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ORIGINAL INVESTIGATIONS

Genomic Risk Prediction of Coronary
Artery Disease in 480,000 Adults
Implications for Primary Prevention

Michael Inouye, PHD,a,b,c,d,e,* Gad Abraham, PHD,a,b,c,d,* Christopher P. Nelson, PHD,f Angela M. Wood, PHD,c

Michael J. Sweeting, PHD,c Frank Dudbridge, PHD,c,g Florence Y. Lai, MPHIL,f Stephen Kaptoge, PHD,c,h

Marta Brozynska, PHD,a,b,c Tingting Wang, PHD,a,b,c Shu Ye, MD, PHD,f Thomas R. Webb, PHD,f

Martin K. Rutter, MD,i,j Ioanna Tzoulaki, PHD,k,l Riyaz S. Patel, MD,m,n Ruth J.F. Loos, PHD,o Bernard Keavney, MD,p,q

Harry Hemingway, MD,r John Thompson, PHD,g Hugh Watkins, MD, PHD,s,t Panos Deloukas, PHD,u

Emanuele Di Angelantonio, MD, PHD,c,h Adam S. Butterworth, PHD,c,h John Danesh, DPHIL,c,h,v

Nilesh J. Samani, MD,f,* for the UK Biobank CardioMetabolic Consortium CHD Working Group

ABSTRACT

BACKGROUND Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the

potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because

available studies have involved limited genomic scope and limited sample sizes.

OBJECTIVES This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening

tool for primary prevention.

METHODS Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association

data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally

tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD

cases and 460,387 noncases from the UK Biobank.

RESULTS The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in

metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS

stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS

distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding

HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS

had a higher C-index (C ¼ 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors

(smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in

the top 20% of metaGRS with >2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age.

CONCLUSIONS The genomic score developed and evaluated here substantially advances the concept of using

genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential

for genomic screening in early life to complement conventional risk prediction. (J Am Coll Cardiol 2018;72:1883–93)

© 2018 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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A s coronary artery disease (CAD) is
the leading cause of morbidity and
mortality worldwide, early identifi-

cation of individuals who are at high risk
of CAD is essential for primary prevention.
As the heritability of CAD has been estimated
to be 40% to 60%, comprehensive informa-
tion on genetic susceptibility could con-

tribute importantly to CAD risk stratification (1,2).

Although family history has long been identified as
a risk factor for CAD, elucidation of the genetic archi-
tecture of CAD has advanced substantially only
during the past decade with the advent of genome-
wide association studies. Results from these
assumption-free surveys across the genome have
laid foundations for developing genomic risk scores
(GRS) in the estimation of an individual’s underlying
genomic risk (3–9). Furthermore, because GRS are
based on germline DNA, they are quantifiable in early
life, at or before birth. Hence, they offer the potential
for early risk screening and primary prevention
before other conventional risk factors become
informative.

Due to several inter-related factors, however,
previous GRS for CAD have been unable to provide
comprehensive assessment of the potential of

using genomic information in CAD risk prediction.
First, because previously published GRS have utilized
only genetic variants of genome-wide significance
(4,5,8) or involved genotyping arrays that focused
only on pre-selected loci (3), they have not fully
utilized genome-wide variation, preventing accurate
estimation of the relative contribution of each genetic
variant to CAD risk. Second, because previous studies
of GRS have tended to have moderate statistical
power, they have been unable to provide precise effect
size estimates (10–12). Third, because previous studies
of GRS have largely lacked external testing in large-
scale cohorts that represent a diversity of ancestries
(3) and typically have involved only a narrow spec-
trum of CAD burden (e.g., inclusion of myocardial
infarction only) (13,14), their generalizability has
been limited.

Here, we report a more powerful and generalizable
genome-wide GRS for CAD to provide a more
comprehensive evaluation. We utilized a meta-
analytic strategy to construct a GRS for CAD (met-
aGRS) that captures the totality of information
from the largest previous genome-wide association
studies, and then investigated the external perfor-
mance of this metaGRS in stratifying CAD risk in
>480,000 individuals from the UK Biobank (UKB)
(15). Furthermore, we assessed the effects of 6 con-
ventional risk factors (smoking, blood pressure, body
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mass index [BMI], diabetes, family history, and high
cholesterol) on different genomic risk backgrounds,
with the aim of delineating event rates across age,
sex, clinical risk factors, and genomic risk score strata
to identify individuals who are more likely to benefit
from earlier and more intensive therapies. Finally, to
assess the potential therapeutic implications of
genomic risk scores, we tested the impact of blood
pressure and lipid-lowering medication on the
performance of the metaGRS.

