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Method validation of nanoparticle tracking analysis to measure 
pulmonary nanoparticle content: the size distribution in exhaled 
breath condensate depends on occupational exposure. 
 

Abstract  

A particle exposure assessment based on the dose deposited in the lungs would be the gold 

standard for the evaluation of any resulting health effects. Measuring particles in exhaled breath 

condensate (EBC)—a matrix containing water and airway lining fluid—could help to evaluate 

particle retention in the lungs. 

This study aimed to (1) validate a nanoparticle tracking analysis (NTA) method for determining 

the particle number concentration and their hydrodynamic size distribution in EBC, and (2) apply 

this method to EBC collected from workers exposed to soapstone (n = 55) or quartz dust 

(n = 12) and controls (n = 11). 

A standard latex bead solution was used to determine the linear range, limit of detection (LOD), 

repeatability (coefficient of variation, CV), and bias in spiked EBC. An LM10 NanoSight 

instrument with NTA version 3.1 software was used for measurement. RTubes® were used for 

field collection of EBC. 

The repeatability obtained for a D50 size distribution in EBC showed less than 8% variability, 

with a bias < 7%. The particle concentration was linear in the range ≤ 2.5 108 particles ml-1 with 

a LOD of 4 106 particles ml-1. A recovery of 117 ± 20% at 6.2 107 particles ml-1 was obtained 

with a CV < 10% and a bias < 20%. EBC from workers exposed to quartz, who experienced the 

largest exposure to silica particles, consistently exhibited a statistically significant (p < 0.01) 

higher concentration of particles in their EBC, with a size distribution shift towards larger values 

than the other groups. Results showed that the NTA technique performed well for characterizing 

the size distribution and concentrations of particles in EBC. The technique needs to be 

corroborated with a larger population of workers. 

 

Keywords:  

Exhaled breath condensate; nanoparticle tracking analysis; biological exposure indices; 

soapstone; quartz  
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Introduction 

One toxicologically important method for evaluating an exposure which could drive the onset of 

a biological effect is the measurement of the retained dose of particles in the lungs [1]. The 

retained dose corresponds to the difference between the deposited dose and the amount of 

particles cleared from the organ. The combination of these two measurements gives the 

retained dose, which is a function of the deposition site and the interactions between particles 

and the cellular constituents of the inner lung surface [2]. A retention half-time of up to 700 days 

has been reported for microparticles deposited in the alveoli [3]. Determining this retained dose 

in real-life situations is challenging because information about the factors affecting lung 

deposition (physicochemical properties of the particles, lung morphology, and respiratory 

conditions) and clearance (dissolution, metabolization, or elimination/translocation) are seldom 

available [4, 5]. That is why exposure is always evaluated experimentally by determining the 

amount of particles (mass or number) in the air. Ultrafine particles (particles < 100 nm) are 

recognized as toxicologically important constituents of aerosols, and they generally dominate 

number-based particulate size distributions. They thus contribute significantly to the retained 

dose in the lungs (expressed as a particulate number concentration) due to their decreased 

clearance [2] and low translocation rate across the epithelial–endothelial barrier [4]. Thus, in the 

context of an evaluation of the health effects induced by particulate exposure [6], it would seem 

important to a focus on the fine–ultrafine fraction of the particles retained in the lung.  

By cooling a subject’s exhaled breath in a non-invasive way, it is possible to collect a liquid 

composed mainly of water and a very small amount of airway lining fluids (ALF) [7]. This 

technique is thought to allow the collection of ALF from the central region of the lung, as well as 

from peripheral regions. Due to its simplicity and non-invasiveness, exhaled breath condensate 

(EBC) is an appealing tool with which to diagnose or assess lung inflammation. Nevertheless, 

some of the major challenges to be solved before this technique can be routinely applied in 

clinical settings are the standardization of EBC collection, validation of the analytical techniques 

used to quantify selected biomarkers, and the determination of reference values [7-8]. Very few 

studies have reported measuring particulate concentrations in EBC as a tool for exposure 

assessment in occupational or environmental situations [9-15]. However, the methods used 

were either qualitative [9, 15] or the relevant statistics in the quantitative ones were either 

unavailable [10, 12-14] or incomplete [11]. Thus, confidence in the obtained data is low. In 
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addition to spectroscopic methods, other non-destructive techniques, like dynamic light 

scattering (DLS) or nanoparticle tracking analysis (NTA), are available for measuring particle 

concentrations in suspension and their corresponding hydrodynamic size distributions. The 

significant advantages of NTA, compared to other DLS systems, are its high sensitivity and its 

ability to characterize each particle present in the liquid, thus allowing accurate sizing of 

polydisperse samples [16]. The NTA technique has also been standardized by ASTM 

International (ASTM E2834-12) and is under review at the International Organization for 

Standardization (ISO/DIS 19430) [17]. This technique was recently applied to determine the 

particle concentrations in the EBC of non-smokers exposed to second-hand cigarette smoke 

[12] and for evaluating the ultrafine particle concentrations in the EBC of asthmatic children [13].  

