58 research outputs found

    Nested Explorative Maps: A new 3D canvas for conceptual design in architecture

    Get PDF
    International audienceIn this digital age, architects still need to alternate between paper sketches and 3D modeling software for their designs. Indeed, while 3D models enable to explore different views, creating them at very early stages might reduce creativity since they do not allow to superpose several tentative designs nor to refine them progressively, as sketches do. To enable exploratory design in 3D, we introduce Nested Explorative Maps, a new system dedicated to interactive design in architecture. Our model enables coarse to fine sketching of nested architectural structures, enabling to progressively sketch a 3D building from floor plan to interior design, thanks to a series of nested maps able to spread in 3D. Each map allows the visual representation of uncertainty as well as the interactive exploration of the alternative, tentative options. We validate the model through a user study conducted with professional architects, enabling us to highlight the potential of Nested Explorative Maps for conceptual design in architecture.En cette Ăšre du numĂ©rique, les architectes doivent encore alterner entre le croquis papier et logiciels de modĂ©lisation 3D afin de rĂ©aliser leurs conceptions. En effet, les modĂšles 3D permettent d’explorer diffĂ©rentes vues mais leur crĂ©ation Ă  un stade trĂšs prĂ©coce peut impliquer une perte de la crĂ©ativitĂ© car ils ne permettent pas de superposer plusieurs plans provisoires ni de les affiner progressivement, comme le font les esquisses. Pour permettre la conception exploratoire dans l'espace 3D, nous prĂ©sentons Nested Explorative Maps, un nouveau systĂšme dĂ©diĂ© Ă  la conception interactive en architecture. Notre modĂšle permet de dessiner du grossier aux dĂ©tails des structures architecturales imbriquĂ©es, afin de dessiner progressivement un bĂątiment en 3D, du plan Ă  la dĂ©coration intĂ©rieure, grĂące Ă  une sĂ©rie de cartes imbriquĂ©es capables de se rĂ©pandre en 3D. Chaque carte permet de reprĂ©senter visuellement l’incertitude et d’explorer de maniĂšre interactive les diffĂ©rentes options possibles. Une Ă©tude utilisateur rĂ©alisĂ©e auprĂšs d'architectes professionnels nous a permis de valider notre modĂšle et de mettre en Ă©vidence le potentiel des cartes exploratoires imbriquĂ©es pour la conception conceptuelle en architecture

    Motor Outcomes After Neonatal Arterial Ischemic Stroke Related to Early MRI Data in a Prospective Study

    Get PDF
    OBJECTIVE: We aimed to correlate early imaging data with motor outcomes in a large, homogeneous, cohort of infants with neonatal (diagnosed before 29 days of life) arterial ischemic stroke (AIS).METHODS: From a prospective cohort of 100 children with neonatal AIS, we analyzed the MRI studies performed within the 28 first days of life for 80 infants evaluated at 2 years of age. The relationships between infarction location and corticospinal tract (CST) involvement and motor outcomes were studied RESULTS: Seventy-three infarctions involved the middle cerebral artery (MCA) territory. Of those, 50 were superficial infarctions, 5 deep infarctions, and 18 mixed infarctions. The CST was involved in 24 cases. Nineteen patients with MCA infarctions (26% [95% confidence interval: 16%–34%]) developed hemiplegia. Mixed infarctions (P < .0001) and CST involvement (P < .0001) were highly predictive of hemiplegia. In contrast, 88% of children with isolated superficial MCA infarctions did not exhibit impairment. CONCLUSIONS: Accurate prediction of motor outcomes can be obtained from early MRI scans after neonatal AIS. The absence of involvement of the CST resulted in normal motor development in 94% of cases. CST involvement resulted in congenital hemiplegia in 66% of cases

    Quality of life and functional outcome in early school-aged children after neonatal stroke: A prospective cohort study

