856 research outputs found
Hydrostatic pressure does not cause detectable changes to survival of human retinal ganglion
Purpose: Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods: A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results: Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina
A systematic review of randomised controlled trials on the effectiveness of exercise programs on lumbo pelvic pain among postnatal women
Background: A substantial number of women tend to be affected by Lumbo Pelvic Pain (LPP) following child birth.
Physical exercise is indicated as a beneficial method to relieve LPP, but individual studies appear to suggest mixed
findings about its effectiveness. This systematic review aimed to synthesise evidence from randomised controlled trials on the effectiveness of exercise on LPP among postnatal women to inform policy, practice and future research.
Methods: A systematic review was conducted of all randomised controlled trials published between January 1990 and July 2014, identified through a comprehensive search of following databases: PubMed, PEDro, Embase, Cinahl, Medline, SPORTDiscus, Cochrane Pregnancy and Childbirth Group’s Trials Register, and electronic libraries of authors’institutions.
Randomised controlled trials were eligible for inclusion if the intervention comprised of postnatal exercise for women
with LPP onset during pregnancy or within 3 months after delivery and the outcome measures included changes in
LPP. Selected articles were assessed using the PEDro Scale for methodological quality and findings were synthesised narratively as meta-analysis was found to be inappropriate due to heterogeneity among included studies.
Results: Four randomised controlled trials were included, involving 251 postnatal women. Three trials were rated as
of ‘good’ methodological quality. All trials, except one, were at low risk of bias. The trials included physical exercise
programs with varying components, differing modes of delivery, follow up times and outcome measures. Intervention
in one trial, involving physical therapy with specific stabilising exercises, proved to be effective in reducing LPP
intensity. An improvement in gluteal pain on the right side was reported in another trial and a significant difference in
pain frequency in another.
Conclusion: Our review indicates that only few randomised controlled trials have evaluated the effectiveness of
exercise on LPP among postnatal women. There is also a great amount of variability across existing trials in the
components of exercise programs, modes of delivery, follow up times and outcome measures. While there is some
evidence to indicate the effectiveness of exercise for relieving LPP, further good quality trials are needed to ascertain
the most effective elements of postnatal exercise programs suited for LPP treatment
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Optimization of thermo-mechanical reliability of solder joints in crystalline silicon solar cell assembly
This is an accepted manuscript of an article published by Elsevier in Microelectronics Reliability on 28/12/2015, available online: https://doi.org/10.1016/j.microrel.2015.12.031
The accepted version of the publication may differ from the final published version.© 2015 Elsevier Ltd All rights reserved. A robust solder joint in crystalline silicon solar cell assembly is necessary to ensure its thermo-mechanical reliability. The solder joint formed using optimal parameter setting accumulates minimal creep strain energy density which leads to longer fatigue life. In this study, thermo-mechanical reliability of solder joint in crystalline silicon solar cell assembly is evaluated using finite element modelling (FEM) and Taguchi method. Geometric models of the crystalline silicon solar cell assembly are built and subjected to accelerated thermal cycling utilizing IEC 61215 standard for photovoltaic panels. In order to obtain the model with minimum accumulated creep strain energy density, the L9 (33) orthogonal array was applied to Taguchi design of experiments (DOE) to investigate the effects of IMC thickness (IMCT), solder joint width (SJW) and solder joint thickness (SJT) on the thermo-mechanical reliability of solder joints. The solder material used in this study is Sn3.8Ag0.7Cu and its non-linear creep deformation is simulated using Garofalo-Arrhenius creep model. The results obtained indicate that solder joint thickness has the most significant effect on the thermo-mechanical reliability of solder joints. Analysis of results selected towards thermo-mechanical reliability improvement shows the design with optimal parameter setting to be: solder joint thickness - 20 μm, solder joint width - 1000 μm, and IMC thickness - 2.5 μm. Furthermore, the optimized model has the least damage in the solder joint and shows a reduction of 47.96% in accumulated creep strain energy density per cycle compared to the worst case original model. Moreover, the optimized model has 16,264 cycles to failure compared with the expected 13,688 cycles to failure of a PV module designed to last for 25 years.The authors acknowledge funding provided by the Petroleum Technology Development Fund (PTDF, PTDF/E/OSS/PHD/ZMT/623/12), Nigeria used in carrying out this study.Published versio
