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ABSTRACT 

Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long 

double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs from pre-

microRNA. My thesis focuses on the functional characteristics of two Drosophila 

Dicers that makes them specific for their biological substrates. We found that 

RNA binding protein partners of Dicers and two small molecules, ATP and 

phosphate are key in regulating Drosophila Dicers’ specificity.  Without any 

additional factor, recombinant Dicer-2 cleaves pre-miRNA, but its product is 

shorter than the authentic miRNA. However, the protein R2D2 and inorganic 

phosphate block pre-miRNA processing by Dicer-2.  In contrast, Dicer-1 is 

inherently capable of processing the substrates of Dicer, long dsRNAs. Yet, 

partner protein of Dicer-1, Loqs-PB and ATP increase the efficiency of miRNA 

production from pre-miRNAs by Dicer-1, therefore enhance substrate specificity 

of Dicer-1. Our data highlight the role of ATP and regulatory dsRNA-binding 

partner proteins to achieve substrate specificity in Drosophila RNA silencing. 

 Our study also sheds light onto the function of the helicase domain in 

Drosophila Dicers. Although Dicer-1 doesn’t hydrolyze ATP, ATP enhances 

miRNA production by increasing Dicer-1’s substrate specificity through lowering 

its KM.  On the other hand, Dicer-2 is a dsRNA-stimulated ATPase that 

hydrolyzes ATP to ADP, and ATP hydrolysis is required for Dicer-2 to process 

long dsRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, is 

processive; generating siRNAs faster than it can dissociate from a long dsRNA 
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substrate. We propose that the Dicer-2 helicase domain uses ATP to generate 

many siRNAs from a single molecule of dsRNA before dissociating from its 

substrate. 

 Piwi-dependent small RNAs, namely piRNAs, are a third class of small 

RNAs that are distinct from miRNAs and siRNAs. Their primary function is to 

repress transposons in the animal germline. piRNAs are Dicer-independent, and 

require Piwi family proteins for their biogenesis and function. Recently in addition 

to their presence in animal germlines, the presence and function of piRNA-like 

RNAs in the somatic tissues have been suggested (Yan et al. 2011; Morazzani et 

al. 2012; Rajasethupathy et al. 2012 ). We have investigated whether the piRNA-

like reads in our many Drosophila head libraries come from the germline as a 

contaminant or are soma-specific. Most of the piRNA reads in our published 

head libraries show high similarity to germline piRNAs. However, piRNA-like 

reads from manually dissected heads are distinct from germline piRNAs, proving 

the presence of somatic piRNA-like small RNAs. We are currently asking the 

question whether these distinct piRNA-like reads in the heads are dependent on 

the Piwi family proteins, like the germline piRNAs. 
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CHAPTER I: INTRODUCTION 
  

Discovery and Importance of Small RNAs 

Small RNAs are small regulatory molecules comprised of ribonucleotides. 

They are generally smaller than 30 nucleotides and do not encode for a protein. 

They function as RNA molecules to regulate gene expression in a sequence 

specific way at both the transcriptional and posttranscriptional levels (Baulcombe 

et al. 1996). Small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-

dependent small RNAs (piRNAs) are perhaps the three most well known classes 

of small RNAs. 

Victor Ambros and his colleagues discovered small RNAs as gene 

expression regulators for the first time in 1993. The lin-4 gene surprisingly did not 

encode for a protein but rather 22 (mature miRNA) -60 nucleotide (pre-miRNA) 

transcripts that are complementary to the 3´UTR of lin-14 mRNA (Lee et al.  

1993). This seminal work established this antisense relationship as a negative 

regulation mechanism controlling lin-14 protein levels. What was a curious 

observation in worms later turned out to be a genome wide gene regulation 

mechanism that is conserved from plants to humans (Hamilton et al. 1999; 

Grishok et al. 2001, Brennecke; Hipfner et al. 2003).  In 1998, Andrew Fire, Craig 

Mello and their colleagues identified, double stranded RNA as a potent genetic 

interference molecule (Fire et al. 1998). Double stranded or siRNAs are used as 

an important tool to modulate gene expression in laboratory studies and are 

being tested as a cure for incurable diseases such as Huntington’s disease 
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(Montgomery et al. 1998; Kennerdell et al. 1998; Billy et al. 2001; Boutla et al. 

2001; Chiu et al. 2002; Elbashir et al. 2001). 

Since these two important discoveries, our knowledge about small RNA 

function and biogenesis has greatly expanded. Small RNAs have been 

implicated in diverse functions ranging from regulating development to repressing 

transposon activity (Hamilton et al. 1999; Reinhart et al. 2000; Lai et al. 2002, 

Aravin et al. 2001; Aukerman et al. 2003; Brennecke; Hipfner et al. 2003; 

Catalanotto et al. 2002; Chen et al. 2004; Grishok et al. 2001; Stark et al. 2003; 

Johnston et al. 2003; Kanellopoulou et al. 2005; Lau et al. 2001; Mallory et al. 

2004; Noma et al. 2004; Vagin et al. 2006).  
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Figure 1.1. The siRNA and the miRNA Pathway in Drosophila melanogaster 

(adapted from Ghildiyal & Zamore, 2009). The siRNA pathway originates from 

long double stranded RNAs whereas the miRNA pathway starts with very long 

endogenous precursor transcripts called primary miRNAs (pri-miRNAs).  The 

siRNA precursors are cleaved by Dicer-2 to form siRNA duplexes that are 

subsequently loaded into an Argonaute-2 (Ago2) RNA induced silencing complex 

(RISC). After cleavage of the passenger strand, single stranded and methylated 

mature siRNA bound Argonaute-2 cleaves target mRNAs. Drosha/Pasha 

complex processes pri-miRNAs to ~60 nt short hairpins called pre-miRNAs in the 

nucleus. After being exported to cytoplasm, Dicer1/ Loqs PB complex cleaves 

the pre-miRNAs into miRNA-miRNA* duplexes. miRNA-miRNA* duplex is loaded 

into RISC comprised of Argonaute-1 (Ago1). miRNA bound RISC functions in 

mRNA destabilization or translational repression of the antisense target mRNA 
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Small RNA Pathways in Drosophila melanogaster 

siRNAs and miRNAs are functionally distinct and their biogeneses require 

different protein complexes in Drosophila melanogaster (Lee et al. 2004, Figure 

1.1).  miRNAs are mainly responsible for repressing gene expression through 

mRNA destabilization and translational repression (Lewis et al. 2003; Bartel et al. 

2004; Selbach et al. 2008; Baek et al. 2008; Brodersen et al. 2008). miRNAs are 

essential in many core processes such as development and stem cell 

maintenance (Bohmert et al., 1998; Grishok et al. 2001; Knight and Bass 2001; 

Wienholds et al., 2003; Giraldez et al. 2005). On the other hand, the main 

function of siRNAs is to protect Drosophila genome from invasion by somatic 

transposons and defend against viruses (Galiana-Arnoux et al., 2006; Chung et 

al., 2008; Deddouche et al., 2008; Flynt et al., 2009; Saleh et al., 2009; van Rij et 

al., 2009). 

The siRNA pathway starts with long double stranded RNAs that might be 

originated from viral replication intermediates (Flynt et al., 2009), bidirectionally 

transcribed overlapping transcripts (Okamura et al., 2008a; Watanabe et al., 

2008); hybridized transcipts to antisense pseudogene derived transcripts (Tam et 

al., 2008), and long hairpins formed by inverted transcripts (Yang and Kazazian, 

2006; Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008; Okamura 

et al., 2008b). These precursors are cleaved by Dicer-2 to form siRNA duplexes 

that are subsequently loaded into silencing complexes, namely Argonaute-2 

(Flynt et al., 2009;Tomari et al. 2004; Matranga et al. 2005; Pham et al. 2005; 
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Miyoshi et al. 2005; Rand et al. 2004; Rand et al. 2005; Leuschner et al. 2006). 

After cleavage of the passenger strand, single stranded and methylated mature 

siRNA bound Argonaute-2 cleaves target mRNAs upon perfect base pairing to 

mature siRNA sequences (Zamore et al. 2000; Hammond et al. 2001; Schwarz et 

al. 2003; Schwarz et al. 2004; Liu, Carmell et al. 2004; Haley et al. 2004; Pham 

et al. 2005; Kim, Lee et al. 2006; Wang et al. 2009; Martinez et al. 2002; Martinez 

et al. 2004; Yang et al. 2006; Ameres et al. 2007; Horwich et al. 2007; Chung et 

al. 2008).  

The miRNA pathway starts with very long endogenous precursor 

transcripts called primary miRNAs (pri-miRNAs) (Cai et al. 2004; Lee, Kim et al. 

