44 research outputs found
Invariant-mass and [gamma]-ray spectroscopy using secondary, radioactive ion beams
Coulomb excitation of secondary beams (5 < Z < 20) at energies
around 250 .1 MeV was explored at GSI. For low-lying states, 7-ray spectroscopy
was utilized, while high-lying excitations were investigated by
means of invariant-mass spectroscopy
Genetic diversity in cultivated carioca common beans based on molecular marker analysis
A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats â SSRs and amplified fragment length polymorphisms â AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Rogerâs modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm
Regulation of microRNA biogenesis and turnover by animals and their viruses
Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes
One-dimensional dynamic microslip friction model
A one-dimensional dynamic microslip friction model, including the damper inertia, is presented in this paper. An analytical approach is developed to obtain the steady-state solution of the resulting nonlinear partial differential equations when subjected to harmonic excitation. In the proposed approach, according to the excitation frequency, a single mode of the system is considered in the steady-state solution for simplicity; consequently, phase difference among spatially distributed points is neglected. Three types of normal load distributions, resulting in distinct stick-slip transitions along the contact interface, are studied. The resulting hysteresis curves and the associated Fourier coefficients are obtained and compared with each other. An equivalent point contact friction model is established and compared with the proposed microslip model, illustrating the effects of partial slip in the contact interface for low amplitude or high normal load applications