METHODS

STUDY DESIGN AND PARTICIPANTS. The design of
this study is shown in Online Figure 1. Details of the
design of the UKB have been reported previously (15).
Participants were members of the general U.K. popu-
lation between age 40 and 69 years at recruitment,
identified through primary care lists, who accepted an
invitation to attend 1 of the 22 assessment centers that
were serially established across the United Kingdom
between 2006 and 2010. At recruitment, detailed in-
formation was collected via a standardized question-
naire on sociodemographic characteristics, health
status and physician-diagnosed medical conditions,
family history, and lifestyle factors. Selected physical
and functional measurements were obtained,
including height, weight, waist-hip ratio, and systolic
and diastolic blood pressures. The UKB data were
subsequently linked to Hospital Episode Statistics
(HES) data, as well as national death and cancer reg-
istries. The HES data available for the current analysis
cover all hospital admissions to NHS hospitals in En-
gland and Scotland from April 1997 to March 2015,
with the Scottish data dating back as early as 1981.
HES uses International Classification of Diseases
(ICD)–9th and 10th Revisions to record diagnosis in-
formation, and OPCS-4 (Office of Population, Cen-
suses and Surveys: Classification of Interventions and
Procedures, version 4) to code operative procedures.
Death registries include all deaths in the United
Kingdom until January 2016, with both primary and
contributory causes of death coded in ICD-10.

CAD was defined as fatal or nonfatal myocardial
infarction (MI) cases, percutaneous transluminal
coronary angioplasty (PTCA), or coronary artery
bypass grafting (CABG). The age of event in prevalent
cases was determined by self-reported age and
calculated age based on the earliest hospital record
for the event; if both self-reported age and calculated
age were available, the smaller value was used. For
incident cases, hospital and/or death records were
used to determined age of event. Prevalent versus
incident status was relative to the UKB enrollment

assessment. In UKB self-reported data, cases were
defined as having had a heart attack diagnosed by a
doctor (data field #6150); “non-cancer illnesses that
self-reported as heart attack” (data field #20002); or
self-reported operation including PTCA, CABG, or
triple heart bypass (data field #20004). In HES hos-
pital episodes data and death registry data, MI was
defined as hospital admission or cause of death due to
ICD-9 410 to 412, or ICD-10 I21 to I24 or I25.2; CABG
and PTCA were defined as hospital admission OPCS-4
K40 to K46, K49, K50.1, or K75.

We defined risk factors at the first assessment as
follows: diabetes diagnosed by a doctor (field #2443),
BMI (field #21001), current smoking (field #20116),
hypertension, family history of heart disease, and high
cholesterol. For hypertension we used an expanded
definition including self-reported high blood pressure
(either on blood pressure medication, data fields
#6177, #6153; systolic blood pressure >140 mm Hg,
fields #4080, #93; or diastolic blood pressure
>90mmHg, data fields #4079, #94). For family history
of heart disease, we considered history in any first-
degree relative (father, mother, sibling; fields
#20107, 20110, and 20111, respectively). For high
cholesterol, we considered individuals with self-
reported high cholesterol at assessment, as well as
diagnoses in the HES/death records (ICD-9 272.0;
ICD-10 E78.0). For the analyses of the number of
elevated risk factors, we considered diagnosed dia-
betes (yes/no), hypertension at assessment (yes/no),
BMI >30 kg/m2, smoking at assessment (yes/no), high
cholesterol (yes/no), and family history of heart
disease (yes/no).

Genotyping of UK Biobank participants was
undertaken using a custom-built genome-wide array
(the UK Biobank Axiom array) of w826,000 markers.
Genotyping was done in 2 phases. A total of 50,000
subjects were initially typed as part of the UK BiLEVE
project (16). The rest of the participants were geno-
typed using a slightly modified array. Imputation to
w92 million markers was subsequently carried out
using the Haplotype Reference Consortium (17) and
UK10K/1000Genomes haplotype resource panels;
however, at the time of analysis, known issues exis-
ted with the imputation using the latter panel.

DATA PROCESSING AND QUALITY CONTROL. A
detailed description is available in the Online
Appendix. Briefly, we adapted appropriate quality-
control procedures to the set of GWAS (genome-wide
association study) summary statistics being utilized,
filtering genetic variants for minor allele frequency,
Hardy-Weinberg equilibrium, and imputation quality
using PLINK (18). Population structure was controlled
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using the genetic principal components (PCs) supplied
by UKB (16). Individuals from UKB were removed if
they were diagnosed with coronary aneurysm or had
no CAD event date information.