2004). Drosha/Pasha complex processes these pri-miRNAs to ~60 nt short 

hairpins called pre-miRNAs in the nucleus (Papp et al. 2003; Lee et al. 2002; Lee 

et al., 2003; Denli et al., 2004; Gregory et al., 2004; Han et al., 2006). Pre-

miRNAs are then exported to cytoplasm in and Exportin-5 dependent manner (Yi 

et al. 2003; Bohnsack 2004; Lund et al. 2004). Dicer1/ Loqs PB complex cleaves 

the pre-miRNAs into miRNA-miRNA* duplexes in the cytoplasm (Forstemann et 

al. 2005). miRNA-miRNA* duplex is loaded into RNA induced silencing 

complex(RISC) comprised of Argonaute-1 (Ago1) (Forsteman et al. 2007; Tomari 

et al. 2007). The miRNA is unwound from miRNA* strand after binding Ago-1 

(Kawamata et al. 2009; Okamura et al. 2009). Mature miRNA bound RISC is 

called mature RISC; it functions in mRNA destabilization or translational  
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repression of the antisense target mRNA (Lewis et al. 2003; Bartel et al. 

2004; Selbach et al. 2008; Baek et al. 2008; Brodersen et al. 2008).  
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The Role of Dicer in Small RNA Biogenesis 

Dicer was first identified and named for its cleavage of double stranded 

RNA in 2001 and discovered to be the key protein required for both miRNA and 

siRNA generation (Bass et al. 2000; Bernstein et al 2001; Hutvanger et al. 2001; 

Jiang et al. 2005).   

In Drosophila, two Dicer proteins lie at the center of both siRNA and 

microRNA biogenesis pathways (Figure 1.1). Both Dicer 1 and Dicer 2 cut 

structurally very similar double stranded RNAs and release 21/22 nucleotide 

products (Zamore et al. 2000). Nonetheless, they are remarkably specific to their 

respective substrates. Previous genetic studies have revealed this specificity in 

vivo (Lee et al. 2004).  Dicer-1 is required for microRNA maturation (Jiang et al., 

2005; ). When dicer-2 is absent, siRNA formation is abolished but miRNAs 

remain unaffected. Similarly dicer-1 mutation is lethal in flies, meaning that Dicer-

2 cannot rescue miRNA processing.  

The domain architectures of Drosophila Dicers are identical except for the 

N terminus. Both Dicers have two RNAse III domains that are required for RNA 

cleavage (Bernstein et al. 2001; Bass et al. 2000). Crystal structure of Dicer from 

a unicellular eukaryote, Giardia Dicer, illuminated how the core domains of Dicer 

relate to its function. (Figure 1.2; (Macrae et al., 2006; Macrae et al., 2008; Jinek 

et al., 2009). The double stranded RNA binding domain and the PAZ domain are 

required for binding to RNA. PAZ domain binds to the 5´ and 3´ end of the double 

stranded RNA. The distance between the open helical end of the RNA to the 
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active sites is exactly 25 nucleotides in Giardia Dicer determining the product 

size. The catalytically active RNAse III domains are 2 nucleotides apart from 

each other, therefore upon cleavage the product has a 2 nucleotide 3 overhang 

(Bass, 2000; Cerutti et al., 2000; Lingel et al., 2003; Song et al., 2003; Yan et al., 

2003; Lingel et al., 2004; Ma et al., 2004; Zhang et al., 2004; Gan et al., 2006; 

Macrae et al., 2006; MacRae et al., 2007). 
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Figure 1.2.  Molecular Mechanism of dsRNA Cleavage by Giardia 

intestinalis Dicer. The crystal structure of Giardia intestinalis Dicer (PDB ID: 

2FFL, Macrae et al. 2006) with overlayed structure of an siRNA (PDB ID: 2F8S, 

Yuan et al. 2006).   
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Figure 1.3. Domain Structure of Drosophila Dicers and their RNA 

Binding Protein Partners. Domain structure of Drosophila Dicer-1, Drosophila 

Dicer-2, Human Dicer, Giardia Dicer, Loqs PB, LoqsPD, and R2D2 were adapted 

from the SMART protein domain analysis (Schultz et al., 1998; Ponting et al., 

1999).  
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Function of Dicer is coupled to additional RNA binding partner proteins in 

metazoans (Figure 1.3). In Drosophila melanogaster, miRNA and siRNA 

pathways associate with specific Dicers, and specific RNA binding partners. 

These partner proteins are relatively small and have only double stranded RNA 

binding domains. The presence of the N-terminal DexDc domain and the 

differences in partner proteins are potential sources of specificity for these 

proteins (Jiang et al. 2005; Saito et al. 2005). Loquacious transcript is 

alternatively spliced to produce four variant transcripts (Figure 1.4). Loqs-PB, 

translated from one of these variants is in complex with Dicer-1, and functions in 

the miRNA pathway (Forstemann et al., 2005; Jiang et al., 2005). Loqs-PB 

enhances miRNA maturation, but not loading of mature miRNAs into RISC 

(Forstemann et al. 2005, Liu et al. 2007).  On the other hand, R2D2, which is in 

complex with Dicer-2, is required to load siRNAs into Argonaute 2 containing 

RNA silencing complex (Liu et al., 2003; Tomari et al., 2004; Liu et al., 2006). 

Loqs-PD, an alternatively spliced isoform of Loquacious gene, also forms a 

complex with Dicer-2 and is involved in the endogenous siRNA pathway (Figure 

1.1, 1.3, 1.4) (Zhou et al., 2009; Okamura et al., 2008b; Hartig et al., 2009; Zhou 

et al., 2009; Miyoshi et al., 2010; Hartig and Forstemann, 2011).  

Dicer1/ Loqs PB complex cleaves the pre-miRNAs into miRNA-miRNA* 

duplexes in the cytoplasm. Pre-miRNAs are  ~60 nt short hairpins that are 

exported after pri-miRNA processing (Cai et al. 2004; Lee, Kim et al. 2004) by 

Drosha/Pasha complex (Papp et al. 2003; Lee et al. 2002; Lee et al., 2003; Denli 
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et al., 2004; Gregory et al., 2004; Han et al., 2006). Pre-miRNAs are composed 

of a partially double stranded region called stem, a loop structure at the one end 

of the stem, and an open helical two nucleotide 3´overhang at the other end of 

the stem (Figure 1.5).  Dicer-1/Loqs-PB complex cleaves the double stranded 

stem from the loop side, releasing a mature ~22 nucleotide miRNA/miRNA* 

duplex. Depending on where the mature miRNA strand comes from, pre-miRNAs 

can be divided into two classes. In the first class of pre-miRNAs, mature miRNA 

is derived from the 5´arm. Therefore, Dicer-1 cleavage occurs at the 3´end of the 

mature miRNA. In the second class of pre-miRNAs, mature miRNA strand is 

derived from the 3´arm of the hairpin. In this case, Dicer-1 cleaves to form 5´end 

of the mature miRNA. 

Dicer-2 processes long dsRNA and long hairpins into ~21 nucleotide 

siRNAs. Dicer cleaves dsRNAs starting from the open double-stranded ends 

(Vermeulen et al., 2005; Macrae et al., 2006; Weinberg et al., 2011).  Dicer-2 

seems to be efficient in processing long double stranded RNA molecules, since 

never an intermediary product is observed. Its efficiency is furthermore increased 

in the presence of ATP (Zamore et al., 2000; Nykanen et al., 2001). 

RNAse III and PAZ domains are sufficient for dicing activity, yet all 

metazoan dicers contain helicase domains (Figure 1.3). The studies about the 

function of the helicase domain of Dicer have been puzzling. Human Dicer was 

reported to be ATP-independent, and the removal of the helicase domain 

increased its efficiency if the helicase domain was removed (Zhang et al., 2002; 
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Ma et al., 2008). A different study implicated the helicase domain in processing 

thermodynamically unstable hairpin RNAs (Soifer et al., 2008). Helicase domain 

of Dicer was also implicated in siRNA pathway independent functions such as 

interaction with HIV-I Tat protein (Bennasser & Jeang, 2006) and mediating 

interferon induction (Deddouche et al., 2008). 

The helicase domain of Dicer-2 belongs to the RIG-I (retinoic acid-

inducible gene) family of RNA helicases.  RIG-I recognizes viral nucleotides and 

activates interferon response in vertebrates (Yoneyama & Fujita, 2007; Zou et 

al., 2009).  RIG-I was reported to sense triphosphates at the 5´ end and to 

translocate along viral dsRNA. Triphosphate and dsRNA structure are required to 

induce ATPase activity, and subsequent translocation of RIG-I (Myong et al., 

2009).  

siRNA formation from long dsRNAs requires ATP in flies and fission yeast 

(Zamore et al., 2000; Colmenares et al., 2007). Dicer-2 is responsible for 

production of siRNAs and its helicase domain has a predicted ATP binding site. 

