA medium (also supplemented with cefotaxime, 200 

µg/ml), both amended with phleomycin at the different concentrations (50 µg/ml, 100 

µg/ml, 200 µg/ml, and 250 µg/ml). 

 

6.2.3.2 Construction of Phleomycin Resistance Vector  

The phleomycin resistance (phleoR) cassette was excised from the plasmid FHJS3 

(Shuren et al., unpublished) and introduced into pGREENII (Section 2.10.2). To 

accomplish the cloning of the phleomycin resistance cassette some vector sequencing 
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was required. Primers (Table 6.5) were designed for the Sh ble gene (EMBL X52869) 

and used for direct sequencing (Section 2.12.2) of pFHJS3. Sequence similarity analysis 

revealed the organization of the phleomycin resistance cassette for pFHJS3. The 

phleomycin resistance cassette was excised using KpnI and NsiI (Promega, cat. No. 

R6531), and cloned into KpnI-PstI-restricted pGREENII vector, purified from E. coli 

SCS110 competent cells (Section 2.4.1) The resulting construct, pGREENphleo, was 

cloned into DH5α or XL1-blue E. coli competent cells. Clonal inserts were confirmed 

using PCR (Section 2.8.2) performed at 58° C (annealing temperature), using primers 

(FHJS3-1014, 5’-AAGTTGACCAGTGCCGTTCC-3’; FHJS3-1305 5’-CCACGAAGT 

GCACGCAGTTG-3’) that amplified the phleomycin resistance cassette and yielded a 

352 bp PCR product.  

  

Table 6.5- Primers used to generate sequences of the phleomycin resistance 
cassette from pFHJS3  

 
Primer 

Primer sequence 

Reference: this thesis 

Phlc24 5’-AACGGCACTGGTCAACTTGG-3’ 

Phl347 5’-TGCACTTCGTGGCCGAGGAG-3’ 

Phl336 5’-CGGCAACTGCGTGCACTTCG-3’ 

Phl523 5’-TGCTTCCGGCTCGTATGTTG-3’ 

Phl421 5’-GGATCTCCGAGTCCAATGTC-3’ 

 

 

6.2.3.3 Agrobacterium-mediated Transformation for the phleoR construct 

pGREENphleo and pSOUP were co-transformed into A. tumefaciens by electroporation 

(Section 2.11). Plasmid integrity was assessed by PCR screening using primers FHJS3-

1014 and FHJS3-1305 (Section 6.2.3.2). Positive Agrobacterium transformants were 

cultured and induced for virulence as described in Section 2.14.1. Induced Agrobacteria 

containing the phleomycin resistance constructs were used for gill tissue transformation 

(Section 2.14.2) of mushroom strain A15 (Section 4.2.1.1). Agaricus gill tissue was 

transferred onto MPA supplemented with 200 µg/ml cefotaxime and phleomycin at 

various concentrations (50 µg/ml, 100 µg/ml, 150 µg/ml, and 200 µg/ml). 
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6.3 Results 
 

6.3.1 Silencing of AbEV1  
A total of 10 hairpin constructs were obtained by cloning in opposite orientations, 

sequences from the AbEV1 helicase or RNA-dependent RNA polymerase (RdRp) 

domains (Table 6.6). The hairpin expression cassette driven by the A. bisporus gpdII 

promoter could be in a unidirectional or divergent orientation with respect to the hph 

gene (Fig. 6.5). A total of 6 hairpin constructs (RNAi_F1U, RNAi_F1D, RNAi_F2U, 

RNAi_F5U, RNAi_F5D, and RNAi_F6U) were introduced into A. tumefaciens via 

electroporation. An empty construct (RNAi _NC), containing only the hygromycin 

resistance (hygR) cassette was also transformed into Agrobacterium as negative control. 

 

Table 6.6- Hairpin constructs. Hairpin constructs were obtained inserting twice in opposite 
orientations sequences from the AbEV1 helicase or RdRp domains 
 

CONSTRUCT VIRAL INSERT HAIRPIN ORIENTATION 

RNAi_F1U*1 AbEV1 helicase unidirectional 

RNAi_F1D* AbEV1 helicase divergent 

RNAi_F2U* AbEV1 helicase unidirectional 

RNAi_F2D AbEV1 helicase divergent 

RNAi_F3U AbEV1 helicase unidirectional 

RNAi_F4U AbEV1 RdRp unidirectional 

RNAi_F4D AbEV1 RdRp divergent 

RNAi_F5U* AbEV1 RdRp unidirectional 

RNAi_F5D*1 AbEV1 RdRp divergent 

RNAi_F6U* AbEV1 RdRp unidirectional 

RNAi_NC*1 empty - 

* = construct introduced into A. tumefaciens; *1 = construct introduced into A. tumefaciens and 
used for A. bisporus gill tissue transformation; RdRp = RNA-dependent RNA polymerase; - = 
absence  

 

6.3.1.1 Hairpin constructs into AbEV1-free strains 

Two Agaricus AbEV1-free strains (C63-carb422 and A15) were infiltrated with cultures 

of A. tumefaciens transformants carrying one of the following hairpin constructs: 

RNAi_F1U, RNAi_F5D, or RNAi_NC. Agroinfiltrated gill tissue showed selective 

mycelial growth according to the transformation efficiency rate (Table 6.7). 
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Fig. 6.5- Unidirectional or divergent hairpin construct. The hairpin expression cassette 
driven by A. bisporus gpdII promoter could be in a unidirectional (A) or divergent orientation 
(B) with respect to the hph gene 
 

Strain C63-carb422 showed an initial general growth on hygromycin selective medium 

(Fig. 6.6), followed by further growth of a limited number of putative transformants 

(Table 6.7).  
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Table 6.7- Recovery of hygromycin resistant (hygR) colonies from AbEV1-free strain  
 

Transformant Name 
(transformed strain_construct) 

Putative Transformant 
(hygR colonies /gill tissue pieces) 

 

Transformation 
Efficiency 

c63carb_F1U 0/100 0% 

c63carb_F5D 9/99 9% 

c63carb_NC 7/100 7% 

A15_F1U 5/101 5% 

A15_F5D 4/99 4% 

A15_NC 5/100 5% 

 

 
Fig. 6.6- Hygromycin resistant colonies. Agroinfiltrated gill tissue of Agaricus strain C63-
carb422 showed an initial general growth after 4 weeks on hygromycin selective medium (right) 
compared to the non-transformed control (left), followed by a further growth only of a limited 
number of putative transformants 
 

Putative hygromycin resistant (hygR) transformants were tested by PCR for presence of 

the hairpin cassette and/or hygromycin resistance cassette. PCR screening confirmed the 

presence of hygR cassette for all hygR colonies (30 hygR transformants out of 599 

agroinfiltrated gill tissue pieces). From 18 hygR colonies tested, 4 (2 from C63-carb422 

Agaricus strain and 2 from the A15 Agaricus strain) contained the AbEV1 RdRp-

hairpin cassette, whereas 4 (from A15 transformed strain only) contained the AbEV1 

helicase-hairpin cassette (Table 6.8). A total of 12 control transformants contained only 

the hygR cassette as expected. 
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Table 6.8- Putative AbEV1-free transformants screened by PCR for the presence of 
hairpin and hygromycin resistance (hygR) cassettes 
 

Transformant Name 
(transformed strain_construct) 

Positive Transformant 
(hairpin construct / hygR tested) 

 

HygR cassette 
(hygR tested/ hygR colonies) 

 

c63carb_F5D 2/9 9/9 

c63carb_NC - 7/7 

A15_F1U 4/5 5/5 

A15_F5D 2/4 4/4 

A15_NC - 5/5 

- = undetectable  
 
 
RT-PCR screening of total RNA extracted from Agaricus transformants confirmed the 

expression of hygR cassette for all transformants (Fig. 6.7), but did not reveal expression 

of the hairpin constructs using primers spanning the hairpin cassette or primers targeting 

only the viral insert (Fig. 6.8).   

 

 

 

 

 

 
Fig. 6.7- RT-PCR screening for the expression of the hygR cassette. M = hyperladder IV 
(Bioline), lane 1-8 = putative transformants selected on hygromycin selective medium, NC = 
RT-PCR negative control (water). Transcripts of the hygromycin resistant cassette were 
detectable in all transformants 
   

 

 
Fig. 6.8- RT-PCR screening for expression of the hairpin cassette. M = hyperladder IV 
(Bioline), lane 1-3 = hygR transformants F5D screened for the sense insert, lane 4-6 = hygR 
transformants F5D screened for the anti-sense insert, PC1 = RNAi_F5D plasmid used as PCR 
positive control, PC2 = RNAi_F5D plasmid used as PCR positive control, NC = RT-PCR 
negative control (water). Transcripts of the hairpin cassette were not detectable in any 
transformants 

      1           2               3              4               5               6              7               8            NC            M 

987 bp 

700 bp 

       M         1          2             3             PC1           4              5             6          PC2        NC            M 
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There was also no detectable expression of the hairpin construct using RT qPCR (Fig. 

