9 research outputs found

    Early Effect Markers and Exposure Determinants of Metalworking Fluids Among Metal Industry Workers: Protocol for a Field Study.

    Get PDF
    Exposure to aerosols from metalworking fluids (MWF) has previously been related to a series of adverse health outcomes (eg, cancer, respiratory diseases). Our present epidemiological study focuses on occupational exposures to MWF and a panel of exposure and effect biomarkers. We hypothesize that these health outcomes are caused by particle exposure that generates oxidative stress, leading to airway inflammation and ultimately to chronic respiratory diseases. We aimed to assess whether MWF exposure, in particular as characterized by its oxidative potential, is associated with biomarkers of oxidative stress and inflammation as well as genotoxic effects. The ultimate goal is to develop exposure reduction strategies based on exposure determinants that best predict MWF-related health outcomes. The following relationships will be explored: (1) exposure determinants and measured exposure; (2) occupational exposure and preclinical and clinical effect markers; (3) exposure biomarkers and biomarkers of effect in both exhaled breath condensate and urine; and (4) biomarkers of effect, genotoxic effects and respiratory symptoms. At least 90 workers from France and Switzerland (30 controls, 30 exposed to straight MWF and 30 to aqueous MWF) were followed over three consecutive days after a nonexposed period of at least two days. The exposure assessment is based on MWF, metal, aldehyde, and ultrafine particle number concentrations, as well as the intrinsic oxidative potential of aerosols. Furthermore, exposure biomarkers such as metals, metabolites of polycyclic aromatic hydrocarbons and nitrosamine are measured in exhaled breath condensate and urine. Oxidative stress biomarkers (malondialdehyde, 8-isoprostane, 8-hydroxy-2'-deoxyguanosine, nitrates, and nitrites) and exhaled nitric oxide, an airway inflammation marker, are repeatedly measured in exhaled breath condensate and urine. Genotoxic effects are assessed using the buccal micronucleus cytome assay. The statistical analyses will include modelling exposure as a function of exposure determinants, modelling the evolution of the biomarkers of exposure and effect as a function of the measured exposure, and modelling respiratory symptoms and genotoxic effects as a function of the assessed long-term exposure. Data collection, which occurred from January 2018 until June 2019, included 20 companies. At the date of writing, the study included 100 subjects and 29 nonoccupationally exposed controls. This study is unique as it comprises human biological samples, questionnaires, and MWF exposure measurement. The biomarkers collected in our study are all noninvasive and are useful in monitoring MWF exposed workers. The aim is to develop preventative strategies based on exposure determinants related to health outcomes. DERR1-10.2196/13744

    Method validation of nanoparticle tracking analysis to measure pulmonary nanoparticle content: the size distribution in exhaled breath condensate depends on occupational exposure

    Get PDF
    A particle exposure assessment based on the dose deposited in the lungs would be the gold standard for the evaluation of any resulting health effects. Measuring particles in exhaled breath condensate (EBC)-a matrix containing water and airway lining fluid-could help to evaluate particle retention in the lungs. This study aimed to (1) validate a nanoparticle tracking analysis (NTA) method for determining the particle number concentration and their hydrodynamic size distribution in EBC, and (2) apply this method to EBC collected from workers exposed to soapstone (n = 55) or quartz dust (n = 12) and controls (n = 11). A standard latex bead solution was used to determine the linear range, limit of detection (LOD), repeatability (coefficient of variation, CV), and bias in spiked EBC. An LM10 NanoSight instrument with NTA version 3.1 software was used for measurement. RTubes(Âź) were used for field collection of EBC. The repeatability obtained for a D50 size distribution in EBC showed less than 8% variability, with a bias <7%. The particle concentration was linear in the range ≀2.5 × 10(8) particles ml(-1) with a LOD of 4 × 10(6) particles ml(-1). A recovery of 117 ± 20% at 6.2 × 10(7) particles ml(-1) was obtained with a CV <10% and a bias <20%. EBC from workers exposed to quartz, who experienced the largest exposure to silica particles, consistently exhibited a statistically significant (p < 0.01) higher concentration of particles in their EBC, with a size distribution shift towards larger values than the other groups. Results showed that the NTA technique performed well for characterizing the size distribution and concentrations of particles in EBC. The technique needs to be corroborated with a larger population of workers

    Does exposure to inflammatory particles modify the pattern of anion in exhaled breath condensate?