Moreover, a mutation in the predicted ATP binding site (walker A motif) of Dicer-2 

was found to block inverted repeat derived siRNA silencing in Drosophila (Lee et 

al., 2004).  

The following two chapters of my thesis work examined the effects of ATP 

and RNA binding protein partners on the miRNA and siRNA formation by Dicer-1 

and Dicer-2. I used recombinantly expressed purified proteins for in vitro dicing 

assays and to measure the effect of partner proteins on the activity of Drosophila 
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Dicers. In our work, we tried to identify the ATP requiring step in dicing and 

explore the function of the helicase domain of Drosophila Dicer-2. In addition, we 

also explored the mechanistic basis of substrate specificities of Dicer-1 and 

Dicer-2. We found that RNA binding protein partners of Dicers and two small 

molecules, ATP and phosphate are key in regulating Drosophila Dicers’ 

specificity.    
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Figure 1.4. The Transcript Variants and Domain Structures of Loquacious 

(Loqs) Isoforms. Transcript variants of four different Loqs isoforms, which are 

transcribed from the same location and alternatively spliced, are shown on the 

left. On the right, domain architectures of four different Loqs isoforms are shown. 

The transcript and the domain structures Loqs isoforms were adapted from 

UCSC genome browser and smart domain protein analysis (Kent et al., 2002; 

Fujita et al., 2010; Schultz et al., 1998; Ponting et al., 1999). 
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Figure 1.5. Structures of two pre-miRNAs; pre-let-7 and pre-miR-1.  Mature 

miRNA strand is in red and miRNA* strand is in blue. Seven nucleotides in yellow 

denotes the seed sequence, which is important for target mRNA recognition. 

Green arrows point at Dicer-1 cleavage site.  
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Piwi Dependent Small RNAs in Drosophila melanogaster 

The second part of my thesis is about the somatic Piwi-dependent small 

RNA family. While siRNAs and miRNAs are found throughout the whole 

organism, piRNAs were discovered as a distinct class of germ line specific small 

RNAs (Vagin et al. 2006; Grivna et al. 2006). piRNAs are conserved throughout 

the animal kingdom, and protect the germline from transposon invasion (Grivna 

et al. 2006; Brennecke et al. 2007; Houwing et al. 2007; Das et al. 2008; Grimson 

et al. 2008). Animals without functional piRNAs are sterile (Schupbach et al 

1991; Klattenhoff et al. 2007; Batista et al. 2008). piRNAs guide PIWI proteins to 

silence transposons in the germ line of animals (Cox et al. 2000; Aravin et al. 

2001; Aravin et al. 2003; Grivna et al. 2006; Brennecke et al. 2007; Batista et al. 

2008; Das et al. 2008; Chamberyron et al. 2008; Desset et al. 2008). 

 piRNA biogenesis and function diverge significantly from miRNAs and 

siRNAs (Brennecke et al. 2007; Li et al. 2008). piRNAs are longer, generally 24 

to 30 nucleotides long, their 3´ termini 2´O methylated , and they don’t have 

double stranded RNA precursors (Aravin et al. 2001; Aravin et al. 2004; Vagin et 

al. 2006; Saito et al. 2007; Kirino et al. 2007; Ohara et al. 2007). Unlike siRNAs 

and miRNAs, piRNA production does not require Dicer and likely involves only 

single-stranded precursor RNAs (Vagin et al. 2006; Girard et al. 2006; Saito et al. 

2007; Kirino et al. 2007; Ohara et al. 2007; Brennecke et al. 2007; Batista et al. 

2008). The biogenesis of piRNAs and their role in transposon silencing have 

been elucidated mainly from studies of Drosophila ovaries and testes (Aravin et 



35

al. 2001; Brennecke et al. 2007; Li et al. 2009). piRNA biogenesis utilize piwi-

family proteins Aubergine, Argonaute 3, and Piwi but none of the Dicers (Vagin et 

al. 2006; Aravin et al. 2006; Grivna et al. 2006; Brennecke et al. 2007; 

Gunawardane et al. 2007; Klattenhoff et al. 2008; Khurana et al. 2010). 

Drosophila gonads express three PIWI proteins: Piwi, Aubergine, and Ago3 

(Ghildiyal et al. 2009; Cox et al. 1998; Cox et al. 2000; Harris et al. 2001; Vagin 

et al. 2006; Saito et al. 2006; Nishida et al. 2007; Yin et al. 2007; Klattenhoff et 

al. 2007; Desset et al. 2008; Malone et al. 2009). Piwi localizes to the nucleus in 

both the germline and the surrounding somatic follicle cells, and helps regulate 

differentiation and patterning of the germline nurse cells as well as the oocyte 

(Cox et al. 1998; Cox et al. 2000).  

Our lab and others have extensively used small RNA sequencing 

approaches to study this pathway in the germline (Vagin et al. 2006; Brennecke 

et al. 2007; Malone et al. 2009; Li et al. 2009). High throughput sequencing of 

piRNAs bound to Piwi, Aubergine, and Ago3 suggested a model called the “Ping-

Pong” mechanism for the production and subsequent amplification of piRNAs in 

response to transcription of the transposons they target. The Ping-Pong model 

proposes that Aubergine and Ago3 collaborate both to increase the abundance 

of piRNAs and to bias piRNAs toward the antisense strand (Brennecke et al. 

2007; Gunawarde et al. 2007). The detailed mechanism by which Aubergine and 

Piwi acquire primary piRNAs is unknown, but recent results suggest that they 

derive from long RNAs transcribed from “piRNA clusters”. These regions of the 
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genome are specifically transcribed in the gonads and are characterized by 

transposon-richness, and a dearth of genes (Olivieri et al. 2010). The Ping-Pong 

model postulates that Aubergine, bound to an anti-sense primary piRNA pairs 

with the mRNA transcript of an active transposon, resulting in cleavage of the 

target and generation of a 3ʹ′ cleavage product bearing a 5ʹ′ monophosphate. The 

5ʹ′ end of the 3ʹ′ cleavage fragment then becomes the 5ʹ′ end of a sense piRNA 

bound to Ago3. This “secondary piRNA” can then direct cleavage of a primary 

piRNA transcript derived from a piRNA cluster. The next step reverses this 

process. The Ago3:sense piRNA complex cleaves the long transcript from a 

piRNA cluster, generating antisense RNA fragments that bind to Aub. These 

fragments are envisioned to be trimmed to mature piRNAs (Brennecke et al. 

2007; Gunawarde et al. 2007; Li et al. 2009).   

Transposon derived piRNAs bound to Piwi silence transposon expression 

in the nucleus by a poorly understood mechanism. Although the mechanism is 

not clearly known and controversial, they are thought to transcriptionally silence 

genes and repeat sequences by DNA methylation or heterochromatin formation 

(Lees-Murdock et al. 2003; Saito et al. 2006; Kato et al. 2007).  Heterochromatin 

dependent transcriptional silencing was detected at piRNA clusters yet the 

heterochromatin formation was suggested to be independent from the piRNA 

pathway (Moshkovich et al., 2010). Piwi was reported to interact with the histone 

protein HP1a and the HP1a interacting motif is required for the silencing function 

of Piwi (Brower-Toland et al., 2007). Moreover, Piwi and a piRNA species was  
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suggested to promote euchromatic histone modification in subtelomeric 

heterochromatin (Yin & Lin, 2007). Another observation related to the function of 

piRNA pathway came from positional effect variagetion studies in Drosophila 

(Todeschini et al., 2010). In this study, authors took advantage of a transsilencing 

effect where a P transgene such as P-lacZ in subtelomeric heterochromatin is 

able to repress another P-lacZ copy in trans. This transsilencing effect, which is 

maternal and epigenetically transmitted through meiosis, was found to be fully or 

partially abolished by piRNA pathway genes aubergine and piwi (Todeschini et 

al., 2010).  

In addition to their presence in animal germlines, the presence and 

function of piRNA-like small RNAs in the somatic tissues have been suggested 

(Yan et al. 2011; Lee et al. 2011; Morazzani et al. 2012) yet it was not clear 

whether they were methylated. Recently, methylated Piwi bound RNAs were 

found the Aplysia central nervous system. piRNAs that are antisense to the 

promoter region of CREB2 are shown to be upregulated by serotonin. Upon 

upregulation, these piRNA species facilitates methylation of a conserved CpG 

island in the promoter region of CREB2, regulating transcription of CREB2. This 

event promotes long-term changes in neurons upon stimulation (Rajasethupathy 

et al. 2012).  