6.9; Annex 6.1).  

 
Fig. 6.9- RT-qPCR detection of the AbEV1 helicase-hairpin cassette. Relative quantification 
was obtained normalising the targeted insert (F1) with 18S rRNA. RNAi_F1U plasmid was 
used as reference for the relative quantification of the hairpin cassette, whereas the control (non-
silenced) transformant, NC_1 (containing only the hygR cassette) was used as negative control. 
Some transformants (F1U_1, F1U_2, F1U_3, and F1U_4) were screened before the dual-culture 
challenge with AbEV1 and others (F1U_2 x SSI61 and F1U_4 x SSI61) after. All transformants 
showed no detectable transcript of the hairpin cassette compared to the reference (RNAi_F1U 
plasmid)  
 
 
Following infection with AbEV1 through in vitro dual-culture anastomosis, 

transformants were screened for the presence/absence of the virus by RT-PCR. 

Although all control transformants were positive for AbEV1 by RT-PCR, a total of 63% 

(5/8) transformants carrying the viral construct did not show detectable AbEV1 RNA 

(Table 6.9) after dual-culture challenge with AbEV1 donor. From 4 transformants 

harbouring AbEV1 RdRp-hairpin construct, 2 (50%) had no detectable virus. From 4 

transformants harbouring AbEV1 helicase-hairpin construct, 3 (75%) had no detectable 

virus (Fig 6.10). All templates produced a 137 bp-RT PCR product for the sdh gene 

confirming RNA presence (Fig. 6.11).  

 

When AbEV1-free transformants were challenged through in vitro dual-culture 

anastomoses with Agaricus strain A15 (control), none exhibited AbEV1 RT-PCR 

products as expected (data not shown). Using RT-qPCR analysis reduction of AbEV1 

RNA was observed for transformants where AbEV1 was not detectable by RT-PCR.  
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Table 6.9- Summary of Agaricus Transformant Screening. After challenging AbEV1-free 
transformants with a virus donor, RT-PCR screening was carried out to detect the presence of 
AbEV1.  RNA quality was assessed using primers discriminating between the endogenous 
succinate dehydrogenase (sdh) gene and the sdh transcript. Although control transformants 
(c63carb_NC and A15_NC transformants) were all positive for AbEV1 RNA, 5 (1 from C63-
carb422 Agaricus strain and 4 from the A15 Agaricus strain) out of 8 transformants carrying the 
hairpin construct had no detectable AbEV1 (bold) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.10-RT-PCR screening of AbEV1 sequence in transformants (strain A15) following 
dual-culture anastomosis. From 4 transformants strain A15 (lane 3-6) harbouring the AbEV1 
helicase-hairpin construct, 3 (lane 3, 4, and 6) had no detectable virus. One transformant (lane 
5) showed an extremely faint detectable signal. From 2 transformants strain A15 (lane 7 and 8) 
harbouring AbEV1 RdRp-hairpin construct, 1 (lane 7) had no detectable virus. Control 
transformants (lane 1 and 2) showed a strong signal for AbEV1 sequence. M = hyperladder IV 

Transformant Name 
(transformed strain_construct_n.) 

AbEV1 RNA sdh transcript 

c63carb_F5D_4 + + 

c63carb_F5D_9 - + 

c63carb_NC_2 + + 

c63carb_NC_3 + + 

c63carb_NC_4 + + 

c63carb_NC_5 + + 

c63carb_NC_6 + + 

c63carb_NC_7 + + 

c63carb_NC_8 + + 

A15_F1U_1 - + 

A15_F1U_2 - + 

A15_F1U_3 + + 

A15_F1U_4 - + 

A15_F5D_1 - + 

A15_F5D-2 + + 

A15_NC_1 + + 

A15_NC_2 + + 

A15_NC_3 + + 

A15_NC_A + + 

A15_NC_M + + 

             M          1          2           3     4  5            6          7          8     PC      NC 

315 bp 
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(Bioline), lane 1 = control transformant 1, lane 2 = control transformant 2, lane 3 = A15_F1U_1 
transformant, lane 4 = A15_F1U_2 transformant, lane 5 = A15_F1U_3 transformant, lane 6 = 
A15_F1U_4 transformant, lane 7 = A15_F5D_1 transformant, lane 8 = A15_F5D_2 
transformant, lane PC = RT-PCR positive control (strain SSI 61), lane NC = RT-PCR negative 
control (water) 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.11-RT-PCR screening of sdh gene in transformants (strain A15). All templates 
contained RNA in higher amount (137 bp band) compared to DNA (194 bp band). M = 
hyperladder IV (Bioline), lane 1 = control transformant 1, lane 2 = control transformant 2, lane 
3 = A15_F1U_1 transformant, lane 4 = A15_F1U_2 transformant, lane 5 = A15_F1U_3 
transformant, lane 6 = A15_F1U_4 transformant, lane 7 = A15_F5D_1 transformant, lane 8 = 
A15_F5D_2 transformant, lane 9 = RT-PCR positive control (strain SSI 61), lane PC = A. 
bisporus strain A15 DNA, lane NC = RT-PCR negative control (water)  
 
 
A relative reduction of 100% was observed for two transformants (A15_F1U_1 and 

A15_F5D_1). In the other two transformants (A15_F1U_2 and A15_F1U_4) there was ca. 

81-84% reduction of AbEV1 amplicon (Annex 6.2) compared to the control 

transformant (with no hairpin construct; Fig. 6.12). The non-transformed strain A15 did 

not show any detectable AbEV1 signal in the RT-qPCR screening as expected. 

 

 
 Fig. 6.12- Relative quantification of AbEV1 in Agaricus transformants. Relative 
quantification was obtained by normalising the AbEV1 RNA with 18S rRNA in Agaricus 

             M          1        2          3           4          5          6          7          8           9        PC      NC       M 
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transformants strain A15. The control transformant NC_1 was used as reference for the virus 
quantification in transformants (F1U_1, F1U_2, F1U_4, and F5D_1) after the in vitro dual-
culture challenge with AbEV1 donor. AbEV1 RNA was also quantified in the AbEV1 donor 
(SSI 61) and in the non-transformed strain A15 (negative control).  
 

6.3.1.2 Hairpin constructs into AbEV1-infected strains 

To test whether hairpin construct could interfere with AbEV1 replication once the viral 

infection is already established, the AbEV1-infected strain SSI 61 was also transformed 

with the AbEV1 helicase-construct. The empty pGREEN-hph01 vector was used as 

control transformant (NC). The recovery of transformants using this Agaricus strain 

proved relatively efficient (Table 6.10). A total of 20 putative hygR colonies 

transformed with SSI61_F1U construct were selected to be PCR screened for the 

presence of hairpin and hygR cassettes. Of these, 11 showed the presence of the entire 

hairpin cassette (sense and anti-sense fragments). 

 
Table 6.10- Recovery of hygromycin resistant (hygR) colonies from AbEV1-infected transformants 
 

Transformant Name 
(transformed strain_construct) 

Putative Transformant 
(hygR colonies /gill tissue pieces) 

 

Transformation 
Efficiency 

SSI61_F1U 65/99 66% 

SSI61_NC 40/103 40% 

 

The control transformants (SSI 61_NC) showed only the presence of the hygR cassette 

as expected. AbEV1 was not detectable by RT-PCR in 6 of these 11 transformants 

(Table 6.11). Several control transformants (6/20) also did not yield the expected viral 

amplicon (Fig. 6.13) suggesting instability of AbEV1 through the transformation 

procedure.  

 
Table 6.11- Putative AbEV1-infected transformants screened by PCR for the presence of 
hairpin and hygR cassettes. A total of 11 out of 20 hygR transformants showed the presence of 
the entire hairpin cassette (sense and anti-sense fragments) by PCR. The control transformants 
showed only the presence of hygR cassette 
 

Transformant Name 
(transformed strain_construct) 

Hairpin cassette 
(hairpin construct / hygR tested) 

 

Hygromycin cassette 
(hygR tested/ hygR colonies) 

SSI61_F1U 11/20 20/20 

SSI61_NC - 20/20 

- = undetectable  
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Fig. 6.13- RT-PCR screening of AbEV1 in AbEV1 infected-transformants (experiment I). 
Unexpectedly, not all control transformants (SSI61_NC_1, SSI61_NC_4, SSI61_NC_5, 
SSI61_NC_6, SSI61_NC_7, and SSI61_NC_8) showed the presence of AbEV1. M = 
hyperladder IV (Bioline), lane 1-8 = control transformants from SSI61_NC_1 to SSI61_NC_8, 
lane PC = RT-PCR positive control (strain SSI 61), lane NC = RT-PCR negative control (water)  
 

Control transformants were cultured for a further one month on selective medium and 

re-screened for AbEV1. Surprisingly, AbEV1 was not detectable in two additional 

control transformants after the second screening (Fig. 6.14), although total RNA was 

present in all samples (Fig. 6.15). Although hygR transcript was detectable in all 

transformants, no expression of the hairpin cassette was detected (data not shown). 