CONSTRUCTION OF THE metaGRS. A detailed
description is available in the Online Appendix.

Briefly, we built a meta-score (metaGRS) based on 3
genetic risk scores: 1) a previously published score
(GRS46K) of 46,000 SNPs derived from a genetic as-
sociation study using Metabochip, a genotyping array
with a focus on cardiometabolic genetic loci (3); 2) a
score of 202 genetic variants significantly associated
with CAD at false discovery rate <0.05 (FDR202) in a
recent GWAS from CARDIoGRAMplusC4D (18); and 3)
a genome-wide polygenic score (1000Genomes) based
on the same GWAS (18). To derive the 1000Genomes
score and weight the 3 genetic risk scores for the
metaGRS, we used a small training set from UKB
(n ¼ 3,000 individuals). The remaining 482,629 UKB
individuals not in the training set comprised the
external validation set.

STATISTICAL ANALYSIS. All scores were standard-
ized to zero-mean and unit-variance. All scores were
evaluated using logistic regression or age-as-time-
scale Cox proportional hazards regression, with
censoring at 75 years, as well as with Kaplan-Meier
estimates of cumulative incidence (censored at
75 years). Unless otherwise noted, analyses using
only genetic risk scores include both prevalent and
incident CAD cases (germline DNA variation being

TABLE 1 Study Characteristics

UK Biobank
(N ¼ 482,629)

Male
(n ¼ 220,284)

(45.6%)

Female
(n ¼ 262,345)

(54.4%)

Age at assessment, yrs 56.5 � 8.1 56.7 � 8.2 56.4 � 8.0

Current smoker 50,664 (10.5) 27,391 (12.4) 23,273 (8.9)

Blood pressure, systolic, mm Hg 139.8 � 19.7 142.8 � 18.5 137.3 � 20.3

Diabetes diagnosed by doctor 24,920 (5.2) 15,336 (7.0) 9,887 (4.5)

Hypertension 254,564 (52.7) 133,013 (60.4) 121,533 (46.3)

Family history, first-degree relative 206,363 (42.8) 87,946 (39.9) 118,417 (45.1)

High cholesterol 65,829 (13.6) 37,801 (17.2) 28,028 (10.7)

Prevalent CAD events before age 75 yrs 9,729 (2.0) 7950 (3.6) 1779 (0.7)

Incident CAD events before age 75 yrs 12,513 (2.6) 9320 (4.2) 3193 (1.2)

On blood-pressure lowering medication 99,454 (20.6) 53,535 (24.3) 45,939 (17.5)

On lipid-lowering medication 82,493 (17.1) 49,459 (22.5) 33,028 (12.6)

Follow-up time, yrs 6.2 � 2.1 5.9 � 2.6 6.4 � 1.4

Values are mean � SD or n (%). CAD ¼ coronary artery disease.

FIGURE 1 Relative Performance of Individual Genomic Risk Scores for CAD Compared With the metaGRS
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determined prior to any disease); to avoid reverse
causation, analyses that included conventional risk
factors (measured at the UKB assessment) used only
incident CAD. The Cox models were stratified by
sex and adjusted for genotyping array (BiLEVE vs.
UKB) and 10 genetic PCs. C-indexes for the Cox
models were sex stratified, using age as the
time scale. A competing risk analysis, using the
Aalen-Johansen estimator (3 states: CAD, non-CAD
death, and censored), was conducted using the R
package “survival” version 2.41-3 (R Foundation for
Statistical Computing, Vienna, Austria) (19). The
precision-recall curves (equivalent to the positive-
predictive-value vs sensitivity curve) were
computed in the R package “ROCR” (20), and the area
under the curve was computed using numerical
integration.

RESULTS

The characteristics of the UKB subjects in the external
validation set (N ¼ 482,629) are shown in Table 1,
comprising 22,242 CAD cases before age 75 years
and 460,387 noncases in total. There were 9,729
prevalent cases of CAD at the time of recruitment, and

a further 12,513 incident cases of CAD during a mean
follow-up of 6.2 years, at the censoring age of 75 years
in 2017. Our meta-analysis approach resulted in a
“metaGRS” comprising 1,745,180 genetic variants,
themselves explaining 26.8% of CAD heritability
(Online Appendix). A comparison of the metaGRS
with its individual components and previously pub-
lished GRS from Tikkanen et al. (6) and Tada et al. (8)
in the UKB external validation set is given in Figure 1,
showing that the metaGRS had substantially greater
association with CAD risk in terms of hazard ratio
(HR) as well as positive predictive value at any given
sensitivity.