The fourth chapter of my thesis addresses the question whether somatic 

piwi dependent small RNAs are present in Drosophila head tissues. We have 

investigated whether the piRNA-like reads in our many Drosophila head libraries 
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come from the germline as a contaminant or are soma-specific. We found that 

most of the piRNA reads in our published head libraries show high similarity to 

germline piRNAs. However, piRNA-like reads from manually dissected heads are 

distinct from germline piRNAs, proving the presence of somatic piRNA-like small 

RNAs.  
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CHAPTER II: PHOSPHATE AND R2D2 RESTRICT THE 

SUBSTRATE SPECIFICITY OF DICER-2, AN ATP-DRIVEN 

RIBONUCLEASE. 
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Preface 

The work in this chapter was the result of a collobrative work. Dr. Gang 

Lu, Dr. Robert Dutcher, and Dr. Yeming Wang from Dr. Traci M Tanaka Hall’s 

laboratory recombinantly expressed Dicer-2 and Dicer-2G31R; designed, 

recombinantly expressed and purified Dicer-2D1217,1614N.  Dr. Ryuya Fukunaga 

performed dicing experiments in Figure 2.2 and 2.S1B, 2.S3A. Dr. Ryuya 

Fukunaga purified recombinantly expressed Dicer-2 and Dicer-2G31R.  I carried 

out the dicing and ATP consumption assays and northern hybridization in Figures 

2.1, 2.S1, 2.3, 2.S3B, 2.S3C, 2.4, 2.S4, 2.5, Table 2.1, and 2.2. I purified 

recombinantly expressed Dicer-2 and Dicer-2/R2D2.  
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Abstract 

Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long 

double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs from pre-

microRNA. What makes the two Dicers specific for their biological substrates? 

We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic 

phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. 

Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage, and 

an N-terminal helicase motif whose function is unclear. We show that Dicer-2 is a 

dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is 

required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-

2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than 

it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 

helicase domain uses ATP to generate many siRNAs from a single molecule of 

dsRNA before dissociating from its substrate. 
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Introduction 

In Drosophila melanogaster, distinct pathways produce 21 nt small 

interfering RNAs (siRNAs) and ~22 nt microRNAs (miRNAs). The RNase III 

enzyme Drosha, aided by its partner protein, Pasha, cleaves primary miRNAs to 

release pre-miRNAs, ~70 nt long stem-loop structures that contain a mature 

miRNA within their stems (Lee et al., 2003; Denli et al., 2004; Gregory et al., 

2004; Han et al., 2004; Han et al., 2006). The pre-miRNA is then cleaved by 

Dicer-1, acting with its dsRNA-binding domain (dsRBD) protein partner, 

Loquacious-PB (Loqs-PB), to liberate a duplex comprising the mature miRNA 

bound to its miRNA*, a partially complementary small RNA derived from the 

opposite arm of the pre-miRNA stem (Förstemann et al., 2005; Jiang et al., 2005; 

Saito et al., 2005; Ye et al., 2007). Mature miRNAs can derive from either the 5ʹ′ 

or 3′ arm of the pre-miRNA stem. 

In contrast to miRNAs, Drosophila siRNAs are generated by Dicer-2 (Lee 

et al., 2004), which forms a stable complex with the dsRNA-binding protein R2D2 

(Liu et al., 2003). In vitro, Dicer-2 can produce siRNAs in the absence of R2D2, 

but both Dicer-2 and R2D2 are required to load siRNAs into Ago2 (Liu et al., 

2003; Tomari et al., 2004; Pham and Sontheimer, 2005; Liu et al., 2006; Tomari 

et al., 2007). Exogenous siRNAs derive from long dsRNA molecules that are 

generated experimentally, from viral RNA genomes or intermediates of 

replication, whereas endo-siRNAs derive from convergent transcription of 

mRNAs or from RNA from mobile genetic elements (Yang and Kazazian, 2006; 
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Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008; Okamura et al., 

2008a; Okamura et al., 2008b; Tam et al., 2008; Watanabe et al., 2008). A 

special class of endogenous siRNAs, hp-esiRNAs derive from partially self-

complementary hairpin transcripts. Production of esiRNAs by Dicer-2 requires an 

alternative partner protein, Loqs-PD. This Loqs isoform contains only two of the 

three dsRBDs found in the Dicer-1 partner protein, Loqs-PB (Okamura et al., 

2008b; Hartig et al., 2009; Zhou et al., 2009; Miyoshi et al., 2010; Hartig and 

Forstemann, 2011). 

Dicer-1 and Dicer-2 each contain two RNase III domains, which form an 

intramolecular heterodimer whose dimer interface creates two active sites 

(Zhang et al., 2004; Macrae et al., 2006; Ye et al., 2007). Like other members of 

the Dicer family, Dicer-1 and Dicer-2 each contain a C-terminal dsRBD and a 

central PAZ domain, an RNA-binding motif specialized to recognize the two-

nucleotide, 3ʹ′ single-stranded tails of Drosha and Dicer products (Bass, 2000; 

Cerutti et al., 2000; Lingel et al., 2003; Song et al., 2003; Yan et al., 2003; Lingel 

et al., 2004; Ma et al., 2004; Zhang et al., 2004; Gan et al., 2006; Macrae et al., 

2006; MacRae et al., 2007). The structure of Giardia intestinalis Dicer and 

functional studies using human Dicer suggest that the distance between the PAZ 

domain and the active sites of the RNase III domains establishes the length of 

the small RNA product (Zhang et al., 2004; Gan et al., 2006; Macrae et al., 2006; 

MacRae et al., 2007; Takeshita et al., 2007). 

Differences in the domain architecture of Dicer-1 and Dicer-2 are unlikely to 
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explain their distinct substrate specificities. Drosophila Dicer-2 shares its domain 

architecture—including N-terminal DExDc, Helicase C, PAZ, RNase IIIa, RNase 

IIIb, dsRBD domains—with human Dicer, which produces both siRNAs and 

miRNAs. In contrast, Dicer-1 lacks a DExDc domain, yet has a Helicase C 

domain. DExDc/H and DEAD box domains are found in a wide range of RNA 

“helicases,” proteins that couple ATP hydrolysis to RNA binding or unwinding 

(Pyle, 2008). In addition to unwinding nucleic acids, helicase domains can couple 

ATP hydrolysis to translocation along nucleic acid molecules, rearrange 

RNA:protein or protein: protein interactions, or act as RNA chaperones (Bianco 

and Kowalczykowski, 2000; Beran et al., 2006; Bowers et al., 2006; Dumont et 

al., 2006; Halls et al., 2007; Pyle, 2008; Franks et al., 2010). 

In Drosophila and Caenorhabditis elegans, siRNA production from long 

dsRNAs requires ATP (Zamore et al., 2000; Bernstein et al., 2001; Ketting et al., 

2001; Nykanen et al., 2001). Moreover, a point mutation (G31R) in the 

Drosophila Dicer-2 helicase domain blocks siRNA production in vivo, although 

the protein retains the ability to collaborate with R2D2 to load synthetic siRNAs 

(Lee et al., 2004; Pham et al., 2004) and highly paired miRNA/miRNA* duplexes 

(Forstemann et al., 2007) into Ago2. In contrast, a mutation predicted to inhibit 

nucleotide binding by the human Dicer helicase domain does not affect dicing 

(Zhang et al., 2002). 

           What restricts a given Dicer to a specific dsRNA substrate? We find that 

purified, recombinant Dicer-2 can cleave pre-miRNA, but that R2D2 inhibits 



45

processing of pre-miRNA by Dicer-2, while promoting use of its biologically 

relevant substrate by reducing the KM of Dicer-2 for long dsRNA. Moreover, 

physiological concentrations of inorganic phosphate block pre-miRNA processing 

by Dicer-2, but do not inhibit processing of long dsRNA by Dicer-2 or pre-miRNA 

processing by Dicer-1. Thus, the characteristic specificity of Dicer-2 for long 

dsRNA is not intrinsic to the enzyme, but rather emerges in the presence of 

inorganic phosphate and R2D2. We also find that Dicer-2 is a dsRNA-stimulated 

ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to 

process long dsRNA but not pre-miRNA. Wild-type Dicer-2, but not a mutant 

defective in ATP hydrolysis, can generate siRNAs faster than it dissociates from 

its long dsRNA substrate. We envision that the Dicer-2 helicase domain uses 

ATP to drive the movement of Dicer-2 along dsRNA, enabling it to generate 

many siRNAs from a single molecule of substrate before dissociating from the 

dsRNA. 
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Results 

Dicer-2 Processes Pre-miRNA Inaccurately 

In vivo, Dicer-1 but not Dicer-2 is required to produce miRNAs from the 

stems of pre-miRNA. Surprisingly, purified, recombinant Dicer-2 cleaved pre-

miRNA (Figure 2.1). However, the size of the miRNA and miRNA* products 

generated by Dicer-2 differed from those produced by Dicer-1: the predominant 

Dicer-2 product was one nucleotide shorter than that produced by Dicer-1. For 

miRNAs residing on the 5ʹ′ arm of their pre-miRNA, such a difference in size 

would not alter the miRNA seed sequence, but could promote their inappropriate 

loading into Argonaute2, which favors 21 nt RNAs, rather than Argonaute1, 

which prefers 22mers (Ameres et al., 2011). For the ~60% of D. melanogaster 

miRNAs derived from the 3′ arm of their pre-miRNA, the seed sequence of the 

Dicer-2 product would differ from the authentic miRNA and would therefore 

regulate a repertoire of mRNAs different from that controlled by the authentic 

miRNA. The biological consequences of such misregulation are predicted to be 

dramatic, suggesting that processing of pre-miRNA by Dicer-2 is suppressed in 

vivo. 
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Figure 2.1. Dicer-1 and Dicer-2 Produce Different Products from Pre-let-7. 