 

 

 

  

 

 
 
 
 
 
Fig. 6.14-RT-PCR screening of AbEV1 in AbEV1 infected-transformants (experiment II). 
Unexpectedly, all control transformants (SSI61_NC) previously screened (see Fig. 6.13) were 
negative to the presence of AbEV1 when screened a month later. M = hyperladder IV (Bioline), 
lane 1-8 = control transformants from SSI61_NC_1 to SSI61_NC_8, lane PC = RT-PCR positive 
control (strain SSI 61), lane NC = RT-PCR negative control (water)  
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Fig. 6.15- RT-PCR of the sdh gene in AbEV1 infected-transformants (experiment II). All 
samples contained RNA in higher amount (137 bp band) compared to DNA (194 bp band). M = 
hyperladder IV (Bioline), lane 1-8 = control transformants from SSI61_NC_1 to SSI61_NC_8, 
lane 9 = RT-PCR positive control (strain SSI 61), lane PC = A. bisporus strain A15 DNA, lane 
NC = RT-PCR negative control (water)  
 

6.3.2 Effect of hygromycin and cAMP on AbEV1 replication 
To investigate whether the hygromycin was interfering with AbEV1 replication two 

hygromycin resistant (hygR) transformants (SSI61_NC_10 and SSI61_NC_1) were 

cultured for 60 days on medium with and without hygromycin. Hygromycin 

transformants showed undetectable virus when cultured on medium supplemented with 

hygromycin, whereas showed detectable virus in antibiotic absence. Intriguingly, the 

transformant SSI61_NC_1, negative for AbEV1 (Section 6.2.2) appeared to regain the 

virus when cultured in the absence of antibiotic (Fig. 6.16).   

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.16-RT-PCR screening of AbEV1 for the Hygromycin Test. The hygR transformant 
SSI61_NC_1 (negative for AbEV1 after 30 days-culture on MPA supplemented with 
hygromycin) showed poor or undetectable signal of AbEV1 (above photo) when cultured for 60 
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days on MPA medium (lane 1) and CE/CYM medium (lane 3) supplemented with hygromycin, 
whereas the virus appeared again on MPA (lane 2) and CE/CYM (lane 4) in antibiotic absence. 
All samples yielded the appropriate 18S RT-PCR products (below photo). Lane PC = RT-PCR 
positive control (strain SSI 61); lane NC= RT-PCR negative control (water) 

 

 

It has been reported that cyclic adenosine monophosphate (cAMP) might be involved in 

the hypersensitive response of higher plants to fungal elicitors (Bent et al., 1994; Zhao 

et al., 2003). In order to test whether cAMP is involved in the defence mechanism of A. 

bisporus against AbEV1 two isolates, one of which infected with only AbEV1 and the 

other infected with multiple dsRNA components, were cultured for 6 months on 

CE/CYM medium in the presence or absence of cAMP. Cultured isolates screened for 

AbEV1 (Fig. 6.17) and 3.6 kbp dsRNA (data not shown) did not show any reduction in 

viral components in the presence of cAMP. All samples were normalised with the sdh 

cDNA.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.17- RT-PCR screening of AbEV1 for the cAMP Test. In order to test whether cAMP is 
involved in the defence mechanism of A. bisporus against AbEV1 the isolate SSI61 was 
cultured for 6 months in triplicates on CE/CYM medium in the presence (lanes 1-3) or absence 
of cAMP (lanes 4-6). No difference in the virus presence could be found after 1 month (above 
photo) and 6 months of cAMP treatment (below photo).  Lane PC = RT-PCR positive control 
(strain SSI61); lane NC = RT-PCR negative control (water) 
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6.3.3 Phleomycin Resistance Marker 
6.3.3.1 Phleomycin Sensitivity Test 

To determine the working concentrations of phleomycin for A. bisporus, mycelium and 

gill tissue were plated on media containing different concentrations and grown for 3-4 

weeks. Differences were observed in the growth and response of different tissue types 

(Table 6.12).  

 
Table 6.12-Summary of A. bisporus growth responses to different phleomycin 
concentrations. A. bisporus mycelium and gill tissue were plated on media at different 
phleomycin concentrations and grown for 3-4 weeks 
 

[phleo]  

(µg/ml) 

Mycelium 

(MPA) 

Mycelium 

(CE/CYM) 

Gill tissue 

(MPA) 

Gill tissue 

(MM) 

25 no growth growth - - 

50 no growth growth growth growth 

100 no growth  no growth growth growth 

150 no growth no growth growth growth 

200 - - poor growth poor growth 

250 - - poor growth poor growth 

[phleo] = phleomycin concentration;  - = not tested; MPA =  malt peptone agar medium; 
CE/CYM = compost extract + complete yeast extract medium; MM = minimal medium 
 

Agaricus mycelium appeared more sensitive to phleomycin than gill tissue. On MPA 

medium the mycelium made no growth, at any concentration. On the richer medium, 

CE/CYM, the mycelium grew at lower phleomycin concentrations (25 µg/ml and 50 

µg/ml).  

 

Gill tissue showed significant regeneration into mycelium (more than 50%) on both 

MPA and MM media at concentrations ranging between 50-150 µg/ml, but poor growth 

(less than 20%) at phleomycin concentrations of 200 µg/ml and 250 µg/ml (Fig. 6.18).   
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Fig. 6.18- Phleomycin Sensitivity Test on MPA medium supplemented with phleomycin 
and cefotaxime. Agaricus bisporus gill tissue showed a significant growth (more than 50%) at 
phleomycin concentration ranging between 50 µg/ml and 150 µg/ml (A-C), but poor growth 
(less than 20%) at phleomycin concentration of 200 µg/ml (D) 
 

 
6.3.3.2 Construction of Phleomycin Resistant Vector  

The phleomycin resistance cassette (phleoR) sequence was identified in the plasmid 

FHJS3 by direct sequencing. Sequence similarity analyses of the 2060 bp sequence 

generated yielded the following construct organization: A. bisporus gpdII (211 bp) 

promoter, phleomycin resistance gene (Sh ble, 374 bp), and A. bisporus gpdII 

terminator (283 bp, Fig. 6.19).  

 

The phleoR cassette was excised from pFHJS3 and inserted into the pGREENII binary 

resulting in the 4176 bp pGREEN_phleo construct (Fig. 6.20). This was cloned using 

DH5α E. coli competent cells and recombinants identified by a PCR screening. Purified 

plasmid was introduced into A. tumefaciens with pSOUP.  

 

 

A B 

C D 
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Fig. 6.19- The phleoR expression cassette from pFHJS3. Sequence similarity analyses of the 
2060 bp indicated the following construct organization: A. bisporus gpdII promoter (Ab gpdII 
pro), phleomycin resistance gene (phleoR), and A. bisporus gpdII terminator (Ab gpdII ter) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.20- The pGREEN_phleo construct. The phleoR cassette was excised as a KpnI-NsiI 
fragment and cloned into KpnI-PstI-restricted pGREENII  
 

In Agrobacterium-infiltration experiments, A. bisporus gill tissue showed signs of re-

growth on phleomicin amended-medium after 3-4 weeks (Fig. 6.21).  This re-growth 

was equal for transformed and non-transformed gill tissue suggesting that the selection 

was not reliable.  

