188 research outputs found

    An all-glass microfluidic network with integrated amorphous silicon photosensors for on-chip monitoring of enzymatic biochemical assay

    Get PDF
    A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microfluidic network is then made accessible by opening inlets and outlets just prior to the use, ensuring the sterility of the device. The entire fabrication process relies on conventional photolithographic microfabrication techniques and is suitable for low-cost mass production of the device. The lab-on-chip system has been tested by implementing a chemiluminescent biochemical reaction. The inner channel walls of the microfluidic network are chemically functionalized with a layer of polymer brushes and horseradish peroxidase is immobilized into the coated channel. The results demonstrate the successful on-chip detection of hydrogen peroxide down to 18 mu M by using luminol and 4-iodophenol as enhancer agent

    Lab-on-chip system combining a microfluidic-ELISA with an array of amorphous silicon photosensors for the detection of celiac disease epitopes

    Get PDF
    This work presents a lab-on-chip system, which combines a glass-polydimethilsiloxane microfluidic network and an array of amorphous silicon photosensors for the diagnosis and follow-up of Celiac disease. The microfluidic chip implements an on-chip enzyme-linked immunosorbent assay (ELISA), relying on a sandwich immunoassay between antibodies against gliadin peptides (GPs) and a secondary antibody marked with horseradish peroxidase (Ig-HRP). This enzyme catalyzes a chemiluminescent reaction, whose light intensity is detected by the amorphous silicon photosensors and transduced into an electrical signal that can be processed to recognize the presence of antibodies against GPs in the serum of people affected by Celiac syndrome.The correct operation of the developed lab-on-chip has been demonstrated using rabbit serum in the microfluidic ELISA. In particular, optimizing the dilution factors of both sera and Ig-HRP samples in the flowing solutions, the specific and non-specific antibodies against GPs can be successfully distinguished, showing the suitability of the presented device to effectively screen celiac disease epitopes. Keywords: Lab-on-chip, Celiac disease, Microfluidics, On-chip detection, ELISA, Amorphous silicon photosensor

    Variation of metabolic profiles in developing maize kernels up-and down-regulated for the hda101 gene

    Get PDF
    Abstract To shed light on the specific contribution of HDA101 in modulating metabolic pathways in the maize seed, changes in the metabolic profiles of kernels obtained from hda101 mutant plants have been investigated by a metabonomic approach. Dynamic properties of chromatin folding can be mediated by enzymes that modify DNA and histones. The enzymes responsible for the steady-state of histone acetylation are histone acetyltransferase and histone deacetylase (HDA). Therefore, it is interesting to evaluate the effects of up-and down-regulation of a Rpd-3 type HDA on the development of maize seeds in terms of metabolic changes. This has been reached by analysing nuclear magnetic resonance spectra by different chemometrician approaches, such as Orthogonal Projection to Latent Structure-Discriminant Analysis, Parallel Factors Analysis, and Multi-way Partial Least SquaresDiscriminant Analysis (N-PLS-DA). In particular, the latter approaches were chosen because they explicitly take time into account, organizing data into a set of slices that refer to different steps of the developing process. The results show the good discriminating capabilities of the N-PLS-DA approach, even if the number of samples ought be increased to obtain better predictive capabilities. However, using this approach, it was possible to show differences in the accumulation of metabolites during development and to highlight the changes occuring in the modified seeds. In particular, the results confirm the role of this gene in cell cycle control

    Biomolecular monitoring tool based on lab-on-chip for virus detection

    Get PDF
    Lab-on-Chip (LoC) devices for performing real-time PCR are advantageous compared to standard equipment since these systems allow to conduct in-field quick analysis. The development of LoCs, where the components for performing the nucleic acid amplification are all integrated, can be an issue. In this work, we present a LoC-PCR device where thermalization, temperature control and detection elements are all integrated on a single glass substrate named System-on-Glass (SoG) obtained using metal thin-film deposition. By using a microwell plate optically coupled with the SoG, real-time reverse transcriptase PCR of RNA extracted from both a plant and human virus has been carried out in the developed LoC-PCR device. The limit of detection and time of analysis for the detection of the two viruses by using the LoC-PCR were compared with those achieved by standard equipment. The results showed that the two systems can detect the same concentration of RNA; however, the LoC-PCR performs the analysis in half of the time compared to the standard thermocycler, with the advantage of the portability, leading to a point-of-care device for several diagnostic applications

    Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells

    Get PDF
    Many pivotal biological cell processes are affected by gravity. The aim of our study was to evaluate biological and functional effects, differentiation potential and exo-metabolome profile of simulated microgravity (SMG) on human hepatic cell line (HepG2) and human biliary tree stem/progenitor cells (hBTSCs). Both hBTSCs and HepG2 were cultured in a weightless and protected environment SGM produced by the Rotary Cell Culture System (Synthecon) and control condition in normal gravity (NG). Self-replication and differentiation toward mature cells were determined by culturing hBTSCs in Kubota's Medium (KM) and in hormonally defined medium (HDM) tailored for hepatocyte differentiation. The effects on the expression and cell exo-metabolome profiles of SMG versus NG cultures were analyzed. SMG promotes tridimensional (3D) cultures of hBTSCs and HepG2. Significative increase of stemness gene expression (pā€‰<ā€‰0.05) has been observed in hBTSCs cultured in SMG when compared to NG condition. At the same time, the expression of hepatocyte lineage markers in hBTSCs differentiated by HDM was significantly lower (pā€‰<ā€‰0.05) in SMG compared to NG, demonstrating an impaired capability of hBTSCs to differentiate in vitro toward mature hepatocytes when cultured in SMG condition. Furthermore, in HepG2 cells the SMG caused a lower (pā€‰<ā€‰0.05 vs controls) transcription of CYP3A4, a marker of late-stage (i.e. Zone 3) hepatocytes. Exo-metabolome NMR-analysis showed that both cell cultures consumed a higher amount of glucose and lower glutamate in SMG respect to NG (pā€‰<ā€‰0.05). Moreover, hBTSCs media cultures resulted richer of released fermentation (lactate, acetate) and ketogenesis products (B-hydroxybutyrate) in SGM (pā€‰<ā€‰0.05) than NG. While, HepG2 cells showed higher consumption of amino acids and release of ketoacids (3-Methyl-2-oxovalerate, 2-oxo-4-methyl-valerate) and formiate with respect to normogravity condition (pā€‰<ā€‰0.05). Based on our results, SMG could be helpful for developing hBTSCs-derived liver devices. In conclusion, SMG favored the formation of hBTSCs and HepG2 3D cultures and the maintenance of stemness contrasting cell differentiation; these effects being associated with stimulation of glycolytic metabolism. Interestingly, the impact of SMG on stem cell biology should be taken into consideration for workers involved in space medicine programs

    Consequences of simulated microgravity in neural stem cells: biological effects and metabolic response.

    Get PDF
    Objective: Microgravity was often shown to cause cell damage and impair cell cycle in a variety of biological systems. Since the effects on the neural system were poorly investigated, we aimed to gain insight into how biological processes such as cell cycle, cell damage, stemness features and metabolic status are involved in neural stem cells (NSC) when they experience simulated microgravity. We also wished to investigate whether these modulations were transient or permanent once cells were returned to normal gravity. Methods: NSC were isolated from mouse cerebella and cultured in the Rotary Cell Culture System (RCCS) to model microgravity. We analyzed cell cycle, stress and apoptotic response. We also performed a 1H NMR-based metabolomic analysis and evaluation of stemness features of NSC in simulated microgravity and once in the returned to normogravity cell culture. Results: Biological processes and metabolic status were modulated by simulated microgravity. Cells were arrested in S-phase together with enhanced apoptosis. Metabolic changes occurred in NSC after simulated microgravity. Interestingly, these modulations were transient. Indeed, stemness features and metabolic footprint returned to basal levels after few days of culture in normal conditions. Moreover NSC clonogenic ability was not impaired. Conclusions: Our data suggest that simulated microgravity impacts on NSC biological processes, including cell cycle and apoptosis. However, NSC does not suffer from permanent damage

    Low pH Activates the Vacuolating Toxin of Helicobacter pylori, Which Becomes Acid and Pepsin Resistant

    Get PDF
    The protein toxin VacA, produced by cytotoxic strains of Helicobacter pylori, causes a vacuolar degeneration of cells, which eventually die. VacA is strongly activated by a short exposure to acidic solutions in the pH 1.5-5.5 range, followed by neutralization. Activated VacA has different CD and fluorescence spectra and a limited proteolysis fragmentation pattern from VacA kept at neutral pH. Moreover, activated VacA is resistant to pH 1.5 and to pepsin. The relevance of these findings to pathogenesis of H. pylori-induced gastrointestinal ulcers is discussed

    PAM-2 decreases neuropathic pain in mice and modulates chemokine/cytokine production in human microglial cells

    Get PDF
    Background: People worldwide suffer from neuropathic pain, and indicated medications are often either not effective or induce tolerance and abuse. Therefore, there is an urgent need to identify additional therapeutic options to treat this form of pain. Nicotinic acetylcholine receptors (nAChRs), particularly a7-nAChRs, have been implicated in pain signaling. Therefore, this study was designed to investigate the extent to which the selective positive allosteric modulator (PAM) of a7 AChRs, PAM-2, modulates neuropathic pain. The working hypothesis, that PAM-2 inhibits inflammatory signaling and neuropathic pain, was tested using animal and cellular models.Methods: The anti-neuropathic pain activity of PAM-2 was assessed in two independent murine models of neuropathic pain. Briefly, neuropathic pain was induced in adult, male CD-1 mice (n=10/condition) via i.p. administration of either streptozotocin (STZ) or oxaliplatin (OXA). After 14 days, when neuropathic pain was present, mice were administrated with PAM-2 (1.0 or 3.0 mg/kg, p.o.) or vehicle. The pain threshold was subsequently determined by the cold plate test before and 15, 30, 45, and 60 min after treatment. In addition, C20 human microglial cells were exposed to interleukin (IL)-1B (20 ng/ml) or vehicle alone, and in combination with nicotine (3 uM), PAM-2 (1-100 uM), or nicotine + PAM-2 for 24 h. After 24 h, cytokine/chemokine levels in the culture media were measured by ELISA.Results: A single dose of PAM-2 (3.0 mg/kg) decreased both STZ- and OXA-induced neuropathic pain in mice. Repeated treatment with an inactive dose (1.0 mg/kg) of PAM-2 showed anti-pain activity in OXA-treated mice after 14, but not 7, days of treatment. Additionally, methyllycaconitine blocked the anti-pain effects elicited by PAM-2, supporting the view that a7 AChRs are instrumental in the anti-pain actions of PAM-2. Cellular experiments revealed that nicotine minimally inhibited IL-1B-induced IL-6 and interferon-gamma-induced chemotactic protein 10 expression in C20 human microglial cells, and that this inhibition was potentiated by PAM-2 (100 uM). However, we cannot rule out the possibility that PAM- 2 was cytotoxic in this cell culture model.Conclusions: These findings indicate that a7 AChRs are involved in neuropathic pain signaling and that a7-PAMs may potentially be used therapeutically. The extent to which these protective effects involve reduced neuroinflammation remains to be determined

    Variation of metabolic profiles in developing maize kernels up- and down-regulated for the hda101 gene

    Get PDF
    To shed light on the specific contribution of HDA101 in modulating metabolic pathways in the maize seed, changes in the metabolic profiles of kernels obtained from hda101 mutant plants have been investigated by a metabonomic approach. Dynamic properties of chromatin folding can be mediated by enzymes that modify DNA and histones. The enzymes responsible for the steady-state of histone acetylation are histone acetyltransferase and histone deacetylase (HDA). Therefore, it is interesting to evaluate the effects of up- and down-regulation of a Rpd-3 type HDA on the development of maize seeds in terms of metabolic changes. This has been reached by analysing nuclear magnetic resonance spectra by different chemometrician approaches, such as Orthogonal Projection to Latent Structure-Discriminant Analysis, Parallel Factors Analysis, and Multi-way Partial Least Squares-Discriminant Analysis (N-PLS-DA). In particular, the latter approaches were chosen because they explicitly take time into account, organizing data into a set of slices that refer to different steps of the developing process. The results show the good discriminating capabilities of the N-PLS-DA approach, even if the number of samples ought be increased to obtain better predictive capabilities. However, using this approach, it was possible to show differences in the accumulation of metabolites during development and to highlight the changes occuring in the modified seeds. In particular, the results confirm the role of this gene in cell cycle control

    Recurrence quantification analysis as a tool for the characterization of molecular dynamics simulations

    Full text link
    A molecular dynamics simulation of a Lennard-Jones fluid, and a trajectory of the B1 immunoglobulin G-binding domain of streptococcal protein G (B1-IgG) simulated in water are analyzed by recurrence quantification, which is noteworthy for its independence from stationarity constraints, as well as its ability to detect transients, and both linear and nonlinear state changes. The results demonstrate the sensitivity of the technique for the discrimination of phase sensitive dynamics. Physical interpretation of the recurrence measures is also discussed.Comment: 7 pages, 8 figures, revtex; revised for review for Phys. Rev. E (clarifications and expansion of discussion)-- addition of the 8 postscript figures previously omitted, but unchanged from version
    • ā€¦
    corecore