Synthetic, 5 monophosphorylated pre-let-7 (1.0 µM) was incubated with Dicer-1 

(6.0 nM) or Dicer-2 (16.2 nM) for 1 h. Products were resolved by electrophoresis. 

let-7 and let-7* were detected by Northern hybridization. 
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R2D2 Inhibits Dicing of Pre-miRNA by Dicer-2 

We compared the rate of pre-let-7 processing by Dicer-2 alone to the rate 

of purified Dicer-2/R2D2 heterodimer, Dicer-2 supplemented with equimolar 

Loqs-PD, and Dicer-2/R2D2 heterodimer supplemented with Loqs-PD. R2D2 

significantly inhibited pre-let-7 processing by Dicer-2 when either enzyme (data 

not shown) or substrate was in excess (Figure 2.2A; p-value for excess 

substrate= 0.0009). Similar inhibition of Dcr-2 processing by R2D2 was observed 

for a 25 bp RNA duplex (Figure 2.S1A), suggesting that R2D2 suppresses 

processing of short, double-stranded substrates irrespective of the extent of 

complementarity or the presence of a loop. In contrast, we did not detect any 

inhibition of pre-let-7 processing when Loqs-PD was added to Dicer-2, even 

though the same preparation of Loqs-PD lowered the KM of Dicer-2 for long 

dsRNA 10-fold (Table 2.1). These data suggest that, R2D2, but not Loqs-PD, 

helps suppress pre-miRNA processing by Dicer-2 in vivo. 
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Figure 2.2. R2D2 and Phosphate Inhibit Dicer-2 Processing of Short 

Substrates. (A) let-7 production was monitored using 5 32P-radiolabeled pre-let-7 

(100 nM) with or without ATP for Dicer-2 alone (8 nM), Dicer-2/R2D2 (8 nM), 

Dicer-2 + Loqs-PD (8 nM + 8 nM) or Dicer-2/R2D2 + Loqs-PD (8 nM + 8 nM). (B) 

Processing of internally 32P-radiolabeled long dsRNA or 5 32P-radiolabeled pre-

let-7 (100 nM) by Dicer-2 (8 nM). CK, creatine kinase; CP, creatine phosphate. 

(C) Initial velocities for the processing of 100 nM pre-let-7 or long dsRNA (106 bp 

blunt ended or 104 bp with 2 nt, 3 overhanging ends) by 8 nM Dicer-2 or Dicer-

2/R2D2 in the presence of increasing concentrations of potassium phosphate. 

Total potassium in the reaction was kept constant. (D) Initial velocities for Dicer-2 

processing pre-let-7, 106 bp blunt ended dsRNA or 104 bp dsRNA with 2 nt, 3 

overhanging ends in the presence of 25 mM potassium phosphate, acetate, 

chloride, or glutamate. (E) Processing of internally 32P-radiolabeled long dsRNA 

or 5 32P-radiolabeled pre-let-7 substrate (100 nM) by wild-type or G31R mutant 

Dicer-2 (8 nM) with or without ATP or with ATPS (1 mM). Values are mean ± 

standard deviation for three independent experiments. 
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Figure 2.S1. R2D2 Inhibits Dicer-2 Processing of a 25 bp dsRNA Substrate 

and Creatine Phosphate Inhibits Dicer-2 Processing of a Long dsRNA 

Bearing 5 Triphosphate termini. (A) siRNA production by Dcr-2 (5.4 nM) or 

Dcr-2/R2D2 heterodimer (12 nM) was measured for a 25 bp dsRNA (100 nM). 

Red indicates deoxynucleotides. (B) A 5 triphosphorylated 316 bp dsRNA (100 

nM) bearing 2 nt 5 overhanging ends was incubated with Dicer-2 (8 nM) in the 

presence or absence of ATP, creating kinase (CK), or creatine phosphate (CP). 
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R2D2 and Loqs-PD Decrease the KM of Dicer-2 for Long dsRNA 

Dicer-2 forms a stable heterodimer with R2D2 (Liu et al., 2003; Tomari et 

al., 2004; Liu et al., 2006), but it is unknown whether R2D2 modulates dicing 

rate. We measured the initial rate of dicing by Dicer-2 alone or by the Dicer-

2/R2D2 heterodimer using increasing concentrations of long dsRNA substrate 

and saturating ATP (1 mM). For both Dicer-2 and Dicer-2/R2D2 the data fit well 

to the Michaelis-Menten kinetic scheme (Figure 2.S2) 

 k1 kcat 

E + S <—> ES —> E + 24P 

 k-1 

where kcat is the rate of complete conversion of substrate into siRNAs at 

saturating dsRNA concentration. The kcat of Dicer-2/R2D2 processing a 515 bp 

dsRNA (0.03 ± 0.02 min-1) was indistinguishable from that of Dicer-2 alone (0.03 

± 0.01 min-1; Table 2.1). In contrast, the KM for Dicer-2/R2D2 (2 ± 1 nM) was less 

than that of Dicer-2 alone (6 ± 2 nM, p-value = 0.04), suggesting that R2D2 

increases the affinity of Dicer-2 for long dsRNA (Table 2.1). Similarly, 

supplementing Dicer-2 (2 nM) with purified recombinant Loqs-PD (2 nM) did not 

alter the kcat, but did decrease KM (0.4 ± 0.1 nM, p-value = 0.02), suggesting that 

Loqs-PD also increases the affinity of Dicer-2 for long dsRNA (Table 2.1). 
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Figure 2.S2. Michaelis-Menten Analysis of Dicer-2, Dicer-2 + Loqs-PD, and 

Dicer-2/R2D2 Using a 515 bp dsRNA Substrate. The initial rate (velocity) of 

substrate processing by 2 nM Dicer-2 , 3 nM Dicer-2/R2D2, and 2 nM Dicer-2 + 

2 nM Loqs-PD was measured for increasing concentrations of a 515 bp long 

dsRNA in the presence of 1 mM ATP. The data were fit to the Michaelis-Menten 

equation. Vmax corresponds to the rate of complete conversion of a molecule of 

substrate into 24 siRNAs at saturating dsRNA concentration. 

 

 

  



Table 2.1. Michaelis-Menten Analysis of Dicer-2 and Partner Proteins. Dicer-2, Dicer-2/R2D2, or Dicer-2 

supplemented with equimolar Loqs-PD was incubated with a 515 bp dsRNA and saturating ATP (1 mM) ATP. The 

initial rates of converting dsRNA into siRNA for increasing amounts of substrate were measured and fit to the 

Michaelis-Menten equation (Figure S5). The table reports mean ± standard deviation for three trials. 

 
KM 

(nM) 

Change 

in KM 

Vmax
 

(nM min-1) 

[ET] 

(nM) 

kcat 

(min-1) 

Change 

in kcat 

kcat / KM 

(nM-1 min-1) 

Change 

in kcat / KM 

Dicer-2 6 ± 2.0 1 0.07 ± 0.01 2 0.03 ± 0.01 1 0.005 ± 0.003 1 

Dicer-2/R2D2 2 ± 1 0.3 0.09 ± 0.06 3 0.03 ± 0.02 1 0.02 ± 0.02 4 

Dicer-2 + Loqs-

PD 
0.4 ± 0.1 0.07 0.06 ± 0.02 2 0.03 ± 0.01 1 0.08 ± 0.03 10 



Phosphate Inhibits Dicing of Pre-miRNA by Dicer-2 

In flies, dicing of long dsRNA requires ATP (Nykanen et al., 2001). 

Typically, creatine kinase (CK) and creatine phosphate (CP) are included in 

dicing reactions to maintain high levels of ATP and constant levels of free Mg2+. 

Relative to ATP alone, the inclusion of CK and CP modestly enhanced Dicer-2 

processing of both a 106 bp dsRNA bearing a 5ʹ′ monophosphorylated blunt end 

(Figure 2.2B) and a 316 bp dsRNA bearing a 5ʹ′ triphosphorylated, 2 nt, 5ʹ′ 

overhang (Figure 2.S1B), but did not enhance processing of a 104 bp dsRNA 

with a 5ʹ′ monophosphorylated, 2 nt 3ʹ′ overhang (Figure 2.2B). In contrast, 

standard “ATP” conditions (+ATP, +CP, +CK) inhibited pre-let-7 processing by 

Dicer-2. More detailed analyses revealed that CP sufficed to inhibit pre-let-7 

dicing. 