In the external UKB validation set, the metaGRS
was accurate at classifying CAD cases versus non-
cases, with an area under the receiver-operating
curve of 0.79 (þ2.8% over the reference logistic
model consisting of sex, age at assessment, geno-
typing array, and 10 PCs). The metaGRS offered
greater positive predictive value at any given sensi-
tivity and, thus, greater area under the precision-
recall curve (recall is also known as sensitivity)
compared with the reference model (0.161 vs. 0.123)
(Figure 2A). The distributions of the metaGRS
amongst prevalent CAD cases, incident CAD cases,

FIGURE 2 Predictive Measures of CAD Using the metaGRS and Conventional Risk Factors
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and non-CAD cases were each approximately
Gaussian and revealed a trend of increasing genomic
risk (Online Figure 2), with prevalent cases more
easily differentiable, as they likely comprise
individuals who are at higher genomic risk and have
thus had earlier CAD events.

In sex-stratified Cox regression models for all CAD
(prevalent and incident), the metaGRS had an HR of
1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD
of metaGRS (p < 0.0001) (Figure 1). The metaGRS was
significantly but weakly associated with body mass
index (BMI) at assessment (0.0044 log[kg/m2] per SD;
95% CI: 0.0039 to 0.0049; p < 0.0001), diagnosed
diabetes (odds ratio [OR]: 1.14 per SD; 95% CI: 1.13 to
1.16; p < 0.0001), hypertension at assessment (OR:
1.19 per SD; 95% CI: 1.18 to 1.20; p < 0.0001), current
smoking at assessment (OR: 1.06 per SD; 95% CI: 1.04
to 1.07; p < 0.0001), family history of heart disease
(OR: 1.21 per SD; 95% CI: 1.199 to 1.214; p < 0.0001),
and self-reported high cholesterol at/before assess-
ment (OR: 1.27 per SD; 95% CI: 1.26 to 1.28;
p < 0.0001). No evidence for competing risk effects
was observed (Online Figure 3). In Cox regression of
incident CAD (Figure 2B), models based on the met-
aGRS had higher C-index (C ¼ 0.623; 95% CI: 0.615 to
0.630) than any of the individual conventional

risk factors, with the second-best factor being self-
reported high cholesterol at assessment (C ¼ 0.594;
95% CI: 0.587 to 0.601). A model combining the 6
conventional risk factors had only slightly better
performance (C ¼ 0.670; 95% CI: 0.663 to 0.678) than
the metaGRS individually. Combining the metaGRS
with all 6 conventional risk factors led to a model
with C-index of 0.696 (95% CI: 0.688 to 0.703), an
increase of 2.6% over the model consisting of the
6 conventional risk factors. When adjusting for
conventional risk factors, only incident CAD cases
could be considered; however, the HR for metaGRS
was only modestly attenuated (HR: 1.58 per SD;
95% CI: 1.55 to 1.61 not adjusting for risk factors; HR:
1.55 per SD; 95% CI: 1.52 to 1.58 adjusting for family
history; HR: 1.48 per SD; 95% CI: 1.45 to 1.51 after
adjustment for 6 other risk factors).

To investigate the potential role of the metaGRS in
earlier life genetic screening, we compared the
sex-stratified cumulative incidence of CAD across
quintiles of the metaGRS (Figure 3). In UKB men, we
observed that CAD risk in the highest metaGRS
quintile began exponentially increasing shortly after
age 40 years, reaching a threshold of 10% cumulative
risk by 61 years of age (Figure 3). By comparison, CAD
risk for men in the lowest metaGRS quintile did not

FIGURE 3 Cumulative Risk of CAD by Quintiles of metaGRS in Men and Women
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begin increasing until age 50 years, and on average,
did not reach 10% by the censoring age of 75 years.
In UKB women, the metaGRS results were similar but
delayed given the lower absolute CAD risk overall
compared with men. For women in the highest met-
aGRS quintile, CAD risk began increasing at age
49 years and reached 10% at age 75 years, whereas
women in the lowest metaGRS quintile were at
extremely low levels of risk, reaching 2.5% CAD risk
by the censoring age of 75 years. There was no
evidence for a statistical interaction of the metaGRS
with sex. Overall, on average, UKB individuals in
the top metaGRS quintile were at 4.17-fold (95% CI:
3.97- to 4.38-fold) higher hazard of CAD than those
in the bottom metaGRS quintile (Figure 3).