 

FHJS3 (2060 bps)

Acc65I
Asp718I
KpnI

ApaI
BanII
Bsp120I

Eco24I
EcoT38I
FriOI

PspOMI

BfrBI
EcoT22I
Mph1103I
Nsi I
Zsp2I

DraII
EcoO109I

PpuMI
PpuXI

Psp5II
PspPPI

Ab GPD2 pro

phleoR

Ab GPD2 terAb gpdII pro                                      Ab gpdII ter 
 

pGREEN_phleo

4176 bps

StyI
FseI
Nae I
NgoMIV
Psi I

HpaI
Fsp I

Bmr I
Kpn I
Apa I
Ban II
Bsp 120I
Eco 24I
EcoT38I
FriOI
PspOMI

Psi I
Xba I
BsmBI

Sty I

Ava II
SmaI
XmaI
AvaII
AvaII
AvaII

Fse I
Nae I
NgoMIV
NaeI
NgoMIV
Alw44I
Dra III
Ava II
AvaII

Bci VI
StyI

Sma I
Xma I
BamHI
Spe I
Xba I
Not I
BstXI
Ale I
Msl I
Sac II
Ban II
Eco 24I
Eco ICRI
EcoT38I
FriOI
Sac I
Bpm I

Sap IIStu
IDrd

SIBss
VIBci

YIBse
44IAlw

NIAlw

IAcu

91IVan

10IBpu
BIBsm
SIAsi

ISsp
NIEco

INru
IIBan

24IEco
T38IEco

OIFri
DIBsr

IIIDra
IIAva

BIBsa

Ab GPD2 pro

phleoR

Ab GPD2 ter

AbgpdII pro 

AbgpdII ter 
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Fig. 6.21- Recovery of phleomycin resistant colonies from gill tissue transformation. Non-
transformed colonies (left) showed signs of growth as well as agroinfiltrated Agaricus gill tissue 
(right) after 3-4 weeks on MPA medium supplemented with phleomycin (200 µg/ml)  

 
 

6.4  DISCUSSION 
 
6.4.1 Interference of AbEV1 replication 
Homology-dependent gene silencing (HDGS) phenomena are often considered 

mechanisms evolved as defence responses to invading viruses (Matzte & Matzte, 1998). 

HDGS can be exploited as a molecular tool to investigate the function of viral genes, 

especially in viruses with large and complex genomes containing many putative 

proteins with unknown function (Matzte & Matzte, 1998). 

 

In this project an HDGS approach was initiated to investigate functional domains of the 

AbEV1 virus. A. bisporus mushrooms were transformed using an Agrobacterium- 

infiltration technique. Although it is possible to efficiently transform many 

homobasidiomycetes most progress has been made with model species such as 

Coprinus cinereus (Binninger et al., 1987; Heneghan et al., 2007) and Schizophyllum 

commune (Muñoz-Rivas et al., 1986). Considerable effort has been directed at 

transformation of the recalcitrant A. bisporus but early work was not successful 

(Challen et al., 1991; Royer & Horgen, 1991; Li & Horgen, 1993; Challen & Elliott, 

1994). This early lack of success was attributed to several factors; e.g. low level of 

integration of transforming DNA, poor expression of foreign sequences, DNA 

modification after integration or low competence of certain strains. The first report of 

Agrobacterium tumefaciens as tool to transfer T-DNA to A. bisporus used germinating 
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basidiospores (De Groot et al., 1998). Later the use of gill tissue has proved more 

efficient (Chen et al., 2000; Leach et al., 2004). Burns et al. (2006) reported that gill 

tissue obtained from mushrooms immediately prior to veil-break (stage 4) might be 

more amenable to integrative transformation possibly because cells are preparing for 

kayogamy and meiosis (DNA recombination). Vacuum infiltration (Bechtold et al., 

1993) plays an important role in the transformation efficiency of fungi (Burns et al., 

2006). The vacuum physically creates a negative atmosphere pressure that causes air 

spaces between cells to decrease. Increasing the pressure afterwards allows the 

infiltration medium and therefore the bacterium, to relocate into the host tissue.  

 

It is well known that transformation efficiency is also affected by several parameters 

including Agrobacterium strain, host tissue physiology (Godwin et al., 1992), host 

metabolic stage, and transformation vector. The A. tumefaciens L,L-succinamopine-type 

used in this study for Agaricus transformation was previously reported (Chen et al., 

2000; Leach et al., 2004; Burns et al., 2006) as a successful strain for gill tissue 

transformation of button mushrooms. Virus-infected strains showed to be more 

transformable (40%-66% transformation efficiency, Table 6.10) than virus-free strains 

(0%-9% transformation efficiency, Table 6.7). The reason for this is unclear. There are 

evidences supporting the notion that cell permeability changes upon viral infection 

(Kohn, 1979; Carrasco & Smith, 1980; Pasternak & Micklem, 1981). Consistent with 

this idea, some observations point out that class of semipermeable compounds, which 

do not normally pass through the cell membrane, become easily permeable in virus 

infected cells (Macintyre et al., 1991). It is appealing to speculate that virus infected 

cells might be also more permeable to DNA uptake than non-infected cells as shown in 

the present study, but further work would be needed to test this hypothesis. 

 

Agaricus gill tissue was transformed with constructs containing viral sequences 

arranged in hairpin expression cassettes. These manipulations appeared to interfere with 

AbEV1 replication. This ‘interference’ occurred using both RdRp and helicase 

sequences. Silencing did not appear affected by hairpin cassette orientation since it 

worked with both unidirectional and divergent constructs. Similar observations have 

been made in plant system (Ruiz et al., 1998). Control transformants did not exhibit 
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AbEV1 silencing and consistently proved able to be infected by AbEV1 following 

anastomosis.  

 

In this study it was not possible to detect hairpin transcripts, either by RT-PCR or RT-

qPCR. Similar observations have been made in other hairpin transformation 

experiments in A. bisporus using a range of endogenous genes (Seargent & Challen, 

unpublished). Although RT-qPCR can provide evidence of down-regulation of target 

genes, transcripts for the hairpin construct can be often not detectable (Challen, pers. 

comm.). The reason for this is not clear. 

   

Gene silencing mechanisms in fungi can be complex compared to other organisms 

(Section 6.1.1, Cogoni & Macino, 1999) and despite extensive studies the mechanism 

behind PTGS is still poorly understood. Nevertheless, sufficient correlative evidence 

has accumulated for it to be suggested that TGS and PTGS may be fundamentally 

linked (Matzke and Matzke, 1995; Bingham, 1997; Wasseneger & Pélissier, 1998). The 

processes could have in common modifications to chromatin structure and/or DNA 

methylation, provoked by specialized RNA products, such as aberrant RNAs (Jones et 

al., 1998). However, this area has not been fully explored and the evidence is often 

conflicting.  

 

Transgene methylation has also been implicated in PTGS induced by viruses. In 

previous studies, virus-induced gene silencing initiated by an RNA virus, pea seed-

borne mosaic virus (PsbMV), was associated with de novo methylation of homologous 

nuclear DNA sequences (Jones et al., 1998). Similarly, viroid RNA also has the ability 

to direct methylation (Wasseneger et al., 1994; Jones et al., 1999; Pélissier et al., 1999). 

The finding that promoterless constructs can induce PTGS (van Blokland et al., 1994; 

Stam et al., 1997) has led to the hypothesis of nuclear step and RNA-DNA interaction 

during PTGS pathways (Wasseneger & Pélissier, 1998; reviewed by Chicas & Macino, 

2001). According to English et al. (1996) transgene methylation could lead to the 

formation of aberrant RNA molecules (aRNAs) possibly due to transcript termination 

within the methylated region, that affect the transcription of the transgene. These 

aRNAs would constitute the silencing signal for homologous dependent gene silencing.  
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It may be desirable in future studies to search for any possible methylation of the 

hairpin construct or any production of small interference RNAs/aRNAs in order to 

better understand the underlying silencing mechanism of AbEV1 in A. bisporus. 

 

6.4.2 Antiviral Compounds  
In transformation experiments using AbEV1-infected Agaricus strain, the hygromycin 

resistant transformants showed loss of AbEV1 by RT-PCR analysis over a 2-3 months 

culture on hygromycin-supplemented medium. Moreover, removal of hygromycin from 

the selective medium led to reappearance of AbEV1 after a further one month-culture. It 

has been reported by several authors, that antibiotics can affect virus replication 

(Carrasco, 1978; Contreras & Carrasco, 1979; Lacal et al., 1980; Fulbright, 1984; Elias 

& Cotty, 1996). Hygromycin B is an aminocyclitol antibiotic produced by Streptomyces 

hygroscopicus (Pittenger et al., 1953), which inhibits protein synthesis in both 

prokaryotes and eukaryotes through interference with ribosomal translocation as well as 

with aminoacyl-tRNA recognition (Cabanas et al., 1978; Gonzales et al., 1978; Singh et 

al., 1979; Eustice & Wilheim, 1984). Hygromycin B has been reported to block several 

viruses such as vescicolar stomatitis virus, herpes simplex virus type 1, Sendai virus, 

and Leishmania RNA virus 1-4 (Benedetto et al., 1980; Ro et al., 1997). Despite the 

potential antiviral properties of hygromycin, the mechanism of action remains 

unknown. Macintyre et al. (1991) suggested a possible block in translation of the viral 

RNA polymerase, which is likely one of the first products of gene expression in virus 

replication cycle. Given that the host cell protein synthesis is not inhibited by the 

antibiotic in transformants carrying the hygromycin resistance gene (hph), the inhibition 

must be selective. Hygromycin B binds to cellular rRNA in wild-type cells, and it is 

possible that it also binds to viral RNA, inhibiting its transcription and/or translation. 