CP can be hydrolyzed in water to creatine and phosphate. We therefore 

tested whether inorganic phosphate inhibited pre-let-7 processing by Dicer-2. We 

measured the initial rate of processing (v0) with increasing concentrations of 

potassium phosphate (KH2PO4/K2H PO4, pH 7.4) for pre-let-7, a 106 bp blunt end 

dsRNA and a 104 bp dsRNA with 2 nt 3ʹ′ overhanging ends. Physiological 

concentrations of phosphate (Burt et al., 1976; Erecinska et al., 1977; 

Auesukaree et al., 2004) inhibited processing of pre-let-7, but neither of the two 

dsRNAs (Figure 2.2C). We observed little or no inhibition of pre-miRNA 

processing by Dicer-2 with 25 mM acetate, chloride, or glutamate (Figure 2.2D). 

Moreover, none of the anions—including phosphate—had a significant effect on 
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the dicing of long dsRNA. Phosphate further inhibited the low level of pre-let-7 

processing of Dicer-2/R2D2 (Figure 2.2C) and Dicer-2/R2D2 + Loqs-PD, and 

suppressed pre-let-7 processing by Dicer-2 + Loqs-PD (data not shown). In 

contrast, processing of pre-let-7 by Dicer-1 was unaffected by phosphate (Figure 

2.2C). We conclude that under physiological conditions—2–25 mM phosphate 

and a majority of Dicer-2 complexed with R2D2—Dicer-2 is unlikely to use pre-

miRNA as a substrate. 

ATP Hydrolysis and siRNA Production by Dicer-2 

The Dicer-2 G31R point mutation, which lies in the protein’s DExDc motif, 

uncouples Argonaute2 loading from dsRNA dicing (Lee et al., 2004). The 

mutation is predicted to disrupt ATP binding. Consistent with the requirement for 

ATP in siRNA production by Dicer-2, dsRNA processing by purified recombinant 

Dicer-2G31R was significantly less than wild-type Dicer-2 for both substrates with 

blunt and 3ʹ′ overhanging ends (Figure 2.2D, p-value = 2.2 × 10-6 for blunt end 

substrate). While dsRNA processing by wild-type Dicer-2 was strongly stimulated 

by ATP, mutant Dicer-2G31R was not (Figure 2.2D). Nonetheless, Dicer-2G31R 

cleaved pre-let-7 as efficiently as the wild-type enzyme, consistent with the 

finding that ATP was not required for wild-type Dicer-2 to cleave pre-let-7 (Figure 

2.2A). Moreover, processing of long dsRNA by wild-type Dicer-2 was inhibited by 

adenosine 5ʹ′-O-(3-thio)triphosphate (ATPgS), but processing of pre-let-7 was not 

(Figure 2.2D). 
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In agreement with ATPγS inhibiting dsRNA processing, Dicer-2 

hydrolyzed ATP to ADP (Figure 2.3A). Both ATP and ATPαS supported the 

production of siRNA from long dsRNA, but ATPγS did not (Figure 2.3B). In the 

presence of 1 mM ATP, the rate of dicing long dsRNA declined exponentially with 

increasing ATPγS, suggesting that ATPγS competes with ATP for binding to 

Dicer-2 and that once bound, ATPγS is not efficiently hydrolyzed, preventing the 

production of siRNAs from long dsRNA. 
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Figure 2.3. Dicer-2 Requires ATP Hydrolysis to Process Long dsRNA. (A) 

Dicer-2 (10.8 nM) was incubated with 2.5 µM -32P ATP and 150 nM 515 bp 

dsRNA, and ATP hydrolysis monitored by thin-layer chromatography. (B) siRNA 

production by Dicer-2 (5.4 nM) from a 515 bp dsRNA (25 nM) was monitored with 

or without ATP or ATPgS (1 mM). (C) ATP hydrolysis by Dicer-2 (5.4 nM) was 

monitored for 120 nt long nucleic acid substrates (20 nM): dsRNA, single-

stranded RNA, single-stranded DNA, RNA/DNA heteroduplex or double-stranded 

DNA in the presence of ATP (1 mM). (D) ATP hydrolysis by Dicer-2 (5.4 nM) in 

the presence of ATP (1 mM) was measured for 20 nM dsRNA bearing a 5 

monophosphate and a 2 nt 3 overhang or blunt ends; the blunt ended dsRNA 

bearing either 5 monophosphate or 5 hydroxy termini. (E) ATP hydrolysis by 

mutant Dicer-2D1217,1614N (3.3 nM) , Dicer-2G31R (2 nM) and wild-type Dicer-2 (2 

nM) was measured in the absence or presence of 20 nM dsRNA bearing 5 

monophosphate, blunt ends. (F) Left panel, initial rates for the conversion of 

substrate into siRNA by Dicer-2 (2.7 nM) for an internally 32P-radiolabeled 515 bp 

dsRNA (150 nM) were measured at increasing concentrations of ATP. Right 

panel, initial rates for the hydrolysis of ATP to ADP  by Dicer-2 in the presence of 

150 nM, 515 bp dsRNA were measured for increasing ATP concentrations. The 

data were fit to the Michaelis-Menten equation. Table 2 reports the Michaelis-

Menten parameters. (G) ATP consumption by Dicer-2 was measured in the 

presence of ATP (350 µM) and dsRNA substrates with blunt, 5 triphosphorylated 

termini for six different lengths: 40 bp (420 nM), 60 bp (280 nM), 106 bp (158 
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nM), 208 bp (80.5 nM), 345 bp (49 nM), 558 bp (30 nM). Substrate 

concentrations were selected to ensure an equal number of base pairs in each 

reaction. Values are mean ± standard deviation for three independent 

experiments. 



 
 
 
Table 2.2. Michaelis-Menten Analysis of siRNA Production and ATP Consumption by Dicer-2. Purified 

recombinant Dicer-2 was incubated with a 515 bp dsRNA and ATP. The initial rates of converting dsRNA into 

siRNA for increasing amounts of substrate were measured at saturating ATP (1 mM), and the initial rates of 

hydrolysis of ATP to ADP were measured at saturating dsRNA (150 nM) for increasing amounts of ATP. Different 

preparations of Dicer-2 were used here and in Table 1. 

 

 KM (nM) Vmax (nM min-1) [ET] 
(nM) kcat (min-1) kcat / KM (nM-1 min-1) 

Substrate consumed 6 ± 2 0.2 ± 0.1 1.2 0.2 ± 0.1 0.03 ± 0.02 

siRNA produced 6 ± 2 5 ± 2 1.2 4 ± 1 0.7 ± 0.4 

ATP hydrolyzed 14,000 ± 4,000 460 ± 70 5 93 ± 14 0.007 ± 0.002 

 



Dicer-2 is a dsRNA-Stimulated ATPase 

ATP hydrolysis by Dicer-2 increased when dsRNA was added (Figure 

2.3C, p-value= 0.024, Wilcoxon rank sum test). The inclusion of 120 nt single-

stranded RNA or DNA or 120 bp DNA/RNA heteroduplex or double-stranded 

DNA stimulated ATP hydrolysis less than the 120 bp dsRNA (all 20 nM; Figure 

3C). A 25 nt single-stranded RNA or DNA, a 21 bp dsRNA or a 21 bp DNA/RNA 

heteroduplex, all failed to stimulate the Dicer-2 ATPase activity above the rate 

observed when no substrate was present (Figure 2.S3B). Neither the end 

structure of the dsRNA—blunt versus 3ʹ′ overhang—nor the presence of a 5ʹ′ 

monophosphate (v0
5ʹ′ PO4 = 0.4 ± 0.1 µM min-1 versus v0

5ʹ′ OH 0.3 ± 0.1 µM min-

1) significantly changed the ATP hydrolysis rate (Figure 2.3D). 

ATP hydrolysis by Dicer-2 does not require dsRNA cleavage. A Dicer-2 

mutant, D1217,1615N, in which a key aspartate in each of the two RNase III 

domain active sites was changed to asparagine, retained significant dsRNA-

stimulated ATPase activity (p-value = 0.02; Figure 2.3E). Under multiple-turnover 

conditions, Dicer-2D1217,1615N was essentially inactive for dicing, and siRNA 

production was detected only when [Dicer-2D1217,1615N] >> [substrate] (data not 

shown). In contrast, Dicer-2G31R, which also does not support multiple-turnover 

dicing of long dsRNA, did not hydrolyze ATP in the presence of dsRNA (Figure 

2.3E). We conclude that the Dicer-2 helicase domain is responsible for the 

enzyme’s dsRNA-stimulated ATPase activity.
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Figure 2.S3. ATP Hydrolysis is Required for Efficient Long dsRNA 

Processing by Dicer-2. (A) siRNA formation from 5 monophosphorylated, 

internally 32P-radiolabeled, blunt ended, 106 bp dsRNA was monitored in the 

presence of 1 mM ATP in the presence of increasing concentrations of ATPS. 

