126 research outputs found

    Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold

    Get PDF
    Retinal progenitor cells (RPCs) can be combined with nanostructured polymer scaffolds to generate composite grafts in culture. One strategy for repair of diseased retinal tissue involves implantation of composite grafts of this type in the subretinal space. In the present study, mouse retinal progenitor cells (RPCs) were cultured on laminin-coated novel nanowire poly(e-caprolactone)(PCL) scaffolds, and the survival, differentiation, and migration of these cells into the retina of C57bl/6 and rhodospsin −/− mouse retinal explants and transplant recipients were analyzed. RPCs were cultured on smooth PCL and both short (2.5 μm) and long (27 μm) nanowire PCL scaffolds. Scaffolds with adherent mRPCs were then either co-cultured with, or transplanted to, wild-type and rhodopsin −/− mouse retina. Robust RPC proliferation on each type of PCL scaffold was observed. Immunohistochemistry revealed that RPCs cultured on nanowire scaffolds increased expression of mature bipolar and photoreceptor markers. Reverse transcription polymerase chain reaction revealed down-regulation of several early progenitor markers. PCL-delivered RPCs migrated into the retina of both wild-type and rhodopsin knockout mice. The results provide evidence that RPCs proliferate and express mature retinal proteins in response to interactions with nanowire scaffolds. These composite grafts allow for the migration and differentiation of new cells into normal and degenerated retina

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    Comprehensive in silico functional specification of mouse retina transcripts

    Get PDF
    BACKGROUND: The retina is a well-defined portion of the central nervous system (CNS) that has been used as a model for CNS development and function studies. The full specification of transcripts in an individual tissue or cell type, like retina, can greatly aid the understanding of the control of cell differentiation and cell function. In this study, we have integrated computational bioinformatics and microarray experimental approaches to classify the tissue specificity and developmental distribution of mouse retina transcripts. RESULTS: We have classified a set of retina-specific genes using sequence-based screening integrated with computational and retina tissue-specific microarray approaches. 33,737 non-redundant sequences were identified as retina transcript clusters (RTCs) from more than 81,000 mouse retina ESTs. We estimate that about 19,000 to 20,000 genes might express in mouse retina from embryonic to adult stages. 39.1% of the RTCs are not covered by 60,770 RIKEN full-length cDNAs. Through comparison with 2 million mouse ESTs, spectra of neural, retinal, late-generated retinal, and photoreceptor -enriched RTCs have been generated. More than 70% of these RTCs have data from biological experiments confirming their tissue-specific expression pattern. The highest-grade retina-enriched pool covered almost all the known genes encoding proteins involved in photo-transduction. CONCLUSION: This study provides a comprehensive mouse retina transcript profile for further gene discovery in retina and suggests that tissue-specific transcripts contribute substantially to the whole transcriptome

    Analysis of Transcriptional Regulatory Pathways of Photoreceptor Genes by Expression Profiling of the Otx2-Deficient Retina

    Get PDF
    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease

    Progenitor cells of the rod-free area centralis originate in the anterior dorsal optic vesicle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nervous system development is dependent on early regional specification to create functionally distinct tissues within an initially undifferentiated zone. Within the retina, photoreceptors are topographically organized with rod free area centrales faithfully generated at the centre of gaze. How does the developing eye regulate this placement? Conventional wisdom indicates that the distal tip of the growing optic vesicle (OV) gives rise to the area centralis/fovea. Ectopic expression and ablation studies do not fully support this view, creating a controversy as to the origin of this region. In this study, the lineage of cells in the chicken OV was traced using DiI. The location of labelled cells was mapped onto the retina in relation to the rod-free zone at embryonic (E) 7 and E17.5. The ability to regenerate a rod free area after OV ablation was determined in conjunction with lineage tracing.</p> <p>Results</p> <p>Anterior OV gave rise to cells in nasal retina and posterior OV became temporal retina. The OV distal tip gave rise to cells above the optic nerve head. A dorsal and anterior region of the OV correlated with cells in the developing rod free area centralis. Only ablations including the dorsal anterior region gave rise to a retina lacking a rod free zone. DiI application after ablation indicated that cells movements were greater along the anterior/posterior axis compared with the dorsal/ventral axis.</p> <p>Conclusion</p> <p>Our data support the idea that the chicken rod free area centralis originates from cells located near, but not at the distal tip of the developing OV. Therefore, the hypothesis that the area centralis is derived from cells at the distal tip of the OV is not supported; rather, a region anterior and dorsal to the distal tip gives rise to the rod free region. When compared with other studies of retinal development, our results are supported on molecular, morphological and functional levels. Our data will lead to a better understanding of the mechanisms underlying the topographic organization of the retina, the origin of the rod free zone, and the general issue of compartmentalization of neural tissue before any indication of morphological differentiation.</p

    Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses

    Get PDF
    Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can “cloak” the vector from inducing unwanted immune responses in multiple, but not all, models. This “coupled immunomodulation” strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods

    Morphological and Functional Changes in the Retina after Chronic Oxygen-Induced Retinopathy

    Get PDF
    The mouse model of oxygen-induced retinopathy (OIR) has been widely used for studies of retinopathy of prematurity (ROP). This disorder, characterized by abnormal vascularization of the retina, tends to occur in low birth weight neonates after exposure to high supplemental oxygen. Currently, the incidence of ROP is increasing because of increased survival of these infants due to medical progress. However, little is known about changes in the chronic phase after ROP. Therefore, in this study, we examined morphological and functional changes in the retina using a chronic OIR model. Both the a- and b-waves in the OIR model recovered in a time-dependent manner at 4 weeks (w), 6 w, and 8 w, but the oscillatory potential (OP) amplitudes remained depressed following a return to normoxic conditions. Furthermore, decrease in the thicknesses of the inner plexiform layer (IPL) and inner nuclear layer (INL) at postnatal day (P) 17, 4 w, and 8 w and hyperpermeability of blood vessels were observed in conjunction with the decrease in the expression of claudin-5 and occludin at 8 w. The chronic OIR model revealed the following: (1) a decrease in OP amplitudes, (2) morphological abnormalities in the retinal cells (limited to the IPL and INL) and blood vessels, and (3) an increase in retinal vascular permeability via the impairment of the tight junction proteins. These findings suggest that the experimental animal model used in this study is suitable for elucidating the pathogenesis of ROP and may lead to the development of potential therapeutic agents for ROP treatment

    Cell-Specific DNA Methylation Patterns of Retina-Specific Genes

    Get PDF
    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl −/− mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that correlates inversely with their expression level. Furthermore, these cell-specific patterns suggest that DNA methylation may play an important role in modulating photoreceptor gene expression in the developing mammalian retina
    corecore