The present study’s aims were (1) to validate an NTA method for determining the particle 

number concentration and hydrodynamic size distribution in EBC by evaluating the linear range 

and limit of detection/quantification for concentration measurement, in addition to evaluating 

repeatability and bias, and (2) to apply this method to the EBC collected from two different 

groups of exposed workers, as well as to controls. 

 

Materials and methods 

NTA and software 

In order to visualize nanoparticles in aqueous solutions, a laser beam is passed through a cell 

containing the particle suspension. All the particles present in the laser beam will scatter light, 

allowing their Brownian motion to be recorded via a camera mounted on a microscope. The 

resulting video is treated frame-by-frame to determine the average distance moved by each 

particle identified. This information allows us to determine a hydrodynamic size based on the 

Stokes-Einstein equation [17]. As the field of view is fixed, the sample’s scattering volume is 

known and concentration can be determined based on the number of identified scattering 

particles. Additionally, the light intensity reaching each pixel in the camera can also be recorded 

and averaged for each particle. The NTA system used consisted of an LM10 platform (Malvern 

Instruments, Malvern, UK), including a temperature control, with an sCMOS camera using a 

532 nm wavelength laser. The latest NTA version 3.1 software was used, which allows size 

distribution and concentration to be measured more accurately, as demonstrated by different 

round robin tests [17]. Approximately 0.4 ml of the sample was injected into the cell using a 1 ml 

plastic disposable syringe (BD Luer-Lok, Franklin Lakes, USA). Five separate 60-second videos 
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of each sample were carefully recorded in scatter mode while ensuring the same camera 

position under the microscope and identical camera settings. After each sample, the cell was 

cleaned with deionized water and dried with compressed air. After processing using the NTA 

software, the variables of interest (mean particle size, mode particle size, concentration, and 

particle size with cumulative percentages smaller than 10%, 50% or 90%, i.e. D10, D50, D90) were 

averaged from the resulting output summary data file. 

Validation 

The validation process was carried out using a suspension of concentrated polystyrene latex 

(PSL) beads (Malvern Instruments, Malvern, UK) with a nominal size of 100 nm and an 

experimental concentration of (1.68 ± 0.04) 1011 particles ml-1. This concentration was 

determined by using a PSL “reference” suspension whose concentration, (3.42 ± 0.29) 108 

particles.ml-1, was determined during a Q-Nano round robin test. The Milli-Q® water used for the 

dilution was systematically filtered through a 0.02 µm Anotop 25 filter (Whatman GmbH, 

Germany), avoiding glass containers. RTubes® (Respiratory Research Inc., Austin, USA) were 

used to collect EBC from each volunteer over different days, as described below. Totals of 

about 10 ml were pooled, aliquoted in microtubes (Sarstedt, Nümbrecht, Germany), and stored 

at -20°C until used for exactitude/bias determination.  

The method’s performance was determined using the NFT 90-210 protocol [18]. The 

concentration linearity was evaluated in a rather low range, as EBC is a quite dilute matrix. Eight 

PSL standards in Milli-Q® water (0–2.6 108 particles ml-1) were prepared each day on four 

different days and measured using NTA. The limit of quantification (LOQ) was determined using 

an a priori estimation and verifying that its accuracy was smaller than an acceptable maximal 

deviation from the LOQ, set at 60%. The limit of detection (LOD) then corresponds to one third 

of the LOQ. The method’s accuracy and bias were evaluated by spiking the pooled EBC with 

two different concentrations (1.2 107 and 2.4 107 particles ml-1) of the PSL stock solution. These 

suspensions were analyzed without further treatment. A minimum of four independent 

measurements were done in intermediate precision conditions. Finally, we verified that the 

different RTubes® and microtubes used contained no particles by adding 2 ml and 0.6 ml of 

filtered water to each consumable, respectively, and shaking/vortexing for at least 2 minutes. On 

average, fewer than one particle frame-1 could be detected—well below the LOD. We also made 

a preliminary evaluation of the between-day variability in the particle concentrations and size 
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distributions by measuring these parameters in EBC collected at different times on three 

consecutive days for one non-smoking volunteer. 