Initial rates of conversion of dsRNA to siRNA were plotted as a function of ATPS 

concentration. (B) ATP consumption was measured over time for a 40 bp (420 

nM), 60 bp (280 nM), 106 bp (158 nM), 208 bp (81 nM), 345 bp (49 nM), and a 

558 bp (30 nM) dsRNA substrate. Initial rates (v0) were calculated from the fitted 

exponential curves and used in Figure 3F. (C) The hydrolysis of ATP to ADP was 

measured for Dicer-2 alone (5.4 nM) or with 25 nt single-stranded (ss) synthetic 

RNA, 25 nt synthetic ssDNA, 25 bp synthetic RNA or RNA-DNA duplex. ATP 

hydrolysis by Dicer-2 (5.4 nM) in the presence of a 515 bp dsRNA is shown in 

gray for reference. Substrate concentrations were chosen to achieve equivalent 

nt.mole.l-1: ssRNA and ssDNA, 4.4 µM; RNA and DNA-RNA duplex, 2.2 µM; and 

515 bp dsRNA, 100 nM.  (D) The hydrolysis of ATP to ADP was measured for 

Dicer-2 (5 nM) with pre-let-7 (5 µM) or with 558 bp dsRNA (100 nM) in the 

presence of 1 mM ATP. 
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ATP Consumption and Dicing are Coupled 

We measured the initial rates of siRNA production and ATP hydrolysis 

using a 515 bp dsRNA in the presence of increasing concentrations of ATP. The 

dependence on ATP concentration of both siRNA production and ATP hydrolysis 

fit well to the Michaelis-Menten kinetic scheme (Figure 2.3F). When both 

substrate and ATP were saturating (i.e., ≥ 10 × KM), the kcat for ATP hydrolysis 

was 93 ± 14 min-1, whereas the kcat for siRNA production was 4 ± 1 min-1, as 

inferred from the kcat for the complete conversion of a molecule of substrate into 

siRNA. These values predict that 23 ± 8 molecules of ATP are hydrolyzed for 

each 21 nt siRNA formed (Figure 2.3F, Table 2.2). Such a high rate of ATP 

hydrolysis for each siRNA produced might suggest that ATP energy and siRNA 

production are poorly coupled. Alternatively, ATP might be hydrolyzed to power 

translocation of Dicer-2 along the dsRNA, with approximately one ATP molecule 

consumed for each base pair traversed, a rate similar to DNA and RNA 

translocases containing ATPase/helicase domains (Bianco and Kowalczykowski, 

2000; Patel and Donmez, 2006; Seidel et al., 2008). Consistent with this idea, the 

rate of ATP consumption was essentially unchanged for different substrate 

lengths when the molar concentration of base pairs was kept constant (Pearson 

correlation, r = 0.98; Figure 2.3G, 2.S3B). 

 

 

 



68

Evidence that Dicer-2 is Processive 

If ATP fuels the translocation of Dicer-2 along dsRNA, dicing should 

produce successive siRNAs along the substrate. In the presence of ATP, Dicer-2 

would be predicted to produce the first siRNA—i.e., the terminal siRNA—at 

roughly the same rate as subsequent, internal siRNAs. In contrast, in the 

absence of ATP, the rate of production of siRNA should decline as its distance 

from 5ʹ′ end increases. To test these predictions, we synthesized three, identical 

120 nt dsRNA substrates, each bearing a single 32P radiolabel at position 16, 35, 

or 104 from the 5ʹ′ end of one strand (Figure 2.4A). All substrates contained two 

deoxynucleotides at one end, forcing Dicer-2 to initiate processing from the 

opposite end (Figure 2.S4A) (Rose et al., 2005). We used this “one-ended” 

substrate to examine the production of the first, second, or fourth siRNA (see 

Experimental Procedures) in the presence or absence of ATP (Figure 2.4A). With 

1 mM ATP, the initial rates for the production of the first, second, and fourth 

siRNAs were essentially indistinguishable (~28 nM min-1); with no ATP, the rate 

for the first siRNA (1.4 ± 0.3 nM min-1) was greater than that of the second (0.9 ± 

0.1 nM min-1), which was greater than the rate for the fourth siRNA (0.2 ± 0.1 nM 

min-1; Figure 2.4A). 

We can envision two explanations consistent with these results and 

previous studies on Dicer enzymes: either ATP fuels processive dicing of long 

dsRNA or dicing of long dsRNA in the presence of ATP comprises a slow initial 

binding step to the end of the substrate, followed by rapid but ATP-dependent 
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production of subsequent siRNAs. Such a two-step process might occur if the 

rate of production of the first siRNA was slowed by the blunt structure of the 

substrate; the first dicing event would convert the substrate end to a 2 nt, 3ʹ′ 

overhang bearing a 5ʹ′ monophosphate, with all subsequent siRNAs produced 

rapidly. To test this idea, we prepared a substrate bearing one blocked end and a 

2 nt, 3ʹ′ overhang bearing a 5ʹ′ monophosphate at the other end (Figure 2.S4B). 

The rates of first siRNA production from both blunt and 3ʹ′ overhanging end 

substrates were indistinguishable when the reactions contained ATP—conditions 

where dicing was efficient. They were also similar when ATP was omitted—when 

dicing was slow (Figure 2.4B). The subsequent siRNAs were also produced at 

similar rates from the two different substrates (Figure 2.S4B). Thus, we favor the 

hypothesis that ATP converts Dicer-2 from an inefficient, distributive enzyme into 

a processive enzyme. 

Surprisingly, ATP also enhanced the production of the terminal siRNA 

from long dsRNA under single-turnover conditions ([Dicer-2] >> [dsRNA]); the 

enhancement by ATPγS was considerably weaker (Figure 2.4C). This suggests 

that ATP hydrolysis is required for the production of even the first siRNA. ATP 

was required irrespective of the terminal structure of the dsRNA (blunt versus 3ʹ′ 

overhang), excluding a role for ATP in the binding of Dicer-2 to a particular type 

of dsRNA end. 

Moreover, when the [enzyme] > [dsRNA], helicase mutant Dicer-2G31R 

produced the first siRNA at similar rates in the presence or absence of either 
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ATP or ATPγS (Figure 2.4D and 2.S4C). For Dicer-2G31R, the rate of production 

of the terminal siRNA was faster than that of the fourth siRNA, consistent with the 

idea that ATP hydrolysis converts Dicer-2 from a distributive to a processive 

enzyme (Figure 2.4E). 
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Figure 2.4. Evidence that Dicer-2 is Processive. 

(A) Site-specifically 32P-radiolabeled 120 bp dsRNAs were used to measure the 

rate of production of the first, second and fourth siRNAs from the all-RNA end of 

the substrate; the 3′ end of the sense strand contained two deoxynucleotides 

(red) to block entry of Dicer-2 from the other end (Figure 2.S4A). Production of 

siRNA was monitored in the presence or absence of ATP using 100 nM dsRNA 

and 5.4 nM Dicer-2. Values correspond to the mean ± standard deviation from 

three independent experiments. The data were fit to a single exponential 

function. In (A) and (B), pink denotes the position of the 32P-radiolabel. (B) The 

rate of production of the initial siRNA was measured as in (A), but using a site-

specifically 32P-radiolabeled dsRNA with either a blunt (black) or a 2 nt 3 

overhanging (red) end in the presence or absence of ATP. (C) The rate of 

production of the initial siRNA was monitored using 100 nM Dicer-2 and 10 nM 

dsRNA bearing either a blunt (left) or a 2 nt 3 overhanging (right) end in the 

presence or absence of ATP or ATPS. (D) The rate of production of the initial 

siRNA from a 120 bp blunt ended dsRNA (10 nM) was measured using 100 nM 

mutant Dicer-2G31R. (E) The rate of production of the first and fourth siRNAs from 

a 120 bp blunt ended dsRNA (100 nM) was measured using 100 nM Dicer-2G31R. 

