138 research outputs found

    Microbial fuel cells: a green and alternative source for bioenergy production

    Get PDF
    Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)

    Prediction of Liver-Related Events Using Fibroscan in Chronic Hepatitis B Patients Showing Advanced Liver Fibrosis

    Get PDF
    Liver stiffness measurement (LSM) using transient elastography (FibroScan®) can assess liver fibrosis noninvasively. This study investigated whether LSM can predict the development of liver-related events (LREs) in chronic hepatitis B (CHB) patients showing histologically advanced liver fibrosis.Between March 2006 and April 2010, 128 CHB patients with who underwent LSM and liver biopsy (LB) before starting nucleot(s)ide analogues and showed histologically advanced fibrosis (≥F3) with a high viral loads [HBV DNA ≥2,000 IU/mL] were enrolled. All patients were followed regularly to detect LRE development, including hepatic decompensation (variceal bleeding, ascites, hepatic encephalopathy, spontaneous bacterial peritonitis, hepatorenal syndrome) and hepatocellular carcinoma (HCC).The mean age of the patient (72 men, 56 women) was 52.2 years. During the median follow-up period [median 27.8 (12.6-61.6) months], LREs developed in 19 (14.8%) patients (five with hepatic decompensation, 13 with HCC, one with both). Together with age, multivariate analysis identified LSM as an independent predictor of LRE development [P<0.044; hazard ratio (HR), 1.038; 95% confidence interval (CI), 1.002-1.081]. When the study population was stratified into two groups using the optimal cutoff value (19 kPa), which maximized the sum of sensitivity (61.1%) and specificity (86.2%) from a time-dependent receiver operating characteristic curve, patients with LSM>19 kPa were at significantly greater risk than those with LSM≤19 kPa for LRE development (HR, 7.176; 95% CI, 2.257-22.812; P = 0.001).LSM can be a useful predictor of LRE development in CHB patients showing histologically advanced liver fibrosis

    Detection of porcine circovirus type 1 in commercial porcine vaccines by loop-mediated isothermal amplification

    Get PDF
    A loop-mediated isothermal amplification (LAMP) method with a real-time monitoring system was developed for the detection of porcine circovirus type 1 (PCV1) in commercial swine vaccines. This method was highly specific for PCV1. No cross-reaction to porcine circovirus type 2, porcine parvovirus, pseudorabies virus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus was observed. The analytical sensitivity of the LAMP for PCV1 DNA was 10 copies/μl in the case of positive recombinant plasmid comparable to that obtained from the nested polymerase chain reaction (nested PCR). Furthermore, 25 commercial swine vaccines were tested by both the LAMP and the nested PCR, and three of them were tested positive for PCV1 DNA. These results indicate that PCV1 DNA can be real-time detected by the LAMP; the method was highly specific, sensitive, and rapid for the detection of PCV1 DNA, particularly in commercial swine vaccines

    Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    Get PDF
    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions

    Two Lysines in the Forkhead Domain of Foxp3 Are Key to T Regulatory Cell Function

    Get PDF
    Background: The forkhead box transcription factor, Foxp3, is master regulator of the development and function of CD4+CD25+ T regulatory (Treg) cells that limit autoimmunity and maintain immune homeostasis. The carboxyl-terminal forkhead (FKH) domain is required for the nuclear localization and DNA binding of Foxp3. We assessed how individual FKH lysines contribute to the functions of Foxp3 in Treg cells. Methodology/Principal Findings: We found that mutation of FKH lysines at position 382 (K17) and at position 393 (K18) impaired Foxp3 DNA binding and inhibited Treg suppressive function in vivo and in vitro. These lysine mutations did not affect the level of expression of Foxp3 but inhibited IL-2 promoter remodeling and had important and differing effects on Treg-associated gene expression. Conclusions/Significance: These data point to complex effects of post-translational modifications at individual lysines within the Foxp3 FKH domain that affect Treg function. Modulation of these events using small molecule inhibitors ma

    Allomorphy as a mechanism of post-translational control of enzyme activity

    Get PDF
    Enzyme regulation is vital for metabolic adaptability in living systems. Fine control of enzyme activity is often delivered through post-translational mechanisms, such as allostery or allokairy. β-phosphoglucomutase (βPGM) from Lactococcus lactis is a phosphoryl transfer enzyme required for complete catabolism of trehalose and maltose, through the isomerisation of β-glucose 1-phosphate to glucose 6-phosphate via β-glucose 1,6-bisphosphate. Surprisingly for a gatekeeper of glycolysis, no fine control mechanism of βPGM has yet been reported. Herein, we describe allomorphy, a post-translational control mechanism of enzyme activity. In βPGM, isomerisation of the K145-P146 peptide bond results in the population of two conformers that have different activities owing to repositioning of the K145 sidechain. In vivo phosphorylating agents, such as fructose 1,6-bisphosphate, generate phosphorylated forms of both conformers, leading to a lag phase in activity until the more active phosphorylated conformer dominates. In contrast, the reaction intermediate β-glucose 1,6-bisphosphate, whose concentration depends on the β-glucose 1-phosphate concentration, couples the conformational switch and the phosphorylation step, resulting in the rapid generation of the more active phosphorylated conformer. In enabling different behaviours for different allomorphic activators, allomorphy allows an organism to maximise its responsiveness to environmental changes while minimising the diversion of valuable metabolites

    Robotic neurorehabilitation: a computational motor learning perspective

    Get PDF
    Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols

    IL-1β Processing in Host Defense: Beyond the Inflammasomes

    Get PDF
    Stimulation and release of proinflammatory cytokines is an essential step for the activation of an effective innate host defense, and subsequently for the modulation of adaptive immune responses. Interleukin-1β (IL-1β) and IL-18 are important proinflammatory cytokines that on the one hand activate monocytes, macropages, and neutrophils, and on the other hand induce Th1 and Th17 adaptive cellular responses. They are secreted as inactive precursors, and the processing of pro-IL-1β and pro-IL-18 depends on cleavage by proteases. One of the most important of these enzymes is caspase-1, which in turn is activated by several protein platforms called the inflammasomes. Inflammasome activation differs in various cell types, and knock-out mice defective in either caspase-1 or inflammasome components have an increased susceptibility to several types of infections. However, in other infections and in models of sterile inflammation, caspase-1 seems to be less important, and alternative mechanisms such as neutrophil-derived serine proteases or proteases released from microbial pathogens can process and activate IL-1β. In conclusion, IL-1β/IL-18 processing during infection is a complex process in which the inflammasomes are only one of several activation mechanisms
    corecore