 

Field study 

Population  

We conducted an exposed-control study on a population of 12 crystal quartz stone workers 

exposed to quartz dust, 55 soapstone workers exposed to steatite dust, and 11 unexposed 

control subjects, all recruited between May and October 2014. 

The crystal quartz stone workers work in Corinto (Minas Gerais, Brazil), in partially open work 

sheds, producing decorative crystal objects. The production process consists of cutting, 

faceting, grinding, and polishing crystal quartz stones with the aid of motorized equipment and 

grinding or buffing wheels. For polishing, silicon carbide dust or tripoli (silica flour) are used as 

loose abrasives. Workers shared a common environment and most individuals performed more 

than one task. 

The soapstone workers work in rural areas of Ouro Preto (Mata Dos Palmitos and Santa Rita) 

or Mariana (Cachoeira do Brumado, Minas Gerais, Brazil), also in partially open work sheds, 

producing ornamental objects and cooking tools like pans or plates. They grind and shape 

soapstone blocks using motorized equipment, like grinding wheels or lathes. Workers also 

shared a common environment and most of them performed more than one task. 

Controls were recruited at the University of Ouro Preto. All controls who had been exposed to 

quartz or soapstone dust were excluded. 

All the subjects were fully informed about the study’s aims and gave their prior, free, and 

informed consent. The study was approved by the Ethics Committees on Research at the 

Federal University of Minas Gerais (Report 183/08) and the Federal University of Ouro Preto 

(reference 0063.0.238.000-10). 

Exposure Assessment  

Personal respirable dust samples were taken using a pump (Buck VSS 05, A. P. Buck Inc, 

Orlando, FL) connected to cyclones with PVC membrane filters, using a constant flow of 1.7 L 

min-1 ± 5%. The concentration of the respirable particles in the air was obtained using certified 

gravimetric methods [19]. The silica content of the respirable dust was determined by 
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sequentially calcinating the filters, re-suspending the residue, and depositing it on PVC-

acrylonitrile filters for X-ray diffractometry (X’Pert-Pro, Panalytical) [20]. For crystal quartz stone 

workers, 52 personal respirable dust samples, covering all tasks, were collected in six work 

sheds between March and May 2014. For soapstone workers, 32 personal respirable dust 

personal samples, covering all tasks, were collected in nine work sheds in October 2014. 

EBC collection 

The EBC samples were collected on a single workday at a clean location away from the 

exposed subjects’ workplaces, i.e. at the Health Examination Centre in Corinto, for the crystal 

quartz stone workers, and at the Federal University of Ouro Preto, for the soapstone workers 

and the controls. The EBC samples were collected over 15 minutes using RTubes® (Respiratory 

Research Inc., Charlottesville, VA, USA) and nose clips, according to the latest 

recommendations [21]. We took care to avoid contamination and isolate the EBC samples by 

sealing the used polypropylene tubes with caps, immediately after collection and without further 

treatment. EBC samples were transported at −20°C and stored at −80°C until analysis. All the 

EBC samples were divided into aliquots in the same room at the end of the subject enrolment 

period. 

After thawing and vortexing, EBC sample was aspirated using a 1 ml plastic syringe and 

injected into the LM10 module, taking care to avoid bubbles. The solution was measured 

without any further treatment.  

Some EBC samples were also observed using a scanning electron microscope (SEM). Five 

samples of 3 µl of each EBC were sequentially added and evaporated on a carbon-coated SEM 

grid (Formav, Plano, Wetzlar, Germany), under a laminar hood, in order to avoid contamination 

from ambient particles. A SEM (Phenom XL, Phenom-World BV, Eindhoven, The Netherlands) 

incorporating an energy dispersing X-ray spectrometer allowing elemental analysis was used to 

characterize the particles observed.   

Spirometric measurements 

After EBC collection, all subjects were instructed to performed forced expiratory maneuvers (for 

at least 6 seconds) using the COPD-6 device (Model 4000, Vitalograph, Ennis, Ireland). Data 

were expressed as ratios of observed/predicted values using reference values for Brazilian 

adults [22]. 
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Data analysis 

Statistical analyses were performed using SAS (SAS Institute Inc., Cary, NC, USA, version 9.3) 

and STATA 13 software (StataCorp LP, College Station, TX, USA). 

Values were expressed as mean and standard deviation or median with interquartile range. 