Values are mean ± standard deviation for three independent experiments. 
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Figure 2.S4. The Rate of siRNA Production for Different dsRNA Termini: 

Two 5 Deoxynucleotides Block Entry of Dicer-2, but Blunt and 3´ 

Overhanging Ends are Processed Similarly. (A) Twenty-five and 29 bp dsRNA 

substrates (73 nM) containing two 2′ deoxycytidine nucleotides at the 3´ end 

were incubated with 5.4 nM Dicer-2, and total siRNA production measured at 45 

min. For each substrate, the 5´ ribonucleotide of the 5´ end or the end that 

contained 3 deoxynucleotides on the complementary strand was 32P-radiolabeled 

to allow measurement of siRNA production from that end alone. (B) Site-

specifically 32P-radiolabeled 120 bp dsRNAs (100 nM) were incubated with Dicer-

2 (5.4 nM) in the presence of 1 mM ATP to detect production of the first, second 

and fourth siRNAs as diagrammed here and in Figure 4A. Right, the substrate 

end where Dicer-2 enters was either blunt (top) or had a 2 nt 3´ overhang 

(bottom). (C) Production of the initial siRNA (i.e., the first siRNA) by Dicer-2G31R 

(100 nM) from a 118 bp dsRNA (10 nM) bearing a 2 nt 3´ overhanging end was 

measured in the presence or absence of ATP or in the presence of ATPγS (see 

also Figures 4A and S4A). 
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Dicer-2 produces siRNAs without dissociating from the dsRNA 

A processive enzyme can act multiple times on its substrate before 

dissociating. Thus, catalysis by processive enzymes resists dilution (Rivera and 

Blackburn, 2004). To test whether Dicer-2 remains physically associated with the 

long dsRNA after three subsequent dicing events, we used the 120 nt, site-

specifically 32P-radiolabeled dsRNA to monitor the rate of production of the fourth 

siRNA following dilution (Figure 2.4A). The dsRNA substrate (200 fmol) was first 

pre-incubated with Dicer-2 (54 fmol) for 2 min at 4˚C to allow the enzyme to bind 

substrate. During this pre-incubation step, no siRNA was detected (data not 

shown). Next, the reaction was diluted 1,000-fold into buffer pre-warmed to 25˚C. 

The diluted reaction was incubated at 25°C, and production of the fourth siRNA 

measured over time (Figure 2.5A). During the pre-incubation, the substrate 

concentration (20 nM) was > 3-fold greater than the KM of Dicer-2 for long 

dsRNA; after dilution, the substrate concentration was ~300 times less than the 

KM. For both the pre-incubation and the dilution steps, the dsRNA substrate was 

present at ~4-fold higher concentration than Dicer-2. When the pre-incubation 

was omitted, little fourth siRNA was produced (Figure 2.5B), demonstrating that 

the conditions largely prevented reassociation of Dicer-2 with dsRNA once it 

dissociated from the substrate. 

When ATP was included in both the pre-incubation and the dilution buffer, 

54 fmol of Dicer-2 produced 10 fmol of fourth siRNA in 1 h. About half as much 

fourth siRNA was produced when ATP was present in the dilution buffer but 
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omitted from the pre-incubation. When ATP was omitted from the dilution buffer, 

essentially no fourth siRNA was produced, regardless of whether ATP was 

present during the pre-incubation, suggesting that ATP dissociates rapidly from 

Dicer-2. More fourth siRNA was made when ATP was present in both the pre-

incubation and dilution buffers than when pre-incubation was carried out in the 

absence of ATP (p-value = 0.015). We conclude that the initial binding of Dicer-2 

to the end of long dsRNA is enhanced by ATP and that in the presence of ATP 

Dicer-2 remains associated with the dsRNA. We propose that the stably bound 

Dicer-2 then cleaves successive siRNAs along the dsRNA. 
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Figure 2.5. Dicer-2 Remains Associated with its Substrate in the Presence 

of ATP. (A) Design of the experiment. The reaction contained 54 fmol Dicer-2 

and 200 fmol dsRNA, corresponding to 5.4 nM enzyme and 20 nM dsRNA before 

dilution. (B) The rate of production of the fourth siRNA was measured for six 

different combinations of pre-incubation (no pre-incubation, without ATP, and 

with ATP) and dilution (without and with ATP). Values are mean ± standard 

deviation for three independent experiments. 
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Figure 2.6. A Model for Drosophila Dicer-2. 



Table 2.S1. List of Synthetic DNA Oligonucleotides. m, 2ʹ′-O-methyl ribose. 
 

Forward primer for 515 bp product 
for sense RNA from pEGFP-N3 5ʹ′-GCG TAA TAC GAC TCA CTA TAG GAC TCA GAT CTC GAG CTC AAG-3ʹ′ 

Reverse primer for 515 bp product 
for sense RNA from pEGFP-N3 5ʹ′-GCT GTT GTA GTT GTA CTC CAG-3ʹ′ 

Forward primer for 515 bp product 
for antisense RNA from pEGFP-N3 5ʹ′-GCG TAA TAC GAC TCA CTA TAG GCT GTT GTA GTT GTA CTC CAG-3ʹ′ 

Reverse primer for 515 bp product 
for antisense RNA from pEGFP-N3 5ʹ′-GAC TCA GAT CTC GAG CTC AAG-3ʹ′ 

Forward primer for 316 bp product 
for sense RNA from pEGFP-N3 5ʹ′-GCGTAATACGACTCACTATAGGGCCACAAGTTCAGCGTGTCC-3ʹ′ 

Reverse primer for 316 bp product 
for sense RNA from pEGFP-N3 5ʹ′-TCGATGCCCTTCAGCTCG-3ʹ′ 

Forward primer for 316 bp product 
for antisense RNA from pEGFP-N3 5ʹ′-GCGTAATACGACTCACTATAGTCGATGCCCTTCAGCTCG-3ʹ′ 

Reverse primer for 316 bp product 
for antisense RNA from pEGFP-N3 5ʹ′-GCCACAAGTTCAGCGTGTCC-3ʹ′ 

let-7 probe 
for Northern hybridization 5ʹ′-CTA TAC AAC CTA CTA CCT CAA-3ʹ′ 
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let-7* probe 
for Northern hybridization 5ʹ′-AAA GCT AGC ACA TTG TAT AGT-3ʹ′ 

Forward primer for 558, 345, 208, 106 
bp product 

for sense RNA from pEGFP-N3 (Figure 
3G) 

5′-TAA TAC GAC TCA CTA TAG GCA AGC TGA CCC TGA AGT TC-3ʹ′ 

Reverse primer for 558 bp product 
for sense RNA from pEGFP-N3 5′-mGmGT CAC GAA CTC CAG CAG GAC-3′ 

Forward primer for 558 bp product 
for anti-sense RNA from pEGFP-N3 

5′-TAA TAC GAC TCA CTA TAG GTC ACG AAC TCC AGC AGG AC-3′ 
 

Reverse primer for 558, 345, 208, 106 
bp product 

for anti-sense RNA from pEGFP-N3 
5′-mGmGC AAG CTG ACC CTG AAG TTC-3ʹ′ 

Reverse primer for 345 bp product 
for sense RNA from pEGFP-N3 5′-mGmGC CAT GAT ATA GAC GTT GTG-3ʹ′ 

Forward primer for 345 bp product 
for anti-sense RNA from pEGFP-N3 5′-TAA TAC GAC TCA CTA TAG GCC ATG ATA TAG ACG TTG TG-3ʹ′ 

Reverse primer for 208 bp product 
for sense RNA from pEGFP-N3 5′-mGmGG TCT TGT AGT TGC CGT CGT-3ʹ′ 

Forward primer for 208 bp product 
for anti-sense RNA from pEGFP-N3 5′-TAA TAC GAC TCA CTA TAG GGT CTT GTA GTT GCC GTC GT-3′ 
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Reverse primer for 106 bp product 
for sense RNA from pEGFP-N3 5′-mGmGT AGC GGC TGA AGC ACT GCA-3′ 

Forward primer for 106 bp product 
for sense RNA from pEGFP-N3 (Figure 

2) 
5′-GCG TAA TAC GAC TCA CTA TAG GGC CAC AAG TTC AGC GTG TCC-3′ 

Reverse primer for 106 bp product 
for sense RNA from pEGFP-N3  5′-mGmGG CCA GGG CAC GGG CAG CTT GCC G-3′ 

Forward primer for 106 bp product 
for anti-sense RNA (blunt end) from 

pEGFP-N3 (Figure 2) 
5′-mGmGG CCA CAA GTT CAG CGT GTC C-3′ 

Reverse primer for 106 bp product 
for anti-sense RNA (blunt end) from 

pEGFP-N3 (Figure 2) 
5′-GTA CTT AAT ACG ACT CAC TAT AGG GCC AGG GCA CGG GCA GCT TGC CG-3′ 

Forward primer for 104 bp product 
for anti-sense RNA (3′overhang) from 

pEGFP-N3 (Figure 2) 
5′-GTA CTT AAT ACG ACT CAC TAT AGC CAG GGC ACG GGC AGC TTG CCG-3′ 

Reverse primer for 104 bp product 
for sense RNA (3’overhang) from 

pEGFP-N3 (Figure 2) 
5’-mTmTG GGC CAC AAG TