19 research outputs found

    Genomic risk prediction of coronary artery disease in nearly 500,000 adults: implications for early screening and primary prevention

    Get PDF
    Background Coronary artery disease (CAD) has substantial heritability and a polygenic architecture; however, genomic risk scores have not yet leveraged the totality of genetic information available nor been externally tested at population-scale to show potential utility in primary prevention. Methods Using a meta-analytic approach to combine large-scale genome-wide and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS), consisting of 1.7 million genetic variants. We externally tested metaGRS, individually and in combination with available conventional risk factors, in 22,242 CAD cases and 460,387 non-cases from UK Biobank. Findings In UK Biobank, a standard deviation increase in metaGRS had a hazard ratio (HR) of 1.71 (95% CI 1.68–1.73) for CAD, greater than any other externally tested genetic risk score. Individuals in the top 20% of the metaGRS distribution had a HR of 4.17 (95% CI 3.97–4.38) compared with those in the bottom 20%. The metaGRS had higher C-index (C=0.623, 95% CI 0.615–0.631) for incident CAD than any of four conventional factors (smoking, diabetes, hypertension, and body mass index), and addition of the metaGRS to a model of conventional risk factors increased C-index by 3.7%. In individuals on lipid-lowering or anti-hypertensive medications at recruitment, metaGRS hazard for incident CAD was significantly but only partially attenuated with HR of 2.83 (95% CI 2.61– 3.07) between the top and bottom 20% of the metaGRS distribution. Interpretation Recent genetic association studies have yielded enough information to meaningfully stratify individuals using the metaGRS for CAD risk in both early and later life, thus enabling targeted primary intervention in combination with conventional risk factors. The metaGRS effect was partially attenuated by lipid and blood pressure-lowering medication, however other prevention strategies will be required to fully benefit from earlier genomic risk stratification. Funding National Health and Medical Research Council of Australia, British Heart Foundation, Australian Heart Foundation.This study was supported by funding from National Health and Medical Research Council (NHMRC) grant APP1062227. Supported in part by the Victorian Government’s OIS Program. M.I. was supported by an NHMRC and Australian Heart Foundation Career Development Fellowship (no. 1061435). G.A. was supported by an NHMRC Early Career Fellowship (no. 1090462). N.J.S., C.P.N. and B.K. are supported by the British Heart Foundation and N.J.S. is a NIHR Senior Investigator. R.S.P. is supported by the British Heart Foundation (FS/14/76/30933). The MRC/BHF Cardiovascular Epidemiology Unit is supported by the UK Medical Research Council [MR/L003120/1], British Heart Foundation [RG/13/13/30194], and UK National Institute for Health Research Cambridge Biomedical Research Centre. J.D. is a British Heart Foundation Professor and NIHR Senior Investigator

    Aspectos epidemiológicos do Helicobacter pylori na infância e adolescência

    Full text link

    IndEcho study: Cohort study investigating birth size, childhood growth and young adult cardiovascular risk factors as predictors of midlife myocardial structure and function in South Asians

    No full text
    Introduction South Asians have high rates of cardiovascular disease (CVD) and its risk factors (hypertension, diabetes, dyslipidaemia and central obesity). Left ventricular (LV) hypertrophy and dysfunction are features of these disorders and important predictors of CVD mortality. Lower birth and infant weight and greater childhood weight gain are associated with increased adult CVD mortality, but there are few data on their relationship to LV function. The IndEcho study will examine associations of birth size, growth during infancy, childhood and adolescence and CVD risk factors in young adulthood with midlife cardiac structure and function in South Asian Indians. Methods and analysis We propose to study approximately 3000 men and women aged 43–50 years from two birth cohorts established in 1969–1973: the New Delhi Birth Cohort (n=1508) and Vellore Birth Cohort (n=2156). They had serial measurements of weight and height from birth to early adulthood. CVD risk markers (body composition, blood pressure, glucose tolerance and lipids) and lifestyle characteristics (tobacco and alcohol consumption, physical activity, socioeconomic status) were assessed at age ~30 years. Clinical measurements in IndEcho will include anthropometry, blood pressure, biochemistry (glucose, fasting insulin and lipids, urinary albumin/creatinine ratio) and body composition by dual energy X-ray absorptiometry and bioelectrical impedance. Outcomes are LV mass and indices of LV systolic and diastolic function assessed by two-dimensional and Doppler echocardiography, carotid intimal-media thickness and ECG indicators of ischaemia. Regression and conditional growth models, adjusted for potential confounders, will be used to study associations of childhood and young adult exposures with these cardiovascular outcomes. Ethics and dissemination The study has been approved by the Health Ministry Steering Committee, Government of India and institutional ethics committees of participating centres in India and the University of Southampton, UK. Results will be disseminated through scientific meetings and peer-reviewed journals.</p