    Get PDF
    Background Quality of life (QoL) is recognized internationally as an efficient tool for evaluating health interventions. To our knowledge, QoL has not been specifically assessed in children after neonatal arterial ischemic stroke (AIS). Aim To study the QoL of early school-aged children who suffered from neonatal AIS, and QoL correlation to functional outcome. Method We conducted a multicenter prospective cohort study as part of a larger study in full-term newborns with symptomatic AIS. Participating families were sent anonymous QoL questionnaires (QUALIN). Functional outcome was measured using the Wee-FIM scale. Healthy controls in the same age range were recruited in public schools. Their primary caregivers filled in the QUALIN questionnaires anonymously. We used Student\u27s t-test and a rank test to compare patients and controls\u27 QoL and functional outcomes. Results 84 children with neonatal AIS were included. The control group was composed of 74 children, of which ten were later excluded due to chronic conditions. Mean ages and QUALIN median scores did not differ between patients and controls. Median Wee-FIM scores were lower in hemiplegic children than in non-hemiplegic ones (p < 0.001). QoL scores did not seem correlated to functional outcome. Interpretation Those results could support the presence of a “disability paradox” in young children following neonatal AIS

    Obstetrical and neonatal characteristics vary with birthweight in a cohort of 100 term newborns with symptomatic arterial ischemic stroke

    Get PDF
    ObjectivesMany questions remain regarding the mechanism of perinatal stroke. Methods In a series of 100 prospectively enrolled term neonates with symptomatic arterial ischemic stroke, we explored family antecedents, pregnancy and delivery conditions and clinical presenting features and distinguished features of the 50 larger infants with the remainder. Cardiac and cervical arterial imaging were performed in 70 and 51 cases. Results Previous fetal loss, first pregnancy, primiparity, twin-gestation, cesarean and traumatic delivery, neonatal distress, male sex and premature rupture of membranes were statistically more common than in the general population. Normal pregnancy proportion and mean birthweight were in the normal range, arguing against a vasculo-placental origin in the majority. Furthermore, there was an excess of large babies. The larger infants were more subject to suffer from acute perinatal events, with a trend for an excess of neonatal distress (p = 0.065) and for more severe presenting features (p = 0.027), while the lighter were more likely to have experienced longstanding obstetrical risk factors such as complicated pregnancy (p = 0.047) and tobacco exposure (p = 0.028). Cervical MR angiography showed an internal carotid occlusion in two babies, whereas echo-Doppler was always normal; in one case the two methods were discordant. Echocardiography was non-informative. Interpretation The data from this prospective cohort of neonates with stroke confirm that many obstetrical and perinatal factors are risk determinants. They also suggest that birthweight and gender may be biomarkers of two populations of neonates with different pathological mechanisms. MR angiography appears more sensitive than echo-Doppler for the exploration of the neonatal cervical vasculature

