74 research outputs found

    Analyses spectroscopiques du liquide céphalo-rachidien de rat en ex vivo et du noyau du raphé dorsal in vivo

    Get PDF
    Les propriétés d'absorption et de fluorescence du liquide céphalo-rachidien (LCR) ponctionné au niveau de la cisterna magna du rat, sont analysées puis comparées à l'émission mesurée in situ dans le noyau du raphe dorsal du rat libre de tous mouvements. Les mesures de fluorescence en ex vivo du LCR et in vivo du noyau raphé dorsal, ont été réalisées par la mise en œuvre d'un microcapteur à fibre optique (FOCS). La fluorescence mesurée in vivo sous excitation à 337 nm, présente 2 pics d'émission situés vers 410 et 460 nm. Les spectres d'absorption, d'émission en fluorescence statique et en fluorescence induite par laser sont rapportés. Avec des domaines de longueur d'onde d'excitation de 300-315 nm, 320-355 nm et 360-470 nm, les spectres d'émission du LCR en ex vivo montrent respectivement des pics centrés vers 340 nm, 390 nm et 530 nm. Malgré les limites liées aux différences de localisation anatomique, ces approches ainsi que celles de la littérature permettent de suggérer que le signal de fluorescence mesuré in vivo à 460nm pourrait dépendre pour une grande partie du NADH intracellulaire

    Altered Behaviour, Dopamine and Norepinephrine Regulation in Stressed Mice Heterozygous in TPH2 Gene

    Full text link
    Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naïve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2+/−) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2+/− mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2+/− mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2+/− mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2+/− mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions. © 2020 The Authors.The authors' work reported here was supported by Deutsche Forschungsgemeinschaft (DFG:CRC TRR58A1/A5), DAAD (to ES), the European Union's Seventh Framework Programme (FP7/2007–2013) under Grant No.602805 (Aggressotype) and the Horizon 2020 Research and Innovation Programme under Grant No.728018 (Eat2beNICE) (to KPL and TS) and the President's program of PhD Exchange of RF-2017 (to TS and DA). We appreciate the valuable technical help of Natalia Bazhenova, Drs. Alexander Trofimov and Natalia Markova with this project

    The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2.

    Get PDF
    BACKGROUND: A number of epidemiological studies have established a link between insulin resistance and the prevalence of depression. The occurrence of depression was found to precede the onset of diabetes and was hypothesized to be associated with inherited inter-related insufficiency of the peripheral and central insulin receptors. Recently, dicholine succinate, a sensitizer of the neuronal insulin receptor, was shown to stimulate insulin-dependent H2O2 production of the mitochondrial respiratory chain leading to an enhancement of insulin receptor autophosphorylation in neurons. As such, this mechanism can be a novel target for the elevation of insulin signaling. RESULTS: Administration of DS (25 mg/kg/day, intraperitoneal) in CD1 mice for 7 days prior to the onset of stress procedure, diminished manifestations of anhedonia defined in a sucrose test and behavioral despair in the forced swim test. Treatment with dicholine succinate reduced the anxiety scores of stressed mice in the dark/light box paradigm, precluded stress-induced decreases of long-term contextual memory in the step-down avoidance test and hippocampal gene expression of IGF2. CONCLUSIONS: Our data suggest that dicholine succinate has an antidepressant-like effect, which might be mediated via the up-regulation of hippocampal expression of IGF2, and implicate the neuronal insulin receptor in the pathogenesis of stress-induced depressive syndrome.journal articleresearch support, non-u.s. gov't2012 Sep 182012 09 18importe

    Cerebral Changes Occurring in Arginase and Dimethylarginine Dimethylaminohydrolase (DDAH) in a Rat Model of Sleeping Sickness

    Get PDF
    Involvement of nitric oxide (NO) in the pathophysiology of human African trypanosomiasis (HAT) was analyzed in a HAT animal model (rat infected with Trypanosoma brucei brucei). With this model, it was previously reported that trypanosomes were capable of limiting trypanocidal properties carried by NO by decreasing its blood concentration. It was also observed that brain NO concentration, contrary to blood, increases throughout the infection process. The present approach analyses the brain impairments occurring in the regulations exerted by arginase and N(G), N(G)-dimethylarginine dimethylaminohydrolase (DDAH) on NO Synthases (NOS). In this respect: (i) cerebral enzymatic activities, mRNA and protein expression of arginase and DDAH were determined; (ii) immunohistochemical distribution and morphometric parameters of cells expressing DDAH-1 and DDAH-2 isoforms were examined within the diencephalon; (iii) amino acid profiles relating to NOS/arginase/DDAH pathways were established.Arginase and DDAH activities together with mRNA (RT-PCR) and protein (western-blot) expressions were determined in diencephalic brain structures of healthy or infected rats at various days post-infection (D5, D10, D16, D22). While arginase activity remained constant, that of DDAH increased at D10 (+65%) and D16 (+51%) in agreement with western-blot and amino acids data (liquid chromatography tandem-mass spectrometry). Only DDAH-2 isoform appeared to be up-regulated at the transcriptional level throughout the infection process. Immunohistochemical staining further revealed that DDAH-1 and DDAH-2 are contained within interneurons and neurons, respectively.In the brain of infected animals, the lack of change observed in arginase activity indicates that polyamine production is not enhanced. Increases in DDAH-2 isoform may contribute to the overproduction of NO. These changes are at variance with those reported in the periphery. As a whole, the above processes may ensure additive protection against trypanosome entry into the brain, i.e., maintenance of NO trypanocidal pressure and limitation of polyamine production, necessary for trypanosome growth

    Inhaled Nitric Oxide Reduces Brain Damage by Collateral Recruitment in a Neonatal Stroke Model

    No full text
    corecore