981 research outputs found

    Altered coronary artery function, arteriogenesis and endothelial YAP signaling in postnatal hypertrophic cardiomyopathy

    Get PDF
    Introduction: Hypertrophic cardiomyopathy (HCM) is a cardiovascular genetic disease caused largely by sarcomere protein mutations. Gaps in our understanding exist as to how maladaptive sarcomeric biophysical signals are transduced to intra- and extracellular compartments leading to HCM progression. To investigate early HCM progression, we focused on the onset of myofilament dysfunction during neonatal development and examined cardiac dynamics, coronary vascular structure and function, and mechano-transduction signaling in mice harboring a thin-filament HCM mutation.Methods: We studied postnatal days 7–28 (P7–P28) in transgenic (TG) TG-cTnT-R92Q and non-transgenic (NTG) mice using skinned fiber mechanics, echocardiography, biochemistry, histology, and immunohistochemistry.Results: At P7, skinned myofiber bundles exhibited an increased Ca2+-sensitivity (pCa50 TG: 5.97 ± 0.04, NTG: 5.84 ± 0.01) resulting from cTnT-R92Q expression on a background of slow skeletal (fetal) troponin I and α/ÎČ myosin heavy chain isoform expression. Despite the transition to adult isoform expressions between P7–P14, the increased Ca2+- sensitivity persisted through P28 with no apparent differences in gross morphology among TG and NTG hearts. At P7 significant diastolic dysfunction was accompanied by coronary flow perturbation (mean diastolic velocity, TG: 222.5 ± 18.81 mm/s, NTG: 338.7 ± 28.07 mm/s) along with localized fibrosis (TG: 4.36% ± 0.44%, NTG: 2.53% ± 0.47%). Increased phosphorylation of phospholamban (PLN) was also evident indicating abnormalities in Ca2+ homeostasis. By P14 there was a decline in arteriolar cross-sectional area along with an expansion of fibrosis (TG: 9.72% ± 0.73%, NTG: 2.72% ± 0.2%). In comparing mechano-transduction signaling in the coronary arteries, we uncovered an increase in endothelial YAP expression with a decrease in its nuclear to cytosolic ratio at P14 in TG hearts, which was reversed by P28.Conclusion: We conclude that those early mechanisms that presage hypertrophic remodeling in HCM include defective biophysical signals within the sarcomere that drive diastolic dysfunction, impacting coronary flow dynamics, defective arteriogenesis and fibrosis. Changes in mechano-transduction signaling between the different cellular compartments contribute to the pathogenesis of HCM

    Skp, Cullin, F-box (SCF)-Met30 and SCF-Cdc4-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A for Chromosomal Stability in Budding Yeast