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit

    The geometry of life : when drawing meets life sciences

    No full text
    AprĂšs quarante ans de dĂ©veloppement des images numĂ©riques, quels sont les enjeux d’une rencontre entre le dessin et les sciences du vivant ? Les utilisations du dessin pour la transmission scientifique sont en plein renouveau, dans l’édition autant qu’en musĂ©ographie et dans le domaine de l’animation. Cependant la grande diversitĂ© des productions et des outils rend le phĂ©nomĂšne difficile Ă  apprĂ©hender. En rassemblant plusieurs articles et rĂ©alisations publiĂ©s entre 2016 et 2020, cette thĂšse introduit des concepts permettant de mieux cerner ce qui se joue dans chaque tentative pour « dessiner la vie ».La premiĂšre Ă©tape consiste Ă  s’intĂ©resser au « trait », en prenant garde de ne pas rĂ©duire cette ressource Ă  la reprĂ©sentation de formes statiques. En s’inspirant de travaux initiĂ©s dans le domaine des neurosciences, le croquis sur le vif et l’animation permettent alors d’introduire le concept de « gĂ©omĂ©trie sans point de vue ». Il s'agit d'un cadre gĂ©omĂ©trique alternatif Ă  la perspective centrale : il dĂ©termine des angles de vues prĂ©cis sans pour autant ramener l'ensemble de la composition Ă  un point de vue unique. Cette gĂ©omĂ©trie rend bien compte de la façon dont les compositions utilisĂ©es en dessin scientifique sollicitent l’imagination. Afin de porter cette rĂ©flexion dans le domaine de l’informatique graphique, je propose un algorithme permettant de « tourner autour d’un trait » (gĂ©nĂ©rer une sĂ©rie de vues d’un trait sous diffĂ©rents angles) sans faire appel Ă  une camĂ©ra virtuelle. Ce travail suggĂšre alors une connexion entre le dessin et la gĂ©omĂ©trie affine, ainsi qu’un nouveau sens pour la notion de « dessin vectoriel ».Le second concept sur lequel je m’appuie est d’ordre philosophique : il s'agit de l’ « inouĂŻ », que j'emprunte au philosophe François Jullien pour le porter dans le domaine du dessin. L’ « inouĂŻ » permet de nommer un rapport au monde trĂšs familier pour les gens qui pratiquent le dessin d'observation : il s'agit Ă  la fois d'Ă©chapper Ă  l'ennui d'une reprĂ©sentation trop « plate » ou « schĂ©matique », qui recouvre et finit par cacher la richesse du rĂ©el, sans laisser pour autant la pensĂ©e se reporter dans un "au-delĂ " mĂ©taphysique, qui dĂ©passe et fait oublier ce qui se trouve sous nos yeux. La « gĂ©omĂ©trie sans point de vue », qui repose sur les courbes plus que sur les lignes droites, apparaĂźt alors comme une condition pour que le trait donne accĂšs Ă  la spatialitĂ© « inouĂŻe » du vivant.Dans la seconde partie de cette thĂšse, j’utilise ces concepts pour revenir sur cinq « expĂ©riences de rĂ©alisation » qui, sans prĂ©tendre couvrir tout le champ des sciences du vivant, en offrent une vision relativement large Ă  travers ces diffĂ©rents thĂšmes :- le dessin anatomique (animation par morphing de dessins de LĂ©onard de Vinci)- les dĂ©buts de la microbiologie (dialogue fictif entre Pasteur et Pouchet)- l'immunitĂ© (crĂ©ation d’un livre expĂ©rimental pour tous publics)- la biologie molĂ©culaire (rĂ©alisation d’un poster sur la tubuline)- la biologie cellulaire actuelle (visualisations dessinĂ©es Ă  diffĂ©rentes Ă©chelles)A travers ces travaux, je montre que l’enjeu de « dessiner la vie » est intimement liĂ© au mouvement. Ce dernier, qu’on le nomme « animation » ou « motion design », permet alors une meilleure comprĂ©hension des ressources propres au dessin, au graphisme 2D et Ă  l’imagerie 3D. Je conclurai en Ă©voquant des pistes pour rĂ©intĂ©grer le dessin dans la formation de jeunes designers, architectes, ingĂ©nieurs ou chercheurs.En complĂ©ment, une annexe regroupe plusieurs publications complĂ©mentaires, liĂ©es Ă  la recherche d’un Ă©quilibre entre l’usage du dessin Ă  la main et celui des outils numĂ©riques.After forty years of extensive developments in digital imaging, what are the challenges now of bringing drawing and life sciences together? An important revival of drawing in scientific transmission is currently taking place, in publishing, as well as in museography and in the field of animation. However, the great diversity of outputs and tools makes this phenomenon difficult to fully appreciate. Using papers and works created between 2016 and 2020, this thesis aims to introduce a number of concepts in order to understand what takes place in every attempt to “draw life”.The first step consists in focusing on the “stroke”, while taking care not to reduce this resource purely to the representation of static forms. When taken together with inspiration from neuroscience, life sketches and animation make it possible to introduce the concept of “geometry without view-point”. This is a different geometric framework to central perspective: it determines precise angles of view but it does not constrain the whole composition to a unique point of view. This geometry captures the way compositions used in scientific drawing stimulate the viewer’s imagination. In order to transpose this phenomenon into the domain of computer graphics, I propose an algorithm for “turning around a stroke” (i.e. generating several views of a single stroke that has been made on paper), without the help of a virtual camera. This in turn suggests a connection between drawing and affine geometry, and a new meaning for the expression “vector drawing”.The second concept I use is philosophical: it is the “Inouï” (the “unnoticed”), taken from the philosopher François Jullien, which I transpose into the domain of drawing. The “Inouï” allows us to become aware of a challenge that is very familiar to those who practice observational drawing: that of avoiding becoming bored by a representation that is too “flat” or “schematic”, which could ultimately obscure the richness of reality, while at the same time not letting your mind be overwhelmed by thoughts of a metaphysical “beyond”, that makes you forget what is in front of your eyes. The “geometry without view-point” appears necessary in order to access to the “unnoticed” spatiality of living bodies, since this last one relies on curves more than straight lines.In the second part of this thesis, I use these concepts to analyse five “production experiments”. While not claiming to cover all fields of life sciences, they provide an overview through these different themes:- anatomical drawing (morphing animation of Leonardo da Vinci drawings)- early microbiology (fictional dialogue between Pasteur and Pouchet)- immunity (experimental creation of a book for the general public)- molecular biology (creation of a poster about tubulin)- cell biology (visualisations across different scales)Through this works, I show that “drawing life” is closely related to movement. Then, whether it is referred to as “animation” or “motion design”, movement allows a better understanding of the resources particular to drawing, 2D graphics and 3D imaging. I conclude with suggestions for re-integrating drawing in the training of future designers, architects, engineers or scientists.An annex gathers several complementary publications on the possibility of creating a better balance between drawing by hand and using digital tools

