439 research outputs found

    Variational Methods for Nuclear Systems with Dynamical Mesons

    Full text link
    We derive a model Hamiltonian whose ground state expectation value of any two-body operator coincides with that obtained with the Jastrow correlated wave function of the many-body Fermi system. Using this Hamiltonian we show that the variational principle can be extended to treat systems with dynamical mesons, even if in this case the concept of wave function looses its meaning

    Functional approach to the electromagnetic response function: the Longitudinal Channel

    Get PDF
    In this paper we address the (charge) longitudinal electromagnetic response for a homogeneous system of nucleons interacting via meson exchanges in the functional framework. This approach warrants consistency if the calculation is carried on order-by-order in the mesonic loop expansion with RPA-dressed mesonic propagators. At the 1-loop order and considering pion, rho and omega exchanges we obtain a quenching of the response, in line with the experimental results.Comment: RevTeX, 18 figures available upon request - to be published in Physical Review

    Path Integral Variational Methods for Strongly Correlated Systems

    Get PDF
    We introduce a new approach to highly correlated systems which generalizes the Fermi Hypernetted Chain and Correlated Basis Function techniques. While the latter approaches can only be applied to systems for which a nonrelativistic wave function can be defined, the new approach is based on the variation of a trial hamiltonian within a path integral framework and thus can also be applied to relativistic and field theoretical problems. We derive a diagrammatic scheme for the new approach and show how a particular choice of the trial hamiltonian corresponds exactly to the use of a Jastrow correlated ansatz for the wave function in the Fermi Hypernetted Chain approach. We show how our new approach can be used to find upper bounds to ground state energies in systems which the FHNC cannot handle, including those described by an energy-dependent effective hamiltonian. We demonstrate our approach by applying it to a quantum field theoretical system of interacting pions and nucleons.Comment: 35 RevTeX pages, 7 separated ps figures available on reques

    Spin projected unrestricted Hartree-Fock ground states for harmonic quantum dots

    Full text link
    We report results for the ground state energies and wave functions obtained by projecting spatially unrestricted Hartree Fock states to eigenstates of the total spin and the angular momentum for harmonic quantum dots with N≤12N\leq 12 interacting electrons including a magnetic field states with the correct spatial and spin symmetries have lower energies than those obtained by the unrestricted method. The chemical potential as a function of a perpendicular magnetic field is obtained. Signature of an intrinsic spin blockade effect is found.Comment: 12 pages, 5 tables, 10 figures, submitted to Phys. Rev.

    The multilevel pairing Hamiltonian versus the degenerate case

    Full text link
    We study the pairing Hamiltonian in a set of non degenerate levels. First, we review in the path integral framework the spontaneous breaking of the U(1) symmetry occurring in such a system for the degenerate situation. Then the behaviors with the coupling constant of the ground state energy in the multilevel and in the degenerate case are compared. Next we discuss, in the multilevel case, an exact strong coupling expansion for the ground state energy which introduces the moments of the single particle level distribution. The domain of validity of the expansion, which is known in the macroscopic limit, is explored for finite systems and its implications for the energy of the latter is discussed. Finally the seniority and Gaudin excitations of the pairing Hamiltonian are addressed and shown to display the same gap in leading order.Comment: 20 pages, 4 figure

    System consolidation of spatial memories in mice: effects of enriched environment.

    Get PDF
    Environmental enrichment (EE) is known to enhance learning and memory. Declarative memories are thought to undergo a first rapid and local consolidation process, followed by a prolonged process of system consolidation, which consist in a time-dependent gradual reorganization of brain regions supporting remote memory storage and crucial for the formation of enduring memories. At present, it is not known whether EE can affect the process of declarative memory system consolidation. We characterized the time course of hippocampal and cortical activation following recall of progressively more remote spatial memories. Wild-type mice either exposed to EE for 40 days or left in standard environment were subjected to spatial learning in the Morris water maze and to the probe test 1, 10, 20, 30, and 50 days after learning. Following the probe test, regional expression of the inducible immediate early gene c-Fos was mapped by immunohistochemistry, as an indicator of neuronal activity. We found that activation of the medial prefrontal cortex (mPFC), suggested to have a privileged role in processing remote spatial memories, was evident at shorter time intervals after learning in EE mice; in addition, EE induced the progressive activation of a distributed cortical network not activated in non-EE mice. This suggests that EE not only accelerates the process of mPFC recruitment but also recruits additional cortical areas into the network supporting remote spatial memories