This study represents the first known report of hygromycin B interfering with 

replication of a fungal virus. 

 

The potential of 3’: 5’- cyclic adenosine monophosphate (cAMP) to inhibit AbEV1 was 

also tested. There is an increasing number of reports indicating that cAMP is a critical 

signalling molecule involved in mediating defence responses in plants and fungi (Lee et 

al., 2003; Jiang et al., 2005, Yu, pers. comm.). Jiang et al. (2005) reported a transient 
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increase in endogenous cAMP amount in Arabidopsis in response to Verticillium toxins, 

while exogenous application of cAMP resulted in an improved host resistance to the 

elicitor. In fungi, the cAMP signalling cascades are remarkably conserved (Lee et al., 

2003) and are involved in fungal pathogenicity, filament growth, germ tube formation, 

and sexual development (reviewed by Kronstad, 1997; Adachi & Hamer, 1998; Kinane 

et al., 2000; Thines et al., 2000). The involvement of cAMP in viral infection was 

demonstrated in cryphonectria parasitica hypovirus (CHV) by Choi et al. (1995). The 

authors speculated that the viral attenuation caused by CHV might be the result of 

interference with signalling transduction pathway. To test this hypothesis they isolated 

the cpg-1 gene encoding Gα subunits (Fig. 6.22), expression of which is reduced in the 

hypovirulent chestnut blight fungus strain (Lee et al., 2003). 

 

 
Fig. 6.22- Cyclic AMP signalling cascade. Cyclic AMP is an important signalling molecule in 
prokaryotes and eukaryotes. Two key enzymes, adenylyn cyclase, located in the plasma 
membrane, and phosphodiesterase, located in the cytoplasm, are presumed to be responsible for 
byosynthesis and biodegradation of cAMP in living organisms. Cyclic AMP is involved in 
perception of extracellular biotic and abiotic stimuli and subsequent transduction of the signal. 
In a classical cAMP pathway, a transmembrane cell surface receptor senses a specific 
extracellular signal that is transmitted into cells via heterotrimeric G-proteins. The G-proteins 
transmit the signal to adenylyl cyclase, which synthesizes the second messenger cAMP (Lee et 
al., 2003)  
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This type of subunit inhibits adenyl cyclase (cAMP biosynthesis enzyme) and 

interference with cpg-1 gene expression would result in high cAMP level (reviewed by 

Kronstad, 1997). PTGS (RNAi) experiments with cpg-1 in virus-free strains of 

Cryphonectria parasitica resulted in transformants with high level of cAMP and viral 

symptoms, such as slow growth, uneven colony margins, and attenuated virulence. 

These observations provide compelling evidence that viral infection influences cAMP 

pathway in the fungus Cryphonectria parasitica. Although there are reports suggesting 

the involvement of endogenous cAMP in defence signalling cascade, the detailed 

mechanism is still unclear (Jiang et al., 2005). Characterization of knockout mutants of 

cyclic nucleotide-gated cation channel genes has provided molecular evidence for 

cAMP involvement in ion flux as already demonstrated in plant defence responses 

(Clough et al., 2000; Belagué et al., 2003). Cyclic AMP might regulate calcium-

permeable ion channel, such as cyclic nucleotide-gated channels, increasing cytosolic 

Ca2+ concentration in the cell (Jiang et al., 2005).  

 

In this project, applications of exogenous cAMP to A. bisporus MVX-infected cultures 

did not result in any detectable loss of viral RNA elements.  

 

It might be appropriate in future studies to apply cAMP to viral infected Agaricus 

cultures in a wider range of concentrations and examine more closely AbEV1 

replication using quantitative approaches. 

 

6.4.3 Phleomycin selective marker 
To date the most selective marker used for Agrobacterium-mediated transformation of 

A. bisporus is the E. coli hygromycin resistance gene, hph (Leach et al., 2004, Burns et 

al., 2006). To progress the development of alternative selective marker for A. bisporus, 

the phleomycin resistance ble gene from Streptoalloteichus hindustatus (Sh) was tested. 

The Sh ble gene has been reported as an efficient selective marker for plants and fungi 

(Perez et al., 1989; Schuren & Wessels, 1994, Rogers, pers. comm.). Most notably, the 

Sh ble gene was used to transform the homobasidiomycete Schizophyllum commune 

(Schuren & Wessels, 1994).  
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Although there have been some limited success using ble gene in A. bisporus (Moore et 

al., 1995), in this project the anti-metabolite proved an unreliable selection system. 

Agaricus gill tissue had a particular tolerance to the antibiotic and could regenerate at 

elevated concentrations (up to 250 µg/ml); although mycelial growth was very poor. A 

novel phleomycin resistance binary vector was prepared using homologous regulatory 

sequences and was tested in A. bisporus using Agrobacterium-mediated transformation. 

In practice, the high background growth of spurious transformants made the system 

unworkable even using different media.   

 

Since mushroom transformation via protoplasts proved to be successful using direct 

selection with Sh ble (Shuren & Wessels, 1994; Rogers, pers. comm.), modifications of 

Agaricus transformation protocol might give better results. 
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7. General Conclusion 
 

The cultivated mushroom Agaricus bisporus is one of the most economically important 

horticultural product and the highest value protected crop cultivated in the United 

Kingdom, with an annual production of approx 5 million tons (Scrase & Elliott, 1998). 

Agaricus bisporus is also of importance for a number of other reasons. Mushrooms are 

cultivated from compost produced by animal faeces and waste straw; thus the industry 

is able to recycle considerable amount of such waste products. In recent years, various 

mushrooms have been appreciated for their medicinal properties and it is claimed that 

A. bisporus produces a number of compounds of potential biomedical/neutriceutical 

importance (Chen et al., 2004). There is considerable interest in exploiting A. bisporus 

for bio-manufacturing of heterologous proteins primarily for reduced manufacturing 

costs but also because the glycosilation machinery of fungi may be more similar to 

mammalian cells (Velco et al., 2004; Zhang et al., 2004).  

 

Despite the economic and biotechnological importance, diseases affecting A. bisporus 

mushrooms are relatively poorly studied. Viral diseases for fungi were not considered 

until Hollings (1962) suggested a viral etiology for ‘La France’ disease. Double-

stranded RNAs (dsRNAs), presumably of multiple viral origins are causal agents for 

diseases often consistently associated with complex dsRNA profiles (Rao et al., 2007). 

The emergence of a new disease termed Mushroom Virus X (MVX) disease, exhibited a 

wide range of symptoms (e.g. barren patches, arrested pins, premature veil opening, 

brown discoloration, and distortions). A variable compendium of 26 novel dsRNA 

elements, ranging in size between 20.2 kbp to 0.64 kbp, have shown to occur in 

diseased fruiting bodies (Grogan et al., 2003).  

 

In this project, an individual dsRNA element (Chapter 3) associated with the MVX 

disease was cloned, sequence characterised and named Agaricus bisporus endornavirus 

1 (AbEV1). The virus was first isolated from samples collected from British mushroom 

farms. However, Sonnenberg & Lavrijssen (2004) reported a dsRNA element (dsRNA 

VXL1) with similar features to AbEV1 such as high molecular weight (> 12 kbp), high 

titre compared to other fungal dsRNAs, and presence in 50% of samples.  
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AbEV1 was originally estimated to be ca. 14.4 kbp by agarose gel analysis, but proved 

to be 12,750 bp from sequencing. Three major putative functional domains, 

characteristic of the Endornavirus genus were identified. The Endornaviruses have 

monopartite dsRNA genomes ranging between 10 to 18 kbp. No virus-like 

encapsidation structures are found, but genomes are often associated with cytoplasmic 

vesicles (Sections 1.8.2 and 3.1.2.2). Endornaviruses have been reported for a wide 

range of organisms, from plants to protists, and fungi. The non-kingdom specificity of 

infection is quite unusual for viruses. However, RNA viruses can readily adapt and 

expand their host range through their ability to mutate. It is believed that almost 50 

RNA viruses, including human immunodeficiency virus, Ebola virus, SARS coronavirus 

have shifted from nonhuman hosts to humans since the World War II (Morse, 1993; 

Brault et al., 2004). Other examples derive from animal and plant viruses transmitted 

via arthropods (Gray & Banerjee, 1999). Over 500 animal viruses are classified as 

arboviruses, able also to be transmitted and replicate in arthropods (Nuttall et al., 1994). 

Additionally, there are many hundreds of plant viruses (Blunt et al., 1996), most of 

which are dependent upon a transmission vector between inoculations into plant hosts. 

Plant-infecting viruses have evolved many interesting and biologically complex 

associations with their vectors, which include arthropods, nematodes, and fungi (Gray 

& Banerjee, 1999). These findings are evidence of virus ability to infect and adapt to 

various hosts, even across kingdom under selective pressure.  

 

Several authors failed to recognise endornaviruses as conventional viruses, originally 

referring to them as plasmid-like elements (Moriyama et al., 1999). The absence of 

capsids and often obvious symptoms, coupled with mainly vertical inheritance are 

uncommon features in animal and plant virology, although less unusual within the 

mycovirology (Sections 1.8.1, 1.8.2, and 3.1.1). For example, hypoviruses are 

mycoviruses lacking conventional capsids and packaging their dsRNA genome in host-

encoded vesicles, whereas narnavirus members protect their RNA genome in the form 

of ribonucleoprotein complexes (Section 1.8.2). A group of plant virus, showing 

similarities with endornaviruses, the cryptoviruses, are normally present at low 

concentration, produce no or very slight disease symptoms and transmit vertically 
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(Boccardo et al., 1987). Moreover, like cryptoviruses, endornaviruses can transmit 

biparentally (Fukuhara, 1999).  

 

Since viruses are obligate parasites, they have evolved and co-adapted with their host in 

such a way that in some cases it is difficult to distinguish them from the host. For 

instance, pararetroviruses can integrate into the host genome entering in a latent phase 

and causing infection only in response to stress (Harper et al., 2002).  Tobacco vein 

clearing virus (TVCV) is a distinct member of the family Caulimoviridae, differing 

from typical caulimoviruses in both genome organization and biological properties. 

TVCV has not been transmitted experimentally from N. edwardonii to any other 

Nicotiana spp. or other plant species by mechanical, aphid, or graft inoculation, but is 

transmitted through seed to 100% of progeny plants (Lockhart et al., 2000). However, 

its symptoms and virions appear only under certain conditions, which are not clearly 

defined (Harper et al., 2002). Although increases in symptoms expression and virions 

are correlated with seasonal day length and temperature changes, the mechanism 

underlying this correlation remains to be elucidated (Harper et al., 2002).  

 

Although the Vicia faba endornavirus (VFV) sequence showed homology with broad 

bean nuclear genome of both sterile and fertile lines (Turpen et al., 1988), endornavirus 

sequences were not found in rice DNA (Moriyama et al., 1995) and similarly AbEV1 

sequences have not been observed in Agaricus bisporus DNA (Section 3.3.3). 

Moreover, endornavirus genome organization does not support the notion of 

endornaviruses as retroviruses or retrotransposons. The absence of integrase and reverse 

transcriptase genes (Zaki, 2003), and the presence of helicase and RNA-dependent RNA 

polymerase (RdRp) genes suggest that these RNA elements are capable of autonomous 

replication (Moriyama et al., 1995).  

 

Phylogenetic analyses based on these two AbEV1 enzymes sequences (helicase and 

RdRp) also confirmed the hypothesis that the endornavirus shares a common ancestor 

with ssRNA viruses as already reported in literature for other endornaviruses (Gibbs et 

al., 2000). It has been speculated that endornaviruses originated from a ssRNA virus, 

which converted into the more stable dsRNA form after losing its virion protein gene. 
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Several lines of evidence support the notion that loss of the virion protein gene affects 

the relative balance of concentration between (+) and (-) strand RNA synthesis of 

ssRNA viruses (Nassuth et al., 1983; van der Kuyl et al., 1991). Particularly 

informative were the experiments conducted on alfalfa mosaic virus, a plant virus 

belonging to the Bromoviridae family having a tripartite RNA genome. The coat protein 

of this virus is encoded by the RNA3 molecule. Nassuth & Bol (1983) demonstrated 

that there is an altered balance of (+) and (-) strand RNA synthesis induced by RNA1 

and RNA2 of alfalfa mosaic virus in the absence of RNA3. Van der Kuyl et al. (1991) 

demonstrated that a frameshift early in the coat protein resulted in a 100-fold reduction 

in (+) strand accumulation and a 3- to 10-fold increase in (-) strand accumulation of 

alfalfa mosaic virus. It is conceivable that expression of genomic RNA1 and RNA2 

results in the formation of a replicase activity generating equal amount of viral (+) and 

(-) strand RNAs, and an RNA3-encoded product, possibly the coat protein, is 

responsible for a switch to an asymmetric production of viral (+) strand RNA (Nassuth 

& Bol, 1983).  

 

Support for the functional importance of the two domains found in AbEV1 came from 

gene silencing studies using hairpin vectors (Section 6.2.1). ‘Silencing’ of AbEV1 was 

obtained by targeting the AbEV1 helicase and RdRp sequences through homology-

dependent gene silencing strategy. Transformants carrying AbEV1 sequences under 

expression of the AbGPD promoter were resistant to the uptake of AbEV1 dsRNA. This 

is an exciting observation and is the first time that homology-dependent gene silencing 

approaches have been used in homobasidiomycete mushrooms against viral sequences. 

Both helicase and RdRp sequences were able to initiate silencing in 50% or more of 

transformants, indicating that both sequences have a functional role in AbEV1 

replication. Evidence of homology-dependent gene silencing in fungi as antiviral 

defence mechanism have been indirectly provided by demonstrating the presence of an 

RNA silencing suppressor in the mycovirus Cryphonectria hypovirus 1 (Segers et al., 

2006). In this project, silencing of AbEV1 could not be defined as post-transcriptional 

gene silencing phenomenon since transcription of the hairpin silencing-construct could 

not be detected by RT-PCR. It would be interesting to characterise the nature of the 

gene silencing pathway in AbEV1-silenced transformants. Northern blotting might 
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reveal hairpin expression and/or provide evidence of siRNAs indicative of DICER 

activity. It may be also advisable to further investigate the involvement of different 

mechanisms other than PTGS in this study. Various gene silencing pathways (TGS and 

PTGS; Section 6.1.1) have been described for fungi, which might be inter-related in 

some way and play an important role in AbEV1-silenced transformants.       

 

Agaricus bisporus endornavirus 1 (AbEV1) harboured also a putative 

glycosyltransferase domain, which has been identified in other endornaviruses (Hacker 

et al., 2005; Osaki et al., 2006). Glycosyltransferase enzymes are extremely interesting 

and highlight the crucial roles of glycans in numerous important processes, including 

viral infection. Over millions of years, viruses have acquired mechanisms to mimic, 

hijack or sabotage host processes that favour their replication. Viruses reach that goal 

either by regulating expression of host glycosyltransferases or by expressing their own 

glycosyltransferases (Markine-Goriaynoff et al., 2004). Through glycosylation some 

viruses have the ability to avoid host anti-viral mechanisms. For example, some 

bacteriophages express α- and ß-glucosyltransferases which glycosylate their DNA to 

make it resistant to host restriction endonucleases (Gram & Ruger, 1986). Other viruses 

actively alter host metabolism. Most baculoviruses encode an ecdysteroid 

glucosyltransferase, which glycosylates insect moulting hormones. Expression of this 

enzyme allows the virus to block moulting and pupation of infected insect larvae 

(O’Reilly & Miller, 1989). Although there is no evidence for function of the AbEV1 

glycosyltransferase, interesting information of the effect of AbEV1 on host metabolism 

might be gained from further study of this enzyme in MVX infections.  

 

In some endornaviruses studies, the presence of a discontinuity (break) in the coding 

strand upstream of the helicase domain has been shown to result in more than one 

endornavirus mRNA transcript (Fukuhara et al., 1995; Pfeiffer, 1998; Hacker et al., 

2005). Similarly the fungal dsRNA Cryphonectria parasitica hypovirus (CHV) contains 

two open reading frames (ORFs) translated in a ‘stop/restart’ mode (Choi et al., 1991). 

The discontinuity identified in endornaviruses is unusual because no stop codon has 

been reported for the subgenomic mRNA and the long ORF continues through the nick. 

Although the biological implications of this nick in the (+) strand of RNA sequence 
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remain unknown (Moriyama et al., 1999), the discontinuity has been reported in 

endornaviruses infecting rice (OSV), wild rice (ORV), and broad bean (VFV). The 

discontinuity can be identified by polyadenylating the 3’ end of the dsRNA molecule. 

There are up to three places where the poly(A) tail can ligate, the 3’ terminus from the 

(+) strand, the 3’ terminus from the (-) strand, and the 3’ terminus from any internal 

break in the dsRNA molecule. In vitro polyadenylated dsRNA was therefore used in 

rice and broad bean as a template to prime reverse transcription with oligo(dT) and 

specific primers were subsequently used to extend the clones obtained towards the 

5’end of the RNA (Pfeiffer, 1998). It may be appropriate in future studies to investigate 

for any possible discontinuity in AbEV1 in order to gain a better understanding of 

endornavirus genome expression.  