    Get PDF
    Exposure to environmental and occupational particulate matter (PM) induces health effects on the cardio-pulmonary system. In addition, associations between exposure to PM and metabolic syndromes like diabetes mellitus or obesity are now emerging in the literature. Collection of exhaled breath condensate (EBC) is an appealing non-invasive technique to sample pulmonary fluids. This hypothesis-generating study aims to (1) validate an ion chromatography method allowing the robust determination of different metabolism-related molecules (lactate, formate, acetate, propionate, butyrate, pyruvate, nitrite, nitrate) in EBC; (2) apply this method to EBC samples collected from workers exposed to quartz (a known inflammatory particle), to soapstone (a less inflammatory particle than quartz), as well as to controls. A multi-compound standard solution was used to determine the linearity range, detection limit, repeatability and bias from spiked EBC. The biological samples were injected without further treatment into an ion chromatograph with a conductivity detector. RTube <sup>Âź</sup> were used for field collection of EBC from 11 controls, 55 workers exposed to soapstone and 12 volunteers exposed to quartz dust. The analytical method used proved to be adequate for quantifying eight anions in EBC samples. Its sub-micromolar detection limits and repeatability, combined with a very simple sample preparation, allowed an easy and fast quantification of different glycolysis or nitrosative stress metabolites. Using multivariate discriminant analysis to maximize differences between groups, we observed a different pattern of anions with a higher formate/acetate ratio in the EBC samples for quartz exposed workers compared to the two other groups. We hypothesize that a modification of the metabolic signature could be induced by exposure to inflammatory particles like quartz and might be observed in the EBC via a change in the formate/acetate ratio

    Analysis of nitrogen oxides (NOx) in the exhaled breath condensate (EBC) of subjects with asthma as a complement to exhaled nitric oxide (FeNO) measurements: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of pulmonary biomarkers with noninvasive methods, such as the analysis of exhaled breath condensate (EBC), provides a useful approach to the pathophysiology of asthma. Although many recent publications have applied such methods, numerous methodological pitfalls remain. The first stage of our study consisted of validating methods for the collection, storage and analysis of EBC; we next sought to clarify the utility of analysing nitrogen oxides (NOx) in the EBC of asthmatics, as a complement to measuring exhaled nitric oxide (FeNO).</p> <p>Methods</p> <p>This hospital-based cross-sectional study included 23 controls matched with 23 asthmatics. EBC and FeNO were performed and respiratory function measured. Intra-assay and intra-subject reproducibility were assessed for the analysis of NOx in the EBC of 10 healthy subjects.</p> <p>Results</p> <p>The intraclass correlation coefficient (ICC) was excellent for intra-assay reproducibility and was moderate for intra-subject reproducibility (Fermanian's classification). NOx was significantly higher in asthmatics (geometric mean [IQR] 14.4 ÎŒM [10.4 - 19.7] vs controls 9.9 ÎŒM [7.5 - 15.0]), as was FeNO (29.9 ppb [17.9 - 52.4] vs controls 9.6 ppb [8.4 - 14.2]). FeNO also increased significantly with asthma severity.</p> <p>Conclusions</p> <p>We validated the procedures for NOx analysis in EBC and confirmed the need for assays of other biomarkers to further our knowledge of the pathophysiologic processes of asthma and improve its treatment and control.</p

    Analyse des biomarqueurs dans le condensat de l'air exhalé dans une population de salariés exposés professionnellement au béryllium et/ou ses composés

