110 research outputs found

    Multi-scale investigation of uranium attenuation by arsenic at an abandoned uranium mine, South Terras

    Get PDF
    Detailed mineralogical analysis of soils from the UK’s historical key uranium mine, South Terras, was performed to elucidate the mechanisms of uranium degradation and migration in the 86 years since abandonment. Soils were sampled from the surface (0 – 2 cm) and near-surface (25 cm) in two distinct areas of ore processing activities. Bulk soil analysis revealed the presence of high concentrations of uranium (<1690 ppm), arsenic (1830 ppm) and beryllium (~250 ppm), suggesting pedogenic weathering of the country rock and ore extraction processes to be the mechanisms of uranium ore degradation. Micro-focus XRF analysis indicated the association of uranium with arsenic, phosphate and copper; µ-XRD data confirmed the presence of the uranyl-arsenate minerals metazeunerite (Cu(UO2)2(AsO4)2·8H2O) and metatorbernite (Cu(UO2)2(PO4)2·8H2O) to be ubiquitous. Our data are consistent with the solid solution of these two uranyl-mica minerals, not previously observed at uranium-contaminated sites. Crystallites of uranyl-mica minerals were observed to coat particles of jarosite and muscovite, suggesting that the mobility of uranium from degraded ores is attenuated by co-precipitation with arsenic and phosphate, which was not previously considered at this site

    Apicoplast-localized lysophosphatidic acid precursor assembly is required for bulk phospholipid synthesis in toxoplasma gondii and relies on an algal/plant-like glycerol 3-phosphate acyltransferase

    Full text link
    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii

    Multilocus variable number of tandem repeat analysis reveals multiple introductions in Spain of Xanthomonas arboricola pv. Pruni, the causal agent of bacterial spot disease of stone fruits and almond

    Get PDF
    Xanthomonas arboricola pv. pruni is the causal agent of the bacterial spot disease of stone fruits, almond and some ornamental Prunus species. In Spain it was first detected in 2002 and since then, several outbreaks have occurred in different regions affecting mainly Japanese plum, peach and almond, both in commercial orchards and nurseries. As the origin of the introduction(s) was unknown, we have assessed the genetic diversity of 239 X. arboricola pv. pruni strains collected from 11 Spanish provinces from 2002 to 2013 and 25 reference strains from international collections. We have developed an optimized multilocus variable number of tandem repeat analysis (MLVA) scheme targeting 18 microsatellites and five minisatellites. A high discriminatory power was achieved since almost 50% of the Spanish strains were distinguishable, confirming the usefulness of this genotyping technique at small spatio-temporal scales. Spanish strains grouped in 18 genetic clusters (conservatively delineated so that each cluster contained haplotype networks linked by up to quadruple-locus variations). Furthermore, pairwise comparisons among populations from different provinces showed a strong genetic differentiation. Our results suggest multiple introductions of this pathogen in Spain and redistribution through contaminated nursery propagative plant material

    Analysis of Clonal Type-Specific Antibody Reactions in Toxoplasma gondii Seropositive Humans from Germany by Peptide-Microarray

    Get PDF
    BACKGROUND: Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals. METHODOLOGY: A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (n = 174) collected from individuals with an acute T. gondii infection (n = 21), a latent T. gondii infection (n = 53) and from T. gondii-seropositive forest workers (n = 100). FINDINGS: The majority (n = 124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (n = 73) or 16% (n = 28) of the human sera, respectively, while type II-III, type I-III or type I-II peptides were recognized by 49% (n = 85), 36% (n = 62) or 14% (n = 25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides mimicking type II-specific epitopes. A proportion of the sera (n = 22; 13%) showed no reaction with type-specific peptides. Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to individuals with latent T. gondii infection or seropositive forest workers. CONCLUSIONS: Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed to establish and to perform future serotyping approaches with higher resolution

    CD40, autophagy and Toxoplasma gondii

    Full text link
    Toxoplasmagondii represents a pathogen that survives within host cells by preventing the endosomal-lysosomal compartments from fusing with the parasitophorous vacuoles. The dogma had been that the non-fusogenic nature of these vacuoles is irreversible. Recent studies revealed that this dogma is not correct. Cell-mediated immunity through CD40 re-routes the parasitophorous vacuoles to the lysosomal compartment by a process called autophagy. Autophagosome formation around the parasitophorous vacuole results in killing of the T. gondii. CD40-induced autophagy likely contributes to resistance against T. gondii particularly in neural tissue

    Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases

    Get PDF
    Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain–containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1–BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases

    Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver

    Get PDF
    Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator
    corecore