56 research outputs found

    Cannabis use in early adolescence: evidence of amygdala hypersensitivity to signals of threat

    Full text link
    Cannabis use in adolescence may be characterized by differences in the neural basis of affective processing. In this study, we used an fMRI affective face processing task to compare a large group (n = 70) of 14-year olds with a history of cannabis use to a group (n = 70) of never-using controls matched on numerous characteristics including IQ, SES, alcohol and cigarette use. The task contained short movies displaying angry and neutral faces. Results indicated that cannabis users had greater reactivity in the bilateral amygdalae to angry faces than neutral faces, an effect that was not observed in their abstinent peers. In contrast, activity levels in the cannabis users in cortical areas including the right temporal-parietal junction and bilateral dorsolateral prefrontal cortex did not discriminate between the two face conditions, but did differ in controls. Results did not change after excluding subjects with any psychiatric symptomology. Given the high density of cannabinoid receptors in the amygdala, our findings suggest cannabis use in early adolescence is associated with hypersensitivity to signals of threat. Hypersensitivity to negative affect in adolescence may place the subject at-risk for mood disorders in adulthood

    Ventromedial prefrontal volume in adolescence predicts hyperactive/inattentive symptoms in adulthood

    Get PDF
    Youths with attention-deficit/hyperactivity disorder symptomatology often exhibit residual inattention and/or hyperactivity in adulthood; however, this is not true for all individuals. We recently reported that dimensional, multi-informant ratings of hyperactive/inattentive symptoms are associated with ventromedial prefrontal cortex (vmPFC) structure. Herein, we investigate the degree to which vmPFC structure during adolescence predicts hyperactive/inattentive symptomatology at 5-year follow-up. Structural equation modeling was used to test the extent to which adolescent vmPFC volume predicts hyperactive/inattentive symptomatology 5 years later in early adulthood. 1,104 participants (M = 14.52 yrs, SD = 0.42; 583 females) possessed hyperactive/inattentive symptom data at 5-year follow-up, as well as quality controlled neuroimaging data and complete psychometric data at baseline. Self-reports of hyperactive/inattentive symptomatology were obtained during adolescence and at 5-year follow-up using the Strengths and Difficulties Questionnaire (SDQ). At baseline and 5-year follow-up, a hyperactive/inattentive latent variable was derived from items on the SDQ. Baseline vmPFC volume predicted adult hyperactive/inattentive symptomatology (standardized coefficient = -.274, p < .001) while controlling for baseline hyperactive/inattentive symptomatology. These results are the first to reveal relations between adolescent brain structure and adult hyperactive/inattentive symptomatology, and suggest that early structural development of the vmPFC may be consequential for the subsequent expression of hyperactive/inattentive symptoms

    Peer victimization and its impact on adolescent brain development and psychopathology

    Get PDF
    Chronic peer victimization has long-term impacts on mental health; however, the biological mediators of this adverse relationship are unknown. We sought to determine whether adolescent brain development is involved in mediating the effect of peer victimization on psychopathology. We included participants (n = 682) from the longitudinal IMAGEN study with both peer victimization and neuroimaging data. Latent profile analysis identified groups of adolescents with different experiential patterns of victimization. We then associated the victimization trajectories and brain volume changes with depression, generalized anxiety, and hyperactivity symptoms at age 19. Repeated measures ANOVA revealed time-by victimization interactions on left putamen volume (F = 4.38, p = 0.037). Changes in left putamen volume were negatively associated with generalized anxiety (t = −2.32, p = 0.020). Notably, peer victimization was indirectly associated with generalized anxiety via decreases in putamen volume (95% CI = 0.004–0.109). This was also true for the left caudate (95% CI = 0.002–0.099). These data suggest that the experience of chronic peer victimization during adolescence might induce psychopathology-relevant deviations from normative brain development. Early peer victimization interventions could prevent such pathological changes

    Evidence of amygdala hypersensitivity to signals of threat

    Get PDF
    Cannabis use in adolescence may be characterized by differences in the neural basis of affective processing. In this study, we used an fMRI affective face processing task to compare a large group (n = 70) of 14-year olds with a history of cannabis use to a group (n = 70) of never-using controls matched on numerous characteristics including IQ, SES, alcohol and cigarette use. The task contained short movies displaying angry and neutral faces. Results indicated that cannabis users had greater reactivity in the bilateral amygdalae to angry faces than neutral faces, an effect that was not observed in their abstinent peers. In contrast, activity levels in the cannabis users in cortical areas including the right temporal-parietal junction and bilateral dorsolateral prefrontal cortex did not discriminate between the two face conditions, but did differ in controls. Results did not change after excluding subjects with any psychiatric symptomology. Given the high density of cannabinoid receptors in the amygdala, our findings suggest cannabis use in early adolescence is associated with hypersensitivity to signals of threat. Hypersensitivity to negative affect in adolescence may place the subject at- risk for mood disorders in adulthood

    Low smoking-exposure, the adolescent brain, and the modulating role of CHRNA5 polymorphisms

    Get PDF
    © 2019 Background: Studying the neural consequences of tobacco smoking during adolescence, including those associated with early light use, may help expose the mechanisms that underlie the transition from initial use to nicotine dependence in adulthood. However, only a few studies in adolescents exist, and they include small samples. In addition, the neural mechanism, if one exists, that links nicotinic receptor genes to smoking behavior in adolescents is still unknown. Methods: Structural and diffusion tensor magnetic resonance imaging data were acquired from a large sample of 14-year-old adolescents who completed an extensive battery of neuropsychological, clinical, personality, and drug-use assessments. Additional assessments were conducted at 16 years of age. Results: Exposure to smoking in adolescents, even at low doses, is linked to volume changes in the ventromedial prefrontal cortex and to altered neuronal connectivity in the corpus callosum. The longitudinal analyses strongly suggest that these effects are not preexisting conditions in those who progress to smoking. There was a genetic contribution wherein the volume reduction effects were magnified in smokers who were carriers of the high-risk genotype of the alpha 5 nicotinic receptor subunit gene, rs16969968. Conclusions: These findings give insight into a mechanism involving genes, brain structure, and connectivity underlying why some adolescents find nicotine especially addictive

    Inattention and reaction time variability are linked to ventromedial prefrontal volume in adolescents

    Get PDF
    Background Neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have most commonly reported volumetric abnormalities in the basal ganglia, cerebellum, and prefrontal cortices. Few studies have examined the relationship between ADHD symptomatology and brain structure in population-based samples. We investigated the relationship between dimensional measures of ADHD symptomatology, brain structure, and reaction time variability—an index of lapses in attention. We also tested for associations between brain structural correlates of ADHD symptomatology and maps of dopaminergic gene expression. Methods Psychopathology and imaging data were available for 1538 youths. Parent ratings of ADHD symptoms were obtained using the Development and Well-Being Assessment and the Strengths and Difficulties Questionnaire (SDQ). Self-reports of ADHD symptoms were assessed using the youth version of the SDQ. Reaction time variability was available in a subset of participants. For each measure, whole-brain voxelwise regressions with gray matter volume were calculated. Results Parent ratings of ADHD symptoms (Development and Well-Being Assessment and SDQ), adolescent self-reports of ADHD symptoms on the SDQ, and reaction time variability were each negatively associated with gray matter volume in an overlapping region of the ventromedial prefrontal cortex. Maps of DRD1 and DRD2 gene expression were associated with brain structural correlates of ADHD symptomatology. Conclusions This is the first study to reveal relationships between ventromedial prefrontal cortex structure and multi-informant measures of ADHD symptoms in a large population-based sample of adolescents. Our results indicate that ventromedial prefrontal cortex structure is a biomarker for ADHD symptomatology. These findings extend previous research implicating the default mode network and dopaminergic dysfunction in ADHD

    Mega-Analysis of Gray Matter Volume in Substance Dependence: General and Substance-Specific Regional Effects