    La géométrie de la vie : quand le dessin rencontre les sciences du vivant

    No full text
    After forty years of extensive developments in digital imaging, what are the challenges now of bringing drawing and life sciences together? An important revival of drawing in scientific transmission is currently taking place, in publishing, as well as in museography and in the field of animation. However, the great diversity of outputs and tools makes this phenomenon difficult to fully appreciate. Using papers and works created between 2016 and 2020, this thesis aims to introduce a number of concepts in order to understand what takes place in every attempt to “draw life”.The first step consists in focusing on the “stroke”, while taking care not to reduce this resource purely to the representation of static forms. When taken together with inspiration from neuroscience, life sketches and animation make it possible to introduce the concept of “geometry without view-point”. This is a different geometric framework to central perspective: it determines precise angles of view but it does not constrain the whole composition to a unique point of view. This geometry captures the way compositions used in scientific drawing stimulate the viewer’s imagination. In order to transpose this phenomenon into the domain of computer graphics, I propose an algorithm for “turning around a stroke” (i.e. generating several views of a single stroke that has been made on paper), without the help of a virtual camera. This in turn suggests a connection between drawing and affine geometry, and a new meaning for the expression “vector drawing”.The second concept I use is philosophical: it is the “Inouï” (the “unnoticed”), taken from the philosopher François Jullien, which I transpose into the domain of drawing. The “Inouï” allows us to become aware of a challenge that is very familiar to those who practice observational drawing: that of avoiding becoming bored by a representation that is too “flat” or “schematic”, which could ultimately obscure the richness of reality, while at the same time not letting your mind be overwhelmed by thoughts of a metaphysical “beyond”, that makes you forget what is in front of your eyes. The “geometry without view-point” appears necessary in order to access to the “unnoticed” spatiality of living bodies, since this last one relies on curves more than straight lines.In the second part of this thesis, I use these concepts to analyse five “production experiments”. While not claiming to cover all fields of life sciences, they provide an overview through these different themes:- anatomical drawing (morphing animation of Leonardo da Vinci drawings)- early microbiology (fictional dialogue between Pasteur and Pouchet)- immunity (experimental creation of a book for the general public)- molecular biology (creation of a poster about tubulin)- cell biology (visualisations across different scales)Through this works, I show that “drawing life” is closely related to movement. Then, whether it is referred to as “animation” or “motion design”, movement allows a better understanding of the resources particular to drawing, 2D graphics and 3D imaging. I conclude with suggestions for re-integrating drawing in the training of future designers, architects, engineers or scientists.An annex gathers several complementary publications on the possibility of creating a better balance between drawing by hand and using digital tools.AprĂšs quarante ans de dĂ©veloppement des images numĂ©riques, quels sont les enjeux d’une rencontre entre le dessin et les sciences du vivant ? Les utilisations du dessin pour la transmission scientifique sont en plein renouveau, dans l’édition autant qu’en musĂ©ographie et dans le domaine de l’animation. Cependant la grande diversitĂ© des productions et des outils rend le phĂ©nomĂšne difficile Ă  apprĂ©hender. En rassemblant plusieurs articles et rĂ©alisations publiĂ©s entre 2016 et 2020, cette thĂšse introduit des concepts permettant de mieux cerner ce qui se joue dans chaque tentative pour « dessiner la vie ».La premiĂšre Ă©tape consiste Ă  s’intĂ©resser au « trait », en prenant garde de ne pas rĂ©duire cette ressource Ă  la reprĂ©sentation de formes statiques. En s’inspirant de travaux initiĂ©s dans le domaine des neurosciences, le croquis sur le vif et l’animation permettent alors d’introduire le concept de « gĂ©omĂ©trie sans point de vue ». Il s'agit d'un cadre gĂ©omĂ©trique alternatif Ă  la perspective centrale : il dĂ©termine des angles de vues prĂ©cis sans pour autant ramener l'ensemble de la composition Ă  un point de vue unique. Cette gĂ©omĂ©trie rend bien compte de la façon dont les compositions utilisĂ©es en dessin scientifique sollicitent l’imagination. Afin de porter cette rĂ©flexion dans le domaine de l’informatique graphique, je propose un algorithme permettant de « tourner autour d’un trait » (gĂ©nĂ©rer une sĂ©rie de vues d’un trait sous diffĂ©rents angles) sans faire appel Ă  une camĂ©ra virtuelle. Ce travail suggĂšre alors une connexion entre le dessin et la gĂ©omĂ©trie affine, ainsi qu’un nouveau sens pour la notion de « dessin vectoriel ».Le second concept sur lequel je m’appuie est d’ordre philosophique : il s'agit de l’ « inouĂŻ », que j'emprunte au philosophe François Jullien pour le porter dans le domaine du dessin. L’ « inouĂŻ » permet de nommer un rapport au monde trĂšs familier pour les gens qui pratiquent le dessin d'observation : il s'agit Ă  la fois d'Ă©chapper Ă  l'ennui d'une reprĂ©sentation trop « plate » ou « schĂ©matique », qui recouvre et finit par cacher la richesse du rĂ©el, sans laisser pour autant la pensĂ©e se reporter dans un "au-delĂ " mĂ©taphysique, qui dĂ©passe et fait oublier ce qui se trouve sous nos yeux. La « gĂ©omĂ©trie sans point de vue », qui repose sur les courbes plus que sur les lignes droites, apparaĂźt alors comme une condition pour que le trait donne accĂšs Ă  la spatialitĂ© « inouĂŻe » du vivant.Dans la seconde partie de cette thĂšse, j’utilise ces concepts pour revenir sur cinq « expĂ©riences de rĂ©alisation » qui, sans prĂ©tendre couvrir tout le champ des sciences du vivant, en offrent une vision relativement large Ă  travers ces diffĂ©rents thĂšmes :- le dessin anatomique (animation par morphing de dessins de LĂ©onard de Vinci)- les dĂ©buts de la microbiologie (dialogue fictif entre Pasteur et Pouchet)- l'immunitĂ© (crĂ©ation d’un livre expĂ©rimental pour tous publics)- la biologie molĂ©culaire (rĂ©alisation d’un poster sur la tubuline)- la biologie cellulaire actuelle (visualisations dessinĂ©es Ă  diffĂ©rentes Ă©chelles)A travers ces travaux, je montre que l’enjeu de « dessiner la vie » est intimement liĂ© au mouvement. Ce dernier, qu’on le nomme « animation » ou « motion design », permet alors une meilleure comprĂ©hension des ressources propres au dessin, au graphisme 2D et Ă  l’imagerie 3D. Je conclurai en Ă©voquant des pistes pour rĂ©intĂ©grer le dessin dans la formation de jeunes designers, architectes, ingĂ©nieurs ou chercheurs.En complĂ©ment, une annexe regroupe plusieurs publications complĂ©mentaires, liĂ©es Ă  la recherche d’un Ă©quilibre entre l’usage du dessin Ă  la main et celui des outils numĂ©riques
    • 

    corecore