 

As part of a wider effort to investigate the presence of PTGS suppressors (Section 6.1.3) 

in AbEV1, a construct carrying the phleomycin resistance gene was produced. An 

alternative selectable marker for transformation is required to permit use of a GFP 

suppression assay (Moissard & Voinnet, 2004) of hygromycin resistant, GFP 

transformants of A. bisporus (Section 6.1.3).  In such experiment, AbEV1 would be 

inoculated into A. bisporus mushrooms where GFP was down-regulated. In the absence 

of silencing suppressor in AbEV1 genome, the silenced GFP phenotype would be 

unaffected, whereas in the presence of a suppressor the fluorescence phenotype would 

be reverted. Hygromycin resistant transformants of A. bisporus expressing GFP have 

been produced in a joint project between Warwick HRI and Bristol University (Burns et 

al., 2005) and GFP silencing has also been demonstrated in homobasidiomycete 

mushrooms such as Coprinus cinereus (Heneghan et al., 2007). The production of a 

silencing construct carrying an alternative selective marker to hygromycin (e.g. 

phleomycin) is a prerequisite to testing such a GFP suppression assay. However in this 

project, phleomycin resistance (phleoR) could not be developed into a workable system 

for selection of A. bisporus transformants; the mushroom appeared to have a high 

tolerance to the antibiotic. Further studies are required to develop alternative 

transformation markers for A. bisporus.  
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The AbEV1 dsRNA was found to be present in about 60% (Adie et al., 2004) of MVX 

infected commercial mushrooms. In culture samples derived from wild Agaricus 

collections an AbEV1-type virus (ARP25014.4) has only been detected in a single strain 

(ARP250) when screening more than 100 isolates. This is perhaps not surprising since it 

is well known that enclosed environments such as mushroom houses can favour the 

spread of pests and diseases because of high host population density, low host genetic 

diversity, high concentration of spores, etc. (Milgroom, 1999). Moreover, the 

observation that AbEV1-like dsRNA may occur in the wild is interesting, and gives 

some credence to the hypothesis that MVX infections may have arisen from wild 

sources. Molecular characterization of the dsRNA element in the ARP250 isolate 

revealed high homology between the ‘wild’ viral sequence and the commercial 

mushroom strains. Although it is possible that the presence of ARP25014.4 could have 

arisen through contamination of laboratory culture, a number of different observations 

suggest that this is not the most likely explanation (Section 5.4). How the virus might 

have spread from wild to cultivated mushroom strains is unclear and merits further 

study. AbEV1 from commercial mushrooms has been demonstrated to transmit through 

spores and anastomosis (Chapter 4). Interestingly, ARP25014.4 has also been transmitted 

to various MVX-free strains through in vitro anastomosis (Holcroft et al., unpublished). 

It is conceivable therefore, that MVX infected wild strains have anastomosed with 

commercial lines.  

 

Notably, contaminated spores have been indicated (Gaze et al., 2000) and demonstrated 

as such in this study as a source of AbEV1 transmission. It has also been demonstrated 

that some virus-infected mushrooms such as La France-infected mushrooms, produce 

spores earlier and with higher frequency than healthy mushrooms (Schisler et al., 1967; 

Dieleman-van Zaayen, 1970). The reason for this is not known, but it has been 

hypothesized that diseased mushroom spores germinate more quickly as they have less 

pigment and thinner walls (Schisler, 1967). Future studies might focus on determining 

spore production and germination of AbEV1/MVX infected-mushrooms compared to 

healthy mushrooms.  
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It is intriguing to consider whether the mode of virus transmission might affect 

virulence towards the fungal host in the evolution of virus-fungal interaction. Viruses 

that depend primarily on vertical transmission are more likely to evolve reduced 

virulence towards their fungal hosts, even to the point of being benign (Milgroom, 

1999). Endornaviruses infecting fungi, including AbEV1 can also transmit horizontally 

(Ikeda et al., 2003; this project). This factor along with low genetic diversity in 

cultivated mushroom population might provide the selective pressure to yield more 

virulent strains (Milgroom, 1999). 

 

An interesting observation during the homology-dependent gene silencing experiments 

was the loss of AbEV1 dsRNA during the transformation protocol. Hygromycin has 

previously been reported to inhibit the replication of several viruses, but the mechanism 

of action remains incompletely understood (Section 6.4.2). The antimetabolite may 

block translation of the viral RNA polymerase, which is likely one of the first products 

of gene expression in virus replication cycle (Macintyre et al., 1991). Several 

techniques have been used so far to ‘cure’ fungi from viruses and dsRNA elements, 

including hyphal tip isolations (Ikeda et al., 2003), heat treatment (Nair, 1973), and 

antibiotics such as cycloheximide (Elias & Cotty, 1996). It appears from these studies 

that hygromycin B also has potential as antiviral agent against fungal viruses. Although 

AbEV1 reappeared after removal of hygromycin selective pressure (Section 6.3.2), 

higher hygromycin concentration or longer incubation lapse might completely cure 

MVX infected mushrooms. 

 

Collectively, the studies reported in this thesis represent first significant advances in the 

molecular characterization of the MVX disease. AbEV1 is the first endornavirus to be 

characterised in homobasidiomycete mushrooms and is the first MVX dsRNA element 

to be fully sequenced. Approaches used to clone and sequence AbEV1 can now be 

applied to other dsRNA elements associated with MVX disease. Homology-dependent 

gene silencing experiments allowed functional dissection of AbEV1 and provided a 

powerful tool for fungal virology to investigate the interaction between virus and 

mushroom.  
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ANNEX 3.1 
 
 
 
 

 
Entire nucleotide sequence (12750 bp) generated by recombinant clone sequencing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ENTIRE NUCLEOTIDE SEQUENCE OF MVX14.4 
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ANNEX 3.2 
 
 

MVX14.4 OPEN READING FRAME 

A single open reading frame (ORF) was found in the MVX14.4 plus strand sequence, 

starting at nt 29 and ending at nt 12679, which encodes a putative protein of 4216 aa 

 
Frame  from  to  Length  Length  
+2  29 bp  12679 bp 12651bp  4216 aa 
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ANNEX 3.3 
 
 

PAIRWISE IDENTITY OF ENDORNAVIRUS HELICASE AND RdRp SEQUENCES 
 
 

Alignment of endornavirus RdRp (motifs III-VI) and helicase amino acid sequences were obtained using the MegAlign package via 

ClustalW algorithm. Pairwise identities are indicated in %. The highest match for the MVX14.4 helicase sequence was with PEV1, whereas 

for the MVX14.4 RdRp was with OSV 

 
HELICASE 

 ORV OSV VFV PEV1 GaEV HmEV1-670 MVX14.4 
ORV * 82.7 27.4 26.6 12.1 28.6 25.0 

OSV 98.4 * 27.5 27.1 12.6 28.7 26.3 

VFV 61.8 62.0 * 30.8 11.6 26.0 27.6 

PEV1 58.1 57.5 61.2 * 11.2 24.1 30.5 

GaEV 36.6 36.6 38.6 33.4 * 9.3 11.7 

HmEV1-670 53.0 53.0 56.5 53.0 40.3 * 24.6 

 
 
 

RdRp 

MVX14.4 58.9 59.2 58.1 55.3 35.8 51.1 * 
 
 
 
 
 

ORV: Oryza rufipogon endornavirus; OSV: Oryza sativa endornavirus; VFV: Vicia faba endornavirus; PEV1: Phytophthora 
endornavirus 1; GaEV: Gremmeniella abietina endornavirus; HmEV1-670: Helicobasidium mompa endornavirus 1-670; MVX14.4: 
MVX14.4 
 



 
ANNEX 3.4 

 
AMINO ACID SEQUENCE PAIRWISE IDENTITY OF VIRAL, FUNGAL AND PLANT UGTs (MOTIF IV) 

 
Alignment of viral, fungal and plant motif IV- UGT amino acid sequences were obtained using the MegAlign package via ClustalW 

algorithm. Pairwise identities are indicated in %. The highest match was with PEV1, followed by Ustilago maydis 

 Mb Ms Gc Mg Sc Cc Cn Um At Os Bm virus Mb virus MVX14.4 ORV OSV PEV1 
Mb *                
Ms 68.1 *               
Gc 47.9 45.8 *              
Mg 48.5 54.5 25.0 *             
Sc 19.1 21.3 14.6 27.3 *            
Cc 44.7 42.6 72.9 30.3 13.7 *           
Cn 55.6 48.9 48.9 35.6 22.2 53.3 *          
Um 50.0 45.5 45.8 42.4 20.5 52.3 71.1 *         
At 53.2 44.7 62.5 39.4 13.3 64.4 64.4 56.8 *        
Os 46.8 44.7 58.3 42.4 13.7 67.4 57.8 61.4 82.2 *       

