9 research outputs found

    Understanding Small RNA Formation in Drosophila Melanogaster: A Dissertation

    Get PDF
    Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs from premicroRNA. My thesis focuses on the functional characteristics of two Drosophila Dicers that makes them specific for their biological substrates. We found that RNA binding protein partners of Dicers and two small molecules, ATP and phosphate are key in regulating Drosophila Dicers’ specificity. Without any additional factor, recombinant Dicer-2 cleaves pre-miRNA, but its product is shorter than the authentic miRNA. However, the protein R2D2 and inorganic phosphate block pre-miRNA processing by Dicer-2. In contrast, Dicer-1 is inherently capable of processing the substrates of Dicer, long dsRNAs. Yet, partner protein of Dicer-1, Loqs-PB and ATP increase the efficiency of miRNA production from pre-miRNAs by Dicer-1, therefore enhance substrate specificity of Dicer-1. Our data highlight the role of ATP and regulatory dsRNA-binding partner proteins to achieve substrate specificity in Drosophila RNA silencing. Our study also sheds light onto the function of the helicase domain in Drosophila Dicers. Although Dicer-1 doesn’t hydrolyze ATP, ATP enhances miRNA production by increasing Dicer-1’s substrate specificity through lowering its KM. On the other hand, Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP, and ATP hydrolysis is required for Dicer-2 to process long dsRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, is processive; generating siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate. Piwi-dependent small RNAs, namely piRNAs, are a third class of small RNAs that are distinct from miRNAs and siRNAs. Their primary function is to repress transposons in the animal germline. piRNAs are Dicer-independent, and require Piwi family proteins for their biogenesis and function. Recently in addition to their presence in animal germlines, the presence and function of piRNA-like RNAs in the somatic tissues have been suggested (Yan et al. 2011; Morazzani et al. 2012; Rajasethupathy et al. 2012). We have investigated whether the piRNA-like reads in our many Drosophila head libraries come from the germline as a contaminant or are soma-specific. Most of the piRNA reads in our published head libraries show high similarity to germline piRNAs. However, piRNA-like reads from manually dissected heads are distinct from germline piRNAs, proving the presence of somatic piRNA-like small RNAs. We are currently asking the question whether these distinct piRNA-like reads in the heads are dependent on the Piwi family proteins, like the germline piRNAs

    Argonaute proteins

    Get PDF

    Inhibition of ribosome biogenesis in the epidermis is sufficient to trigger organism-wide growth quiescence independently of nutritional status in C. elegans.

    No full text
    Interorgan communication is crucial for multicellular organismal growth, development, and homeostasis. Cell nonautonomous inhibitory cues, which limit tissue-specific growth alterations, are not well characterized due to cell ablation approach limitations. In this study, we employed the auxin-inducible degradation system in C. elegans to temporally and spatially modulate ribosome biogenesis, through depletion of essential factors (RPOA-2, GRWD-1, or TSR-2). Our findings reveal that embryo-wide inhibition of ribosome biogenesis induces a reversible early larval growth quiescence, distinguished by a unique gene expression signature that is different from starvation or dauer stages. When ribosome biogenesis is inhibited in volumetrically similar tissues, including body wall muscle, epidermis, pharynx, intestine, or germ line, it results in proportionally stunted growth across the organism to different degrees. We show that specifically inhibiting ribosome biogenesis in the epidermis is sufficient to trigger an organism-wide growth quiescence. Epidermis-specific ribosome depletion leads to larval growth quiescence at the L3 stage, reduces organism-wide protein synthesis, and induced cell nonautonomous gene expression alterations. Further molecular analysis reveals overexpression of secreted proteins, suggesting an organism-wide regulatory mechanism. We find that UNC-31, a dense-core vesicle (DCV) pathway component, plays a significant role in epidermal ribosome biogenesis-mediated growth quiescence. Our tissue-specific knockdown experiments reveal that the organism-wide growth quiescence induced by epidermal-specific ribosome biogenesis inhibition is suppressed by reducing unc-31 expression in the epidermis, but not in neurons or body wall muscles. Similarly, IDA-1, a membrane-associated protein of the DCV, is overexpressed, and its knockdown in epidermis suppresses the organism-wide growth quiescence in response to epidermal ribosome biogenesis inhibition. Finally, we observe an overall increase in DCV puncta labeled by IDA-1 when epidermal ribosome biogenesis is inhibited, and these puncta are present in or near epidermal cells. In conclusion, these findings suggest a novel mechanism of nutrition-independent multicellular growth coordination initiated from the epidermis tissue upon ribosome biogenesis inhibition

    Phosphate and R2D2 Restrict the Substrate Specificity of Dicer-2, an ATP-Driven Ribonuclease

    No full text
    Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate

    Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

    Get PDF
    International audienceElucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy-many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation
    corecore