Repeatability was assessed using CV. Analysis of variance (one-way ANOVA) was used to test 

for average differences between groups, and post hoc comparisons were determined with a 

Bonferroni correction. Correlations between two quantitative variables were determined with the 

Pearson correlation. Analysis of contingency tables was performed using the chi-squared test. 
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Results 

Validation 

Size measurement 

The NTA technique was initially developed for precise size determination. Table 1 indicates its 

very good repeatability for standard solutions of PSL beads (< 5%).  

Table 1: Summary of NTA’s performance in the determination of the particle size distribution in 
a standard solution (latex beads-PSL) and EBC.  

Method characteristics Expected performance Observed value Conclusion 
Repeatability      

 Mode; PSL standard 1.2 107 # ml-1a  100 nm 106 ± 5 nm Verified 
CVb mode 5% 4.5% Verified 

D50; PSL standard 1.2 107 # ml-1 100 nm 101 ± 5 nm Verified 

CV D50 5% 4.6% Verified 
Mode; EBC not spiked   - 118 ± 13 nm 

 CV mode  - 11% 
 D50; EBC not spiked   - 137 ± 10 nm 
 CV D50  - 8% 
 Accuracy       

Reference value D50; EBC spiked 
1.2 107 # ml-1 100 nm 104 ± 6 nm 

 CV    5.9% 
 Maximum accepted range ± 20 nm = 20%*100 nm   
 Upper accepted value 120 nm 116 nm Verified 

Lower accepted value 80 nm 92 nm Verified 

    Reference value D50; EBC spiked 
2.4 107 # ml-1 100 nm 106 ± 7 nm 

 CV    6.5% 
 Maximum accepted range ± 20 nm = 20%*100 nm   
 Upper accepted value 120 nm 119 nm Verified 

Lower accepted value 80 nm 92 nm Verified 
a: # ml-1: particles ml-1  
b: CV: coefficient of variation 

For biological samples like EBC, we observed that the mode value presented a larger variability 

(11%) than the D50 measurement (8%). As no EBC reference material is available, we spiked 
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EBC at ~50% and 100% of the initially measured particle concentration. The measured D50 size 

of spiked EBC at 1.2.107 and 2.4 107 particles ml-1 (104 ± 6 nm and 106 ± 7 nm, respectively) 

corresponded well to the measured size of the PSL beads (101 ± 5 nm). The accuracy of the 

D50 size measurement in EBC was within 20% of the reference value and can be considered as 

quite good.  

Concentration measurement 

Table 2 presents the important figures from the particle concentration measurements using the 

NTA technique. The calibration range was observed to be linear, at least up to 2.6 108 particles 

ml-1 (see Figure S1, Supplemental material). Based on this calibration curve, we postulated an 

LOQ at 1.3 107 particles ml-1. The bias observed at this concentration was indeed smaller than 

60% of the LOQ, as proposed by the NFT 90-210 standard. An LOD of 4.3.106 particles ml-1 

was then calculated based on this LOQ. The average particle concentration of non-spiked EBC 

was 2.94 ± 0.62 107 particles ml-1 (n = 5). The repeatability (CV) was greatest (21% variability) 

for the non-spiked EBC and decreased to about 10% for spiked samples at levels around 4–6 

107 particles ml-1. A very good recovery rate, comprised between 100–117 ± 20% was 

determined for spiked EBC samples with PSL beads. As a reference solution with a known PSL 

concentration was available from a Q-Nano round robin test, the accuracy of the particle 

concentration measurement in water was determined to be smaller than 25% of the reference 

value.  

The intra-individual variability of particle size distribution and concentration on different days 

could only be estimated for one healthy, non-exposed subject. Figure S2 in the supplemental 

material indicates that the size distribution was relatively constant, with a modal size and D50 

value of 75 ± 3 nm (CV: 4.2%) and 85 ± 5 nm (CV: 5.3%), respectively. On the contrary, particle 

concentration levels in EBC were more variable over the three days examined, with an average 

value of (7.55 ± 2.1) 107 particles ml-1 (CV: 27.7%).   
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Table 2: Summary of NTA’s performance in the determination of particle concentration  in 
standard water solutions or EBC. 

Method characteristics Expected performance Observed value Conclusion 
Calibration function     Linear  

Concentration range 1.6.106–2.6 108 # ml-1   
 Bias for std. 1.6 106 # ml-1 a   - 496 ± 55% 
 Bias for std. 6.4 106 # ml-1  120% 121 ± 14% Verified 

Bias for std. 1.6 107 # ml-1  60% 46 ± 7% Verified 
Bias for std. 3.2 107 # ml-1  25% 21 ± 4% Verified 

Bias for std. 6.4 107 # ml-1  10% 8.6 ± 3% Verified 

Bias for std. 9.6 107 # ml-1  10% 4.4 ± 3% Verified 
Bias for std. 1.3 108 # ml-1  10% 2.4 ± 3% Verified 

Bias for std. 2.6 108 # ml-1  10% -0.8 ± 3% Verified 
LOQ (a priori estimate) (1.3.107 ± 0.78) 107 # ml-1   Accepted 

Maximum accepted range =60%*1.3 107 # ml-1   
 Upper accepted value 2.1 107 # ml-1  1.8 107 # ml-1 Verified 

Lower accepted value 5.2 106 # ml-1  7.0 106 # ml-1  Verified 

LOD (1/3 LOQ) b   4.3 106 # ml-1  
 Recovery       

EBC not spiked   (2.94 ± 0.62) 107 # ml-1 
 EBC spiked level 1 c 4.1 107 # ml-1 (4.26 ± 0.44) 107 # ml-1 
 EBC spiked level 2 d 5.3 107 # ml-1 (6.20 ± 0.62) 107 # ml-1 
 Recovery EBC level 1 80%–120% 100 ± 18% Verified 

Recovery EBC level 2 80%–120% 117 ± 20% Verified 
Repeatability (CV e)     

 EBC not spiked 25% 21.0% Verified 
EBC spiked level 1 20% 10.3% Verified 
EBC spiked level 2 10% 9.9% Verified 

Accuracy       
Standard solution (Q-Nano)     

 Reference value 3.42 108 # ml-1 (3.71 ± 0.27) 108 # ml-1 
 CV    7.3% 
 Maximum accepted range 8.55 107 # ml-1 = 25%*3.42 108 # ml-1   
 Upper accepted value 4.28 108 # ml-1 4.25 108 # ml-1 Verified 

Lower accepted value 2.57 108 # ml-1 3.17 108 # ml-1  Verified 
a: # ml-1: particles ml-1  b; LOD: limit of detection; LOQ: limit of quantification  
c: Level 1: 1.2 107# ml-1 d: Level 2: 2.4 107# ml-1 e: CV: coefficient of variation 
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Field study 

Population and exposure assessment 

The study population’s general characteristics and the exposure assessment results are 

presented in Table 3. We quantified silica dust levels in 52 and 32 respirable dust samples from 

crystal quartz workers and soapstone workers, respectively. Whereas the respirable dust 

concentration was the highest for the soapstone workers, the crystal quartz group was more 

exposed to silica dust, as expected. We found a statistically significant correlation between 

FEV1 (% predicted) and silica dust concentrations (Pearson correlation coefficient: - 0.31; 

p=0.007) but not with respirable dust concentrations (p=0.9). 

Table 3: Study population’s general characteristics and exposure assessment results. Data are 

presented as mean ± standard deviation. 

 
Controls 

(n=11) 

Soapstone 
workers 

(n=55) 

Crystal stone 
workers 

(n=12) p* 

Age (years) 40 ± 6 48 ± 13 33 ± 7 < 0.001 

Sexe (M/F)a 9/2 36/19 12/0 0.04 

Tobacco status (S/ES/NS)b 1/1/9 10/19/26 0/2/10 0.07 

Tobacco consumption (pack-years) 22 ± 30 11 ± 15 10 ± 1 0.6 

FEV1 (L)c 3.78 ± 0.85 3.11 ± 0.90 3.29 ± 0.67 0.08 

FEV1 (% predicted)c 97 ± 16 93 ± 19 78 ± 14 0.03 

Respirable dust concentration (mg.m-3) - 1.61 ± 1.19 0.96 ± 0.76 0.003 

Silica dust concentration (mg.m-3)d - 0.1 ± 0.04 0.46 ± 0.41 0.03 

a : M: male; F: female 
b: S: smoker ; ES: ex-smoker ; NS: non smoker 
c: FEV1: Forced expiratory volume in one second  
d: average of sample concentrations in which the silica was detectable 

*: p-values of one-way ANOVA or Fisher exact test 
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EBC analysis for particles 

After collection, EBC samples were transported at -20°C and stored at -80°C in the laboratory. 

RTubes® were used without treatment as they are cleaned to factory standards (alcohol 

followed by deionized water followed by forced air drying) before being packaged in plastic 

bags. We tested that this cleaning treatment ensured sampling tubes free of exterior particulate 

contamination for the NTA.  

Flickering was often observed on the EBC sample videos for crystal quartz workers (see Videos 

1, 2 and 3, Supplemental material). Some very bright particles were present in addition to other 

less intensely reflective particles. This added background-light intensity made tracking particles 

which scattered light more weakly more difficult for the NTA software. Selected examples of 

number size and cumulative size distributions in EBC are presented in Figure 1. The average 

size characteristics for particles detected in the EBC of the three different groups are shown in 

Table S1 (Supplemental material) in terms of mean, mode, D10, D50 and D90. 
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Figure 1: Typical size distribution (A) and corresponding cumulative curves (B) of particles in 

EBC collected from one control, one exposed soapstone worker and one exposed crystal quartz 

worker. Error bars correspond to the standard deviation of five separate videos from the same 

EBC sample. 

The particle size distributions from all the biological samples were very polydisperse, with a 

standard deviation ranging from 31–119 nm. For the control EBC, 80% of the particles ranged 

from 90–250 nm, similar to EBC from workers exposed to soapstone (75–240 nm). For EBC 

collected from crystal quartz workers, this range was skewed towards larger values (110–
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290 nm; see Table S1, Supplemental material). All the particle size variables (see Table S1, 

Supplemental material) were significantly higher for crystal quartz than for soapstone and the 

controls (p < 0.01 post hoc t-test with Bonferroni corrections). Also, a statistically different D10 

size was observed between the control group and the soapstone group (p < 0.01 post hoc t-test 

with Bonferroni corrections). Inter-individual particle size variability, as characterized by the CV 

and calculated by taking the ratio of the standard deviation to the average value for each group 

of the different size distribution parameters, ranged between 7%–27%. It is of note that the 

lowest inter-individual variabilities were observed for workers in the crystal quartz group (always 

smaller than 10%). 

There was a statistically significant difference between the total particle concentration in the 

EBC from workers processing crystal quartz (20.1 ± 4.6 107 particles ml-1) and the 

concentrations in the other two groups (control: 2.8 ± 1.6 107 particles ml-1; soapstone: 4.2 ± 1.9 

107 particles ml-1; p < 0.01 post hoc t-test with Bonferroni corrections; see Figure S3, 

Supplemental material). The inter-individual particle concentration variabilities in each group 

were rather high, reaching 58%, 45%, and 24% for the control, soapstone, and crystal quartz 

groups, respectively. Again, the lowest inter-individual variability was observed among crystal 

quartz workers. We also evaluated particle concentrations in five different size ranges (0–

102 nm; 102–202 nm; 203–302 nm; 303–502 nm; > 503 nm) as illustrated in Figure 2. A 

significant increase in the concentration of particles with sizes above 102 nm was observed in 

the EBC collected from the crystal quartz workers. On the contrary, controls and worker 

exposed to soapstone presented very similar size distributions. 

NTA cannot determine the precise nature of the particles detected in EBC. In order to get 

additional information about these particles, EBC samples were air dried on carbon-coated grids 

and observed using scanning electron microscopy with energy dispersive X-ray spectroscopy 

(SEM-EDX). Some examples of the particles detected are presented in Figure S4, with their 

corresponding EDX spectra. Two groups of particles were identifiable in the EBC samples 

considered: one group was composed mainly of sodium (Na), potassium (K), chlorine (Cl), and 

sulfur (S); the second also contained alkaline earth metals (Ca, Mg), metalloids (Al, Si), and 

metal elements (Fe, Ti). 
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Figure 2: Average particle concentrations in EBC as a function of five different size fractions for 

the three different groups. Error bars correspond to the standard deviation of all the samples in 

each group (control: n = 11; soapstone: n = 55; crystal stone: n = 12). 

 

Discussion 

To the best of our knowledge, this study is the first to qualify and quantify the particles in the 

exhaled breath condensate (EBC) of workers exposed to quartz or steatite dust, using a 

validated nanoparticle tracking analysis (NTA) method. Our results showed that the NTA 

technique performed well when characterizing the size distributions and concentrations of 

particles in EBC. All the particle size variables were significantly higher for crystal quartz than 

for soapstone and controls. Our study also showed that the total particle concentrations in the 

EBC of workers processing crystal quartz were significantly higher than those of the two other 

groups (soapstone and controls). 

The lowest particle sizes detected in all the EBCs were in the range of 45–55 nm. This value is 

in accord with data in the literature which reported NTA’s detection limit of 30 nm for proteins 

[16]. This value may vary, however, as NTA’s sensitivity depends on the difference between the 

refractive indices of the nanoparticles and their carrying medium [23]. When EBC was spiked 

with low levels of concentrated polystyrene latex (PSL) beads, NTA showed very good 
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repeatability (less than 8% variability) for the D50 size—comparable with other studies [17]. In 

addition, we measured a mode particle size of 104 ± 6 nm, which corresponded quite well to the 

beads’ nominal size of 100 nm. This result suggested that the presence of proteins in EBC [24], 

which are potentially able to adsorb on the polystyrene latex surface, do not influence the 

hydrodynamic size of these PSL beads. NTA has been reported as able to detect hydrodynamic 

size increases of about 10 nm when gold nanoparticles are put in contact with fetal calf serum. 

This size increase is attributed to the formation of a protein corona [25]. Thus, in the present 

study, size measurements were probably not affected by artifacts (agglomeration). The fact that 

EBC can be analyzed directly, without any preparation, makes NTA an interesting technique, as 

the dilution of particle suspensions can affect their size distributions [23].  

The latest developments in NTA software (version 3.1 was used in this study) provide increased 

confidence in the concentration data which can be obtained using this technique. Repeatability, 

as evaluated with a coefficient of variation (CV) of 10%, has been reported for concentration 

measurements in tests with the upgraded version of NTA [26]. This compares very well to the 

CV obtained in the present study (9.9%–21%, Table 2). The greater variability observed in 

concentrations in non-spiked EBC (CV = 21%, Table 2), in comparison to size measurements 

(D50: CV = 12%, Table 1), might be due to the difficulties in detecting and counting small 

particles in the presence of larger ones. Filipe et al. [16] described the analysis of a standard 

PSL bead mixture (100 nm, 400 nm, 1000 nm; ratio 1:1:267); the concentrations of 100 nm and 

400 nm PSL beads detected decreased by 70% and 20%, respectively, in comparison to a 

mixture analyzed without large particles. This suggests that polydisperse suspensions with large 

light diffusing particles might hinder NTA’s detection of smaller particles. One frequently 

mentioned difficulty holding back the use of EBC in clinical settings is the lack of methodological 

standardization, as this leads to large variability in the published data [27]. The fact that NTA 

measurement is highly automated, with only a small number of software variables requiring 

definition by the user, implies reduced inter-laboratory variability [17].  

We were able to detect particles in low concentrations in all the EBC samples, but generally 

above the determined LOQ of 1.3 107 particles ml-1. Only 2.5% of all the EBC samples (and only 

control samples) showed concentration values smaller than this LOQ. The very different size 

distribution of particles in the EBC of craftsmen working with crystal quartz, in comparison to 

soapstone workers and controls (Figure 1), suggests that exposure to aerosols generated from 

quartz increases the particle concentration measured in EBC. Nevertheless, as presented in 

Table 3 and Figure S3, the particle concentration in EBC does not appear to be related to the 
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respirable concentration as the greatest exposure observed for soapstone workers 

corresponded to a very low particle concentration in EBC, similar to the controls. On the 

contrary, the content of silica in the respirable fraction followed the same trend as the particle 

concentration observed in the EBC (Table 3 and Figure S3). The silica content in the respirable 

fraction of crystal quartz workers was five times larger than that of soapstone workers, and this 

translated into a similar increase in the particle concentrations observed in EBC of the crystal 

quartz worker group. Furthermore, this influence was mostly observed for particle sizes larger 

than 100 nm (Figure 2). These results may suggest that the number of quartz particles is 

greater in the EBC of crystal quartz workers because they remain in the alveolar compartment 

longer than amorphous particles such as those in soapstone dust. Indeed, EBC mainly 

originates deep in the lungs [28] and most fine particles (i.e. less than 2.5 microns) are typically 

deposited in the lung acini [29]. In addition, Arts et al. [30] showed that the pulmonary clearance 

time of quartz particles in rats was longer than that of amorphous particles. Our results may thus 

be explained by a lack of lung clearance of quartz particles, which favors their biopersistance in 

the airway lining fluid. Due to technical difficulties, it was impossible to assess the granulometry 

of the particles to which the workers were exposed. Nevertheless, the particulate content in the 

EBC of crystal quartz workers was significantly different from that of soapstone workers or 

controls. Thus, the EBC matrix appears to be a reflection of the lungs’ particulate content. The 

FEV1 values of the crystal quartz group were lower than the other groups taking into account 

age and smoking consumption. These findings are consistent with Ulvestad et al.  [31] who 

showed that the decline in FEV1 was greater (50 to 63 mL per year) in tunnel workers exposed 

to lower alpha-quartz concentrations (between 0.019 and 0.044 mg.m-3 ) compared to control 

subjects (25 mL per year). Therefore, the low values of FEV1 observed in crystal quartz workers 

can be explained by exposure to silica dust. 