Bm virus 34.0 25.5 27.1 18.2 9.8 22.9 33.3 31.8 26.7 25.0 *      
Mb virus 34.0 25.5 27.1 18.2 24.5 22.9 33.3 31.8 26.7 25.0 100.0 *     
MVX14.4 36.2 34.0 31.2 27.3 15.1 26.4 35.6 38.6 33.3 26.4 24.5 24.5 *    

ORV 25.5 21.3 25.0 24.2 9.8 30.2 31.1 34.1 28.9 34.9 25.0 25.0 24.5 *   
OSV 29.8 27.7 31.2 27.3 15.7 28.6 35.6 36.4 33.3 32.7 26.5 27.1 26.4 69.4 *  
PEV1 36.2 25.5 47.1 27.3 11.9 38.1 42.2 50.0 40.5 40.5 23.8 23.8 40.5 31.0 28.6 * 

 
Mb: Mycobacterium bovis (bacterium); Ms: Mycobacterium smegmatis (bacterium); Gc: Glomerella cingulata (Ascomycete); Mg: Magnaphorte grisea 
(Ascomycete); Sc: Saccharomyces cereviseae; (Ascomycete); Cc: Coprinus cinereus (Homobasidiomycete); Cn: Cryptococcus neoformans 
(Heterobasidiomycete); Um: Ustilago maydis (Heterobasidiomycete); At: Arabidopsis thaliana (plant); Os: Oryza sativa (plant); Bm virus: Bombix mori 
nuclear polyhedrosisvirus (virus); Mb virus: Mamestra brassicae nucleopolyhedrovirus (virus); MVX14.4: MVX14.4; ORV: Oryza rufipogon endornavirus; 
OSV: Oryza sativa endornavirus; PEV1: Phytophthora endornavirus 1 
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ANNEX 5.1 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The alignment was constructed using the MegAlign package and displayed via 
GENEDOC program. The sequences share 98% identity. Identities are highlighted in 
blue, while dissimilarities are highlighted in green (arrow). ARP250: ARP25014.4 
 

PAIRWISE ALIGNMENT OF ARP25014.4 AND AbEV1 NUCLEOTIDE 
SEQUENCES IN THE HELICASE REGION 
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ANNEX 5.2 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

PAIRWISE ALIGNMENT OF ARP25014.4 AND AbEV1 NUCLEOTIDE SEQUENCES IN 
THE RdRp REGION 

 
The alignment was constructed using the MegAlign package and displayed via GENEDOC 
program. The two sequences share 97% identity. Identities are highlighted in red, while   
dissimilarities are highlighted in blue (arrow). ARP250: ARP25014.4 
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ANNEX 5.3 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ANNEX 5.4 
 
 
 
 
 

PAIRWISE ALIGNMENT OF ARP25014.4 AND AbEV1 NUCLEOTIDE 
SEQUENCES IN THE GLYCOSYLTRANSFERASE REGION 

 
 The alignment was constructed using the MegAlign package and displayed via 
GENEDOC program. The two sequences share 98% identity. Identities are highlighted 
in dark green, while dissimilarities are highlighted in purple (arrow). ARP250: 
ARP25014.4 
 

PAIRWISE ALIGNMENT OF ARP25014.4 AND AbEV1 AMINO ACID 
SEQUENCES IN THE GLYCOSYLTRANSFERASE REGION 

 
The alignment was constructed using the MegAlign package and displayed via 
GENEDOC program. The two sequences share 100% identity. ARP250: ARP25014.4 
 



ANNEX 6.1 
  
 
Relative quantification of the hairpin construct transcript using RT-qPCR. Relative quantification was obtained normalising the targeted insert 
(F1) of biological replicates with 18S rRNA. RNAi_F1U plasmid was used as reference for the relative quantification of transformants containing the 
RNAi_F1U construct, while the control transformant NC_1 (containing only the hygR cassette) was used as negative control. Transformants of Agaricus 
strain A15 were screened either before the dual-culture challenge with AbEV1 (transformant F1U_1, F1U_2, F1U_3, and F1U_4) or after (transformants 
F1U_2 x SSI61 and F1U_4 x SSI61). All transformants showed no detectable transcript of the hairpin cassette compared to the reference (RNAi_F1U 
plasmid). PCR efficiency was determined from the standard curve slope generated from serial dilutions. Reaction efficiency (RE) was calculated with the 
following formula (-3.32/- slope value) x100.  
  

 

Sample 

Quantity  
F1 

(slope= -3.21) 
(RE ≈  100%) 

Quantity  
18S 

(slope= -3.26) 
(RE ≈  100%) 

Normalised Target Mean Standard Error 

RNAi_F1U plasmid 3975.458 3064.1685 1.297401889 
RNAi_F1U plasmid 3702.5444 22687.035 0.163200894 0.730301392 0.567100497 

F1U_2 x SSI61 0.23970653 61868.906 3.87443E-06 
F1U_2 x SSI61 0.23277473 56076.91 4.15099E-06 4.01271E-06 1.38282E-07 

F1U_4 x SSI61 2.3282213 66594.355 3.49612E-05 
F1U_4 x SSI61 2.6878927 60985.153 4.40745E-05 2.36429E-05 4,55665E-06 

F1AU_1 0.19731024 61442.695 3.21129E-06 
F1AU_1 0.27683145 69582.61 3.97846E-06 

3.59487E-06 3.83584E-07 

F1AU_2 0.121332005 45970.215 2.63936E-06 
F1AU_2 0.21122792 46026.324 4.58929E-06 3.61432E-06 9.74962E-07 

F1AU_3 0.51875126 33348.773 1.55553E-05 
F1AU_3 0.6144053 38634.61 1.5903E-05 1.57292E-05 1.73822E-07 

F1AU_4 5.772473 66186.336 8.72155E-05 
F1AU_4 6.2432904 59372.562 0.000105154 9.6185E-05 8.9695E-06 

NC_1 0 52205.668 0 
NC_1 0 44686.324 0 0 0 



ANNEX 6.2 
  
 
Relative quantification of AbEV1 using RT-qPCR. Relative quantification was obtained normalising the AbEV1 helicase transcript with 18S rRNA 
(see normalised target) in biological replicates (blue and purple) of transformants strain A15. The control transformant NC_1 was used as reference for the 
virus quantification in transformants (F1U_1, F1U_2, F1U_4, and F5D_1) after the in vitro dual-culture challenge with AbEV1 donor. AbEV1 RNA was also 
quantified in the AbEV1 donor (SSI 61) and in the strain A15 (negative control). PCR efficiency was determined from the standard curve slope generated 
from serial dilutions. Reaction efficiency (RE) was calculated with the following formula (-3.32/- slope value) x100. Each mean was normalised against the 
control transformant mean (transformant/NC_1; see normalised mean). Transformants F1U_1 and F5D_1 showed a silencing percentage close to the negative 
control (A15).  

 

Sample 

Quantity  
AbEV1 

(slope= -3.19) 
(RE ≈  100%) 

Quantity  
18S 

(slope= -3.14) 
(RE ≈  100%) 

Normalised 
Target 

 
Mean Standard Error Normalised Mean 

(%) 
Silencing 

Percentage 

NC_1 186.68872 261.91797 0.71277553 
NC_1 237.28867 311.84648 0.760915018 0.736845274 0.024069744 100.00% 100.00% 

F1U_1 0.11822892 165.46497 0.000714525 
F1U_1 0.023192678 130.44127 0.000177802 0.000446164 0.000268362 0.06% 99.94% 

F1U_2 51.165348 222.92795 0.229515177 
F1U_2 2.068887 319.27374 0.006479979 0.117997578 0.111517599 16.01% 83.99% 

F1U_4 14.252535 409.25293 0.034825737 
F1U_4 52.682365 221.0383 0.238340437 0.136583087 0.10175735 18.54% 81.46% 

F5D_1 4.6608047 774.3264 0.006019173 
F5D_1 0 449.90247 0 0.003009587 0.003009587 0.41% 99.59% 

SSI 61 138.73688 174.72444 0.794032478 
SSI 61 134.288002 174.753365 0.768443011 0.781237744 0.012794733 106.02% -6.02% 

A15 0.5482433 2025.7786 0.000270633 
A15 0.022072103 665.5543 3.31635E-05 0.000151898 0.000118735 0.02% 99.98% 
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ANNEX 6.3 
 
 
 
 
 
Nucleotide sequence generated by direct sequencing and resulting in 2060 bp 
sequence encompassing the phleomycin resistance cassette 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NUCLEOTIDE SEQUENCE OF THE PHLEOMYCIN RESISTANCE CASSETTE 