    Get PDF
    Restricting the localization of the histone H3 variant CENP-A (Cse4 in yeast, CID in flies) tocentromeres is essential for faithful chromosome segregation. Mislocalization of CENP-Aleads to chromosomal instability (CIN) in yeast, fly and human cells. Overexpression andmislocalization of CENP-A has been observed in many cancers and this correlates withincreased invasiveness and poor prognosis. Yet genes that regulate CENP-A levels andlocalization under physiological conditions have not been defined. In this study we used agenome-wide genetic screen to identify essential genes required for Cse4 homeostasis toprevent its mislocalization for chromosomal stability. We show that two Skp, Cullin, Fbox(SCF) ubiquitin ligases with the evolutionarily conserved F-box proteins Met30 andCdc4 interact and cooperatively regulate proteolysis of endogenous Cse4 and prevent itsmislocalization for faithful chromosome segregation under physiological conditions. Theinteraction of Met30 with Cdc4 is independent of the D domain, which is essential for theirhomodimerization and ubiquitination of other substrates. The requirement for both Cdc4and Met30 for ubiquitination is specifc for Cse4; and a common substrate for Cdc4 andMet30 has not previously been described. Met30 is necessary for the interaction betweenCdc4 and Cse4, and defects in this interaction lead to stabilization and mislocalization ofCse4, which in turn contributes to CIN. We provide the first direct link between Cse4 mislocalizationto defects in kinetochore structure and show that SCF-mediated proteolysis ofPLOS Genetics Cse4 is a major mechanism that prevents stable maintenance of Cse4 at non-centromericregions, thus ensuring faithful chromosome segregation. In summary, we have identifiedessential pathways that regulate cellular levels of endogenous Cse4 and shown that proteolysisof Cse4 by SCF-Met30/Cdc4 prevents mislocalization and CIN in unperturbed cells.Fil: Au, Wei-Chun. National Institutes of Health; Estados UnidosFil: Zhang, Tianyi. National Institutes of Health; Estados UnidosFil: Mishra, Prashant K.. National Institutes of Health; Estados UnidosFil: Eisenstatt, Jessica R.. National Institutes of Health; Estados UnidosFil: Walker, Robert L.. National Institutes of Health; Estados UnidosFil: Ocampo, Josefina. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Dawson, Anthony. National Institutes of Health; Estados UnidosFil: Warren, Jack. National Institutes of Health; Estados UnidosFil: Costanzo, Michael. University of Toronto; CanadåFil: Baryshnikova, Anastasia. California Life Company; Estados UnidosFil: Flick, Karin. University of California; Estados UnidosFil: Clark, David J.. National Institutes of Health; Estados UnidosFil: Meltzer, Paul S.. National Institutes of Health; Estados UnidosFil: Baker, Richard E.. University of Massachussets; Estados UnidosFil: Myers, Chad. University of Minnesota; Estados UnidosFil: Boone, Charles. University of Toronto; CanadåFil: Kaiser, Peter. University of California; Estados UnidosFil: Basrai, Munira A.. National Institutes of Health; Estados Unido

    The Application of Novel Research Technologies by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) Consortium

    Get PDF
    The deep waters of the open ocean represent a major frontier in exploration and scientific understanding. However, modern technological and computational tools are making the deep ocean more accessible than ever before by facilitating increasingly sophisticated studies of deep ocean ecosystems. Here, we describe some of the cutting-edge technologies that have been employed by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND; www.deependconsortium.org) Consortium to study the biodiverse fauna and dynamic physical-chemical environment of the offshore Gulf of Mexico (GoM) from 0 to 1,500 m

    The implications of Methylphenidate use by healthy medical students and doctors in South Africa

    Get PDF
    Background: The use of medical stimulants to sustain attention, augment memory and enhance intellectual capacity is increasing in society. The use of Methylphenidate for cognitive enhancement is a subject that has received much attention in the literature and academic circles in recent times globally. Medical doctors and medical students appear to be equally involved in the off-label use of Methylphenidate. This presents a potential harm to society and the individual as the long-term side effect profile of this medication is unknown. Discussion: The implication of the use of Methylphenidate by medical students and doctors has not been fully explored. This article considers the impact of this use on the traditional role of medicine, society, the patient and suggests a way forward. We discuss the salient philosophy surrounding the use of cognitive enhancement. We query whether there are cognitive benefits to the use of Methylphenidate in healthy students and doctors and whether these benefits would outweigh the risks in taking the medication. Could these benefits lead to tangible outcomes for society and could the off label-use of Methylphenidate potentially undermine the medical profession and the treatment of patients? If cognitive benefits are proven then doctors may be coerced explicitly or implicitly to use the drug which may undermine their autonomy. The increased appeal of cognitive enhancement challenges the traditional role of medicine in society, and calls into question the role of a virtuous life as a contributing factor for achievement. In countries with vast economic disparity such as South Africa an enhancement of personal utility that can be bought may lead to greater inequities. Summary: Under the status quo the distribution of methylphenidate is unjust. Regulatory governmental policy must seek to remedy this while minimising the potential for competitive advantage for the enhanced. Public debate on the use of cognitive enhancement is long overdue and must be stimulated. The use of Methylphenidate for cognitive enhancement is philosophically defendable if long-term research can prove that the risks are negligible and the outcomes tangible

    The quail genome:insights into social behaviour, seasonal biology and infectious disease response

    Get PDF
    Background: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. Results: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. Conclusions: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species
    • 

    corecore