We next assessed the differences in incident CAD
risk across metaGRS quintiles when combined with
conventional risk factors (current smoking,

diagnosed diabetes, high blood pressure, high BMI,
family history of heart disease, and high cholesterol)
individually (Online Figures 4 to 9) or as an un-
weighted score, the number (0 to 6) of conventional
risk factors per individual (Figure 4). Broadly, the
patterns were similar across all of the analyses.
Genomic risk and lifestyle/clinical factors combined
to be associated with higher risk in both men and
women; however, in most instances, this was addi-
tive rather than interactive. In Cox regression models
of incident CAD, adjusting for current smoking,
diagnosed diabetes, hypertension, log BMI, family
history, high cholesterol, genotyping array, and 10
genetic PCs, there was no strong evidence of statis-
tical interactions between the metaGRS and diabetes
(p ¼ 0.074 for interaction), smoking (p ¼ 0.13 for
interaction), hypertension (p ¼ 0.93 for interaction),
family history (p ¼ 0.51 for interaction), or high

FIGURE 4 Cumulative Risk of Incident CAD for Increasing Numbers of Conventional Risk Factors Stratified by metaGRS Quintile
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cholesterol (p ¼ 0.14 for interaction), but there was
some evidence for interaction with log BMI (HR: 0.85;
95% CI: 0.76 to 0.95; p ¼ 0.0052). From a clinical
perspective, it was notable that men in the highest
metaGRS quintile who had no conventional risk
factors still reached 10% cumulative incidence of
CAD by age 69 years, with a similar cumulative inci-
dence as men in the lowest metaGRS quintile who had
2 elevated conventional risk factors (Figure 4). Men in
the highest metaGRS quintile and with 3 or more
conventional risk factors were at extremely high
levels of CAD risk, reaching the 10% threshold by age
48 years. Approximately 79% of women did not reach
10% CAD risk before age 75 years, even if they had 2
conventional risk factors, due to compensation by
low or moderate metaGRS risk. Even amongst women
in the highest metaGRS quintile, only those with 2 or
more conventional risk factors achieved 10% risk
before age 75 years (Figure 4).

To assess the impact of use of treatments (lipid-
lowering and antihypertensive medication) that have
been proven to lower CAD risk on the performance of
the metaGRS, we analyzed the association of the
metaGRS with incident CAD in those taking 1 or both
of these classes of drugs at baseline. The HRs for each
SD in GRS were reduced but not negated by these
therapies, with HRs of 1.44 (95% CI: 1.40 to 1.48), 1.46

(95% CI: 1.42 to 1.50), and 1.42 (95% CI: 1.37 to 1.47)
for those individuals on lipid-lowering, antihyper-
tensive, or both treatments, respectively. Accord-
ingly, the HRs between those in the top versus
bottom metaGRS quintiles were also reduced but
remained substantial, with HRs of 2.71 (95% CI: 2.47
to 2.98), 2.81 (95% CI: 2.56 to 3.09), and 2.55 (95% CI:
2.28 to 2.86), for those individuals on lipid-lowering,
antihypertensive, or both treatments, respectively
(Figure 5).

DISCUSSION

In an analysis of almost 500,000 people in a pro-
spective nationwide cohort study, we evaluated a
combined genomic risk score (metaGRS) built from
summary statistics of the largest previous genome-
wide association studies of CAD (Central Illustration).
We report a series of findings that substantially
advance the concept of using genomic information to
help stratify individuals for CAD risk in general pop-
ulations, an approach that leverages the fixed nature
of germline DNA over the life course to anticipate
different lifelong trajectories of CAD risk.

First, our metaGRS achieved greater risk discrimi-
nation than previously published genomic risk scores
based on selected SNPs (3–9). For example, we found

FIGURE 5 Cumulative Risk of Incident CAD Within Individuals on Lipid-Lowering or BP-Lowering Medication at Assessment
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metaGRS had a greater HR and positive predictive
value at any given sensitivity, as well as a 4-fold HR
for CAD in a comparison of individuals in the top
versus bottom one-fifth of the risk score distribution.

Second, we found that the predictive ability of the
metaGRS was largely independent of established risk
factors for CAD, implying that genetic information
complements (rather than replaces) conventional risk
factors. As our data have suggested that higher
genetic risk can at least partly be attenuated by lipid-
lowering and/or antihypertensive therapies, it
implies that individuals at high genetic risk may gain
the most from early initiation of these therapies and,
therefore, constitute a subpopulation for which pri-
mary prevention may be particularly cost-effective
(7). However, as our results have suggested that the

metaGRS predicts CAD risk even among individuals
taking CAD therapies at baseline, it also underscores
the need to develop new therapies to address residual
disease risk.

Third, we found that the metaGRS identified in-
dividuals who are at high risk of premature CAD as
well as those unlikely ever to reach a life-long
risk level requiring intervention. For example, our
findings have suggested that because men in the
highest metaGRS quintile are at such high risk, they
are likely to benefit from more intensive preventative
interventions regardless of levels of traditional clin-
ical risk factors. By contrast, the present findings
suggest that about 80% of women in general
populations (i.e., those not in the top 20% of the
metaGRS) may not benefit from intensive preventive

CENTRAL ILLUSTRATION Genomic Risk Score for Coronary Artery Disease
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The genomic score provides potential for risk screening early in life as well as complements conventional risk factors for coronary artery disease.
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interventions, in the absence of other compelling
indications, before age 75 years. This finding
underscores the potential value of using genomic
information to optimize use of scarce resources
for disease prevention; however, further health
economic studies would be necessary.

Although applied health studies will be needed to
evaluate properly the clinical utility of CAD genomic
risk scores, elements of potential clinical imple-
mentation can now be foreseen. For example,
genome-wide array genotyping has a 1-time cost
(approximately US$50 at current prices) and can be
used to calculate updated genomic risk scores for CAD
as further, more powerful association data emerge.
Indeed, data from a genome-wide genotyping array
can be utilized to calculate GRS for a wide range of
common diseases. To calculate genomic risk for in-
dividuals, simple algorithms can draw on information
from such arrays, as well as from large reference
groups from similar populations, such as UK Biobank.
In translating genomic risk scores, standardization
in assay and data processing will be necessary but
achievable, including in imputation (e.g., reference
panel and quality control) and handling of population
stratification (e.g., using a population-specific GRS
distribution and/or adjustment of GRS directly).
We have made the metaGRS algorithm freely avail-
able (21) to facilitate development and translation
of the concept of genomic risk as an early screening
tool.
STUDY LIMITATIONS. First, while previous studies
have shown the added value of a GRS to clinical risk
scores, such as Framingham Risk Score and ACC/
AHA13 Risk Score (3), UK Biobank does not yet have
measurements of lipids and other biochemical factors
available; thus, relationships of the metaGRS with
lipids or traditional clinical risk scores (e.g., Fra-
mingham Risk Score, QRISK, and so on) could not be
assessed. Second, the UK Biobank has a minimum
enrollment age of 40 years, and participants have
been shown to be healthier than the UK general
population (22,23); thus, our study may have under-
estimated population-level lifetime CAD risk. Third,
people of non-European ancestry make up a small
proportion (<5%) of the UK Biobank, suggesting the
need for studies in people of other ancestries. Simi-
larly, future studies that externally validate the
metaGRS in large multiethnic cohorts would maxi-
mize generalizability and minimize risk of overfitting
to any single dataset or population (24). Fourth, cur-
rent GWAS sample sizes and imputation efficiencies
are also limiting in that they introduce noise into GRS
estimates. Our meta-score approach here addresses
this to some extent; however, future large-scale

cohorts will offer more powerful genomic scores.
Last, despite the metaGRS showing substantial CAD
risk discrimination in individuals already on medi-
cation, we were also unable to assess the effect of
medication versus nonmedication in individuals who
are at high metaGRS risk, as without blind randomi-
zation, this analysis would be susceptible to reverse
causation, with those on medication likely already at
higher CAD risk.

CONCLUSIONS

The genomic score developed and evaluated in the
present study strengthens the concept of using
genomic information to stratify individuals for CAD
risk in general populations and demonstrates the
potential for genomic screening in early life to com-
plement conventional risk prediction.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE:

Genetically determined risk of CAD is largely inde-

pendent of conventional risk factors, such as lipids,

blood pressure, and smoking. As a predictor of CAD, a

meta-score (metaGRS) derived from a U.K. biobank

outperformed other genetic risk scores and individual

conventional risk factors, even in patients treated with

lipid-lowering or antihypertensive medications.

TRANSLATIONAL OUTLOOK: Future studies

should determine how best to employ genetically

predicted risk for primary prevention of CAD.
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