    Inclusive versus Exclusive EM Processes in Relativistic Nuclear Systems

    Full text link
    Connections are explored between exclusive and inclusive electron scattering within the framework of the relativistic plane-wave impulse approximation, beginning with an analysis of the model-independent kinematical constraints to be found in the missing energy--missing momentum plane. From the interplay between these constraints and the spectral function basic features of the exclusive and inclusive nuclear responses are seen to arise. In particular, the responses of the relativistic Fermi gas and of a specific hybrid model with confined nucleons in the initial state are compared in this work. As expected, the exclusive responses are significantly different in the two models, whereas the inclusive ones are rather similar. By extending previous work on the relativistic Fermi gas, a reduced response is introduced for the hybrid model such that it fulfills the Coulomb and the higher-power energy-weighted sum rules. While incorporating specific classes of off-shellness for the struck nucleons, it is found that the reducing factor required is largely model-independent and, as such, yields a reduced response that is useful for extracting the Coulomb sum rule from experimental data. Finally, guided by the difference between the energy-weighted sum rules of the two models, a version of the relativistic Fermi gas is devised which has the 0th^{\rm th}, 1st^{\rm st} and 2nd^{\rm nd} moments of the charge response which agree rather well with those of the hybrid model: this version thus incorporates {\em a priori} the binding and confinement effects of the stuck nucleons while retaining the simplicity of the original Fermi gas.Comment: LaTex file with 15 .ps figure

    Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-Ă -la-masse: a vineyard infiltration experiment

    Get PDF
    Abstract. This paper presents a time-lapse application of electrical methods (electrical resistivity tomography, ERT; and mise-Ă -la-masse, MALM) for monitoring plant roots and their activity (root water uptake) during a controlled infiltration experiment. The use of non-invasive geophysical monitoring is of increasing interest as these techniques provide time-lapse imaging of processes that otherwise can only be measured at few specific spatial locations. The experiment here described was conducted in a vineyard in Bordeaux (France) and was focused on the behaviour of two neighbouring grapevines. The joint application of ERT and MALM has several advantages. While ERT in time-lapse mode is sensitive to changes in soil electrical resistivity and thus to the factors controlling it (mainly soil water content, in this context), MALM uses DC current injected into a tree stem to image where the plant root system is in effective electrical contact with the soil at locations that are likely to be the same where root water uptake (RWU) takes place. Thus, ERT and MALM provide complementary information about the root structure and activity. The experiment shows that the region of likely electrical current sources produced by MALM does not change significantly during the infiltration time in spite of the strong changes of electrical resistivity caused by changes in soil water content. Ultimately, the interpretation of the current source distribution strengthened the hypothesis of using current as a proxy for root detection. This fact, together with the evidence that current injection in the soil and in the stem produces totally different voltage patterns, corroborates the idea that this application of MALM highlights the active root density in the soil. When considering the electrical resistivity changes (as measured by ERT) inside the stationary volume of active roots delineated by MALM, the overall tendency is towards a resistivity increase during irrigation time, which can be linked to a decrease in soil water content caused by root water uptake. On the contrary, when considering the soil volume outside the MALM-derived root water uptake region, the electrical resistivity tends to decrease as an effect of soil water content increase caused by the infiltration. The use of a simplified infiltration model confirms at least qualitatively this behaviour. The monitoring results are particularly promising, and the method can be applied to a variety of scales including the laboratory scale where direct evidence of root structure and root water uptake can help corroborate the approach. Once fully validated, the joint use of MALM and ERT can be used as a valuable tool to study the activity of roots under a wide variety of field conditions

    APPROCCIO MULTI-DISCIPLINARE AL PROBLEMA DELLA SUBSIDENZA NELLA REGIONE EMILIA ROMAGNA

    Get PDF
    L’estrazione di fluidi sotterranei ha prodotto significativi fenomeni di subsidenza nel territorio della Regione Emilia-Romagna. Al fine di analizzare il fenomeno, per meglio comprenderne l’origine e gli aspetti evolutivi, è stato utilizzato un approccio multidisciplinare basato su innovativi sistemi di controllo delle quote piezometriche dei pozzi e degli spostamenti della superficie topografica. In particolare mediante la tecnica di interferometria DInSAR – SBAS sono state elaborate 52 immagini distribuite su un’area compresa tra l’Appennino bolognese e il fiume Po. E’ stata inoltre studiata l’evoluzione temporale delle quote piezometriche dei pozzi presenti in Regione, con lo scopo di evidenziare aree potenzialmente soggette a subsidenza confrontabile con i dati di spostamento al suolo DInSAR e con dati geodetici (livellazioni e dati GPS). Un significativo miglioramento della conoscenza dei fenomeni di subsidenza potrà avvenire integrando i risultati ottenuti con i dati forniti dalla nuova rete di stazioni GPS permanenti progettata congiuntamente dall’INGV e dall’Università di Bologna. L’analisi di dati geologici, idrogeologici, telerilevati e geodetici ha portato a risultati significativi per una corretta comprensione dei processi di subsidenza su buona parte della città di Bologna e della sua provincia. Tale approccio verrà esteso a tutta l’area compresa tra la catena appenninica ed il fiume Po

    Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria

    Get PDF
    Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2α distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies
    • …
    corecore