    No full text
    International audienceMĂ©tal incontournable dans les industries de pointe Ă  fortes contraintes thermiques et mĂ©caniques, le bĂ©ryllium peut provoquer une bĂ©rylliose pulmonaire chronique (BPC), prĂ©cĂ©dĂ©e par un Ă©tat de sensibilisation au bĂ©ryllium (SeBe). La valeur limite d’exposition professionnelle sur 8 heures actuellement en vigueur en France insuffisamment protectrice, l’augmentation prĂ©visible du nombre de sujets professionnellement exposĂ©s, la latence longue d’apparition de la BPC et l’absence d’outils standardisĂ©s de surveillance mĂ©dicale justifient l’intĂ©rĂȘt d’étudier des biomarqueurs d’exposition et d’effets prĂ©coces au niveau de l’organe cible, le poumon. Cette Ă©tude propose de les mesurer dans le condensat de l’air exhalĂ©, nouvelle matrice biologique

    Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: a European multicentre panel study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction will have major implications for air quality policy since it will determine which sources should be controlled.</p> <p>The RUPIOH study, an EU-funded multicentre study, was designed to examine the distribution of various ambient particle metrics in four European cities (Amsterdam, Athens, Birmingham, Helsinki) and assess their health effects in participants with asthma or COPD, based on a detailed exposure assessment. In this paper the association of central site measurements with respiratory symptoms and restriction of activities is examined.</p> <p>Methods</p> <p>At each centre a panel of participants with either asthma or COPD recorded respiratory symptoms and restriction of activities in a diary for six months. Exposure assessment included simultaneous measurements of coarse, fine and ultrafine particles at a central site. Data on gaseous pollutants were also collected. The associations of the 24-hour average concentrations of air pollution indices with the health outcomes were assessed in a hierarchical modelling approach. A city specific analysis controlling for potential confounders was followed by a meta-analysis to provide overall effect estimates.</p> <p>Results</p> <p>A 10 ÎŒg/m<sup>3</sup> increase in previous day coarse particles concentrations was positively associated with most symptoms (an increase of 0.6 to 0.7% in average) and limitation in walking (OR= 1.076, 95% CI: 1.026-1.128). Same day, previous day and previous two days ozone concentrations were positively associated with cough (OR= 1.061, 95% CI: 1.013-1.111; OR= 1.049, 95% CI: 1.016-1.083 and OR= 1.059, 95% CI: 1.027-1.091, respectively). No consistent associations were observed between fine particle concentrations, nitrogen dioxide and respiratory health effects. As for particle number concentrations negative association (mostly non-significant at the nominal level) was observed with most symptoms whilst the positive association with limitation of activities did not reach the nominal level of significance.</p> <p>Conclusions</p> <p>The observed associations with coarse particles are in agreement with the findings of toxicological studies. Together they suggest it is prudent to regulate also coarse particles in addition to fine particles.</p

    Biomarkers of respiratory allergy in laboratory animal care workers: an observational study

    No full text
    Objectives: Laboratory animal allergy is a highly prevalent occupational disease among exposed workers. The aim of the study was to validate the biomarkers of airway inflammation in laboratory animal (LA) care workers. Methods: All of the participants in this observational study (63 LA care workers and 64 controls) were administered a clinical questionnaire, underwent spirometry and a skin prick or radioallergosorbent test for common and occupational aeroallergens, and the fraction of exhaled nitric oxide (FeNO50), exhaled breath condensate hydrogen peroxide (EBC H2O2) and serum pneumoprotein levels were measured. Multivariate analysis (ANCOVA) was used to assess the interactions of the variables. Results: FeNO50levels correlated with exposure (p = 0.002), sensitisation (p = 0.000) and age (p = 0.001), but there was no interaction between exposure and sensitisation when age was considered in the model (p = 0.146). EBC-H2O2levels were higher in the sensitised workers than in the sensitised controls [0.14 (0.08–0.29) ”M vs 0.07 (0.05–0.12) ”M; p < 0.05]. Serum surfactant protein A (SP-A) levels were unaffected by exposure, sensitisation or age, although higher levels were observed in symptomatic workers; however, SP-D levels were influenced by exposure (p = 0.024) and age (p = 0.022), and club cell 16 levels were influenced by sensitisation (p = 0.027) and age (p = 0.019). Conclusions: The presence of the clinical symptoms associated with LA exposure and high FeNO levels should prompt further medical assessments in LA workers. Although EBC-H2O2levels do not seem to reflect eosinophilic inflammation, serum SP-A levels could be used to monitor progression from rhinitis to asthma
    corecore