Evaluation of thermo-mechanical damage and fatigue life of solar cell solder interconnections
The soldering process of interconnecting crystalline silicon solar cells to form photovoltaic (PV) module is a key manufacturing process. However, during the soldering process, stress is induced in the solar cell solder joints and remains in the joint as residual stress after soldering. Furthermore, during the module service life time, thermo-mechanical degradation of the solder joints occurs due to thermal cycling of the joints which induce stress, creep strain and strain energy. The resultant effect of damage on the solder joint is premature failure, hence shortened fatigue life. This study seeks to determine accumulated thermo-mechanical damage and fatigue life of solder interconnection in solar cell assembly under thermo-mechanical cycling conditions. In this investigation, finite element modelling (FEM) and simulations are carried out in order to determine nonlinear degradation of SnAgCu solder joints. The degradation of the solder material is simulated using Garofalo-Arrhenius creep model. A three dimensional (3D) geometric model is subjected to six accelerated thermal cycles (ATCs) utilising IEC 61215 standard for photovoltaic panels. The results demonstrate that induced stress, strain and strain energy impacts the solder joints during operations. Furthermore, the larger the accumulated creep strain and creep strain energy in the joints, the shorter the fatigue life. This indicates that creep strain and creep strain energy in the solder joints significantly impacts the thermo-mechanical reliability of the assembly joints. Regions of solder joint with critical stress, strain and strain energy values including their distribution are determined. Analysis of results demonstrates that creep energy density is a better parameter than creep strain in predicting interconnection fatigue life. The use of six ATCs yields significant data which enable better understanding of the response of the solder joints to the induced loads. Moreover, information obtained from this study can be used for improved design and better-quality fabrication of solder interconnections in solar cell assembly for enhanced thermo-mechanical reliability
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains
In the first (and abstract) part of this survey we prove the unitary
equivalence of the inverse of the Krein--von Neumann extension (on the
orthogonal complement of its kernel) of a densely defined, closed, strictly
positive operator, for some in a Hilbert space to an abstract buckling problem operator.
This establishes the Krein extension as a natural object in elasticity theory
(in analogy to the Friedrichs extension, which found natural applications in
quantum mechanics, elasticity, etc.).
In the second, and principal part of this survey, we study spectral
properties for , the Krein--von Neumann extension of the
perturbed Laplacian (in short, the perturbed Krein Laplacian)
defined on , where is measurable, bounded and
nonnegative, in a bounded open set belonging to a
class of nonsmooth domains which contains all convex domains, along with all
domains of class , .Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144
Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC
We present the first results of meson production in the K^+K^- decay channel
from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by
the PHENIX detector at RHIC. Precision resonance centroid and width values are
extracted as a function of collision centrality. No significant variation from
the PDG accepted values is observed. The transverse mass spectra are fitted
with a linear exponential function for which the derived inverse slope
parameter is seen to be constant as a function of centrality. These data are
also fitted by a hydrodynamic model with the result that the freeze-out
temperature and the expansion velocity values are consistent with the values
previously derived from fitting single hadron inclusive data. As a function of
transverse momentum the collisions scaled peripheral.to.central yield ratio RCP
for the is comparable to that of pions rather than that of protons. This result
lends support to theoretical models which distinguish between baryons and
mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV
The transverse single-spin asymmetries of neutral pions and non-identified
charged hadrons have been measured at mid-rapidity in polarized proton-proton
collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T)
range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at
a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this
previously unexplored kinematic region are consistent with zero within
statistical errors of a few percent. In addition, the inclusive charged hadron
cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and
compared to NLO pQCD calculations. Successful description of the unpolarized
cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in
the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys.
Rev. Lett. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