    Get PDF
    Objective: Although lower brain volume has been routinely observed in individuals with substance dependence compared with nondependent control subjects, the brain regions exhibiting lower volume have not been consistent across studies. In addition, it is not clear whether a common set of regions are involved in substance dependence regardless of the substance used or whether some brain volume effects are substance specific. Resolution of these issues may contribute to the identification of clinically relevant imaging biomarkers. Using pooled data from 14 countries, the authors sought to identify general and substance-specific associations between dependence and regional brain volumes. Method: Brain structure was examined in a mega-analysis of previously published data pooled from 23 laboratories, including 3,240 individuals, 2,140 of whom had substance dependence on one of five substances: alcohol, nicotine, cocaine, methamphetamine, or cannabis. Subcortical volume and cortical thickness in regions defined by FreeSurfer were compared with nondependent control subjects when all sampled substance categories were combined, as well as separately, while controlling for age, sex, imaging site, and total intracranial volume. Because of extensive associations with alcohol dependence, a secondary contrast was also performed for dependence on all substances except alcohol. An optimized split-half strategy was used to assess the reliability of the findings. Results: Lower volume or thickness was observed in many brain regions in individuals with substance dependence. The greatest effects were associated with alcohol use disorder. A set of affected regions related to dependence in general, regardless of the substance, included the insula and the medial orbitofrontal cortex. Furthermore, a support vector machine multivariate classification of regional brain volumes successfully classified individuals with substance dependence on alcohol or nicotine relative to nondependent control subjects. Conclusions: The results indicate that dependence on a range of different substances shares a common neural substrate and that differential patterns of regional volume could serve as useful biomarkers of dependence on alcohol and nicotine

    Arterial hypertension impact on cerebral blood flow in patients with Alzheimer’s disease

    No full text
    BACKGROUND: Studies show the potential deterioration of brain vascularization and probable involvement of hypertension in Alzheimer disease (AD). OBJECTIVE: The objective was to evaluate the potential impact of hypertension on cerebral vascular flows in a sample of Alzheimer's patients. METHODS: 19 patients with AD, including 10 with hypertension (aHT+) and 9 without hypertension (aHT-) were recruited. They underwent clinical evaluation and phase-contrast MRI protocol for flow assessment. Cerebral arterial flow distributions were evaluated using kurtosis and skewness indices at the intracranial and extracranial levels. RESULTS: No significant differences were found in the mean arterial flow, pulse flow and kurtosis between the levels in the AD aHT+ population. There was a significant difference in skewness between extra- and intracranial levels (p = 0.01). No significant differences were found in the mean arterial flow between the levels in the AD aHT- population. A significant difference was observed in the pulse flow (p = 0.03), kurtosis (p = 0.02) and skewness (p = 0.008) between the levels. At the extracranial level we did not find any significant differences in the mean arterial flow, pulse flow or skewness between aHT+ and aHT-. There was a significant difference in kurtosis at the extracranial level between the aHT+ and aHT- (p = 0.03). At the intracranial level, there were no significant differences in all parameters. CONCLUSION: Results showed a difference between cerebral vasculature in AD for aHT+ and aHT- groups. This is probably related to the loss of arterial compliance induced by the degradation of the vascular system.</p

    The role of PC-MRI in neurodegenerative diseases

    No full text
    INTRODUCTION: Neurodegenerative diseases, a major public health problem, could have a vascular origin. Phase-contrast magnetic resonance imaging (PC-MRI) enables reliable, non-invasive, and rapid measurements of cerebrospinal fluid (CSF) and blood flows, and evaluation of the mechanical coupling between cerebral blood and CSF flows throughout the cardiac cycle (CC). OBJECTIVES: Our purpose was to evaluate the potential of PC-MRI to the study of cerebral blood and CSF flows in patients with neurodegenerative diseases such as Alzheimer’s disease (AD), Mild cognitive impairment with amnesic disorders (MCIa) and Vascular Dementia (VD). METHODS: The elderly population consisted of 20 AD (age: 80 ± 5 years); 12 AD patients with vascular cerebral lesions (ADvasc) (age: 81 ± 5 years), 10 MCIa patients (age: 80 ± 7 years), and 8 VD patients (age: 78 ± 7 years) were identified. They underwent the same PC-MRI protocol and were compared to 13 age-matched Healthy Elderly (HE) (age: 71± 9 years). Arterial blood pressure was analyzed to detect patients with hypertension. RESULTS: Significantly higher cerebral blood and CSF flows were observed in HE when compared to VD, AD and ADvasc, (p&lt;0.05), but not MCIa patients who yielded the highest cerebral arterial and venous blood flows and stroke volumes compared to the other patients, (p&lt;0.05). The highest oscillations of CSF were also detected in MCIa patients (p&lt;0.05). CONCLUSION: Our preliminary data suggests an increase in cerebral arterial blood and CSF flows in MCIa. PC-MRI provides a new hydrodynamic view, which may help evaluate a potential role of cardiovascular alterations in neurodegenerative diseases.</p
    • …
    corecore