    IndEcho study: Cohort study investigating birth size, childhood growth and young adult cardiovascular risk factors as predictors of midlife myocardial structure and function in South Asians

    Get PDF
    Introduction South Asians have high rates of cardiovascular disease (CVD) and its risk factors (hypertension, diabetes, dyslipidaemia and central obesity). Left ventricular (LV) hypertrophy and dysfunction are features of these disorders and important predictors of CVD mortality. Lower birth and infant weight and greater childhood weight gain are associated with increased adult CVD mortality, but there are few data on their relationship to LV function. The IndEcho study will examine associations of birth size, growth during infancy, childhood and adolescence and CVD risk factors in young adulthood with midlife cardiac structure and function in South Asian Indians. Methods and analysis We propose to study approximately 3000 men and women aged 43–50 years from two birth cohorts established in 1969–1973: the New Delhi Birth Cohort (n=1508) and Vellore Birth Cohort (n=2156). They had serial measurements of weight and height from birth to early adulthood. CVD risk markers (body composition, blood pressure, glucose tolerance and lipids) and lifestyle characteristics (tobacco and alcohol consumption, physical activity, socioeconomic status) were assessed at age ~30 years. Clinical measurements in IndEcho will include anthropometry, blood pressure, biochemistry (glucose, fasting insulin and lipids, urinary albumin/creatinine ratio) and body composition by dual energy X-ray absorptiometry and bioelectrical impedance. Outcomes are LV mass and indices of LV systolic and diastolic function assessed by two-dimensional and Doppler echocardiography, carotid intimal-media thickness and ECG indicators of ischaemia. Regression and conditional growth models, adjusted for potential confounders, will be used to study associations of childhood and young adult exposures with these cardiovascular outcomes. Ethics and dissemination The study has been approved by the Health Ministry Steering Committee, Government of India and institutional ethics committees of participating centres in India and the University of Southampton, UK. Results will be disseminated through scientific meetings and peer-reviewed journals.</p

    Genetic invalidation of Lp-PLA(2) as a therapeutic target : Large-scale study of five functional Lp-PLA(2)-lowering alleles

    Get PDF
    Aims: Darapladib, a potent inhibitor of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), has not reduced risk of cardiovascular disease outcomes in recent randomized trials. We aimed to test whether Lp-PLA(2) enzyme activity is causally relevant to coronary heart disease. Methods: In 72,657 patients with coronary heart disease and 110,218 controls in 23 epidemiological studies, we genotyped five functional variants: four rare loss-of-function mutations (c. 109+2T> C (rs142974898), Arg82His (rs144983904), Val279Phe (rs76863441), Gln287Ter (rs140020965)) and one common modest-impact variant (Val379Ala (rs1051931)) in PLA2G7, the gene encoding Lp-PLA(2). We supplemented de-novo genotyping with information on a further 45,823 coronary heart disease patients and 88,680 controls in publicly available databases and other previous studies. We conducted a systematic review of randomized trials to compare effects of darapladib treatment on soluble Lp-PLA(2) activity, conventional cardiovascular risk factors, and coronary heart disease risk with corresponding effects of Lp-PLA(2)-lowering alleles. Results: Lp-PLA(2) activity was decreased by 64% (p = 2.4 x 10 (-25)) with carriage of any of the four loss-of-function variants, by 45% (p<10 (-300)) for every allele inherited at Val279Phe, and by 2.7% (p = 1.9 x 10 (-12)) for every allele inherited at Val379Ala. Darapladib 160 mg once-daily reduced Lp-PLA(2) activity by 65% (p<10 (-300)). Causal risk ratios for coronary heart disease per 65% lower Lp-PLA(2) activity were: 0.95 (0.88-1.03) with Val279Phe; 0.92 (0.74-1.16) with carriage of any loss-of-function variant; 1.01 (0.68-1.51) with Val379Ala; and 0.95 (0.89-1.02) with darapladib treatment. Conclusions: In a large-scale human genetic study, none of a series of Lp-PLA(2)-lowering alleles was related to coronary heart disease risk, suggesting that Lp-PLA(2) is unlikely to be a causal risk factor.Peer reviewe

    Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention.

    Get PDF
    BACKGROUND: Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. OBJECTIVES: This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention. METHODS: Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 noncases from the UK Biobank. RESULTS: The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS had a higher C-index (C = 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors (smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in the top 20% of metaGRS with >2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age. CONCLUSIONS: The genomic score developed and evaluated here substantially advances the concept of using genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential for genomic screening in early life to complement conventional risk prediction
    corecore