The possible influence of active smoking on the particle concentration in EBC could only be 

evaluated for the soapstone workers’ group, as it contained the largest number of smoking 

volunteers (10 out of 55). No statistically significant contribution of smoking to the particle 

concentrations in EBC was observed (post hoc t-test with Bonferroni corrections, data not 

shown). Although this result is based on a relatively small amount of data, it is consistent with 

previous literature [12, 14] which failed to find any association between the number of particles 

in EBC and smoking status.  

The fact that the EBC samples of all three groups revealed a similar size distribution in the 

range from 0–102 nm suggests either that the processing of soapstone and crystal quartz only 
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emit a small fraction of nanoparticles (with sizes smaller than 100 nm) or that it is difficult to 

detect small particles when their suspension is of a polydisperse nature. Another explanation 

could be that when samples are not flash frozen, the nanoparticles in EBC undergo a faster 

dissolution rate, as reported for tungsten particles from inert gas welding [32]. Such similar 

concentrations of particles smaller than 100 nm could also point to their endogenous origin. The 

NTA technique has been shown to detect particles of biological origin, such as microvesicles or 

exosomes [33], with sizes corresponding to the size range observed for control EBCs. 

Additionally, data from Almstrand et al. [34] suggest that the exhaled particles could correspond 

to lipidic bilayered vesicles of endogenous origin.  

The precise nature of the particles measured in EBC cannot be determined using NTA, but 

scanning electron microscopy (SEM) techniques allowed us to make a morphological and 

qualitative chemical analysis. The particles observed using this technique were rather large, 

with irregular shapes and approximate sizes between 0.5 and > 10 µm (see Figure S4, 

Supplemental material). Energy dispersive X-ray spectroscopy (EDX) analysis indicated the 

recurrent presence of sodium (Na), potassium (K), chlorine (Cl), and sulfur (S) elements, 

together with the less frequent presence of alkaline earth metals (Ca, Mg), metalloids (Al, Si), 

and transition metals (Fe, Ti). The objects containing Na, K, Cl, and S in addition to carbon and 

oxygen are thought to originate either from the airway lining fluid itself [14, 35], after 

recrystallization during the drying process on the grid, or from some external source [10, 34]. 

The other elements detected are potentially constituents of the soapstone rocks and crystal 

quartz used in this region [36]. By combining different techniques (SEM and NTA), it was 

possible to confirm that EBC contains particles originating from the materials processed by the 

workers. Nevertheless, it was impossible to disentangle the endogenous origin (microvesicles or 

cellular debris) of the particles detected in the different EBC samples from exogenous ones 

(ambient particles for controls and/or workplace-generated particles of soapstone and crystal 

quartz). 

 

Conclusions 

The ability to make a non-invasive determination of the doses of particles deposited in subjects’ 

lungs would greatly help our understanding of their subsequent biological effects. The NTA 

technique shows promise in this domain, as the present study describes it to be a sensitive and 

reliable method for the characterization of particle size distributions and concentrations in EBC. 
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Applying the NTA technique to EBC samples collected from controls and workers exposed to 

soapstone or crystal quartz dust revealed that only those volunteers exposed to crystal quartz 

showed statistically higher concentrations of particles in their EBC. This observation suggests 

that exposure to crystal quartz particles influences particle concentrations measured in EBC. 

This influence is mainly apparent for particle sizes larger than 100 nm. NTA alone can provide 

important information about the size distributions and concentration levels of particles in EBC, 

however, it must be combined with other techniques (SEM/TEM, or single particle ICP-MS for 

metallic particles) in order to determine the precise nature of those particles. Many issues will 

have to be resolved before such a technique could be proposed for determining the dose 

deposited in the lungs as a proxy for exposure. The relationship between the characteristics of 

inhaled particles (size distribution and number) and those of the particles measured in EBC is of 

prime importance. Further studies using well-controlled experimental situations, e.g. using 

monodispersed particles or different breathing scenarios, will also be needed to assess the 

contributions of endogenous and exogenous particles to the total numbers and size distributions 

of the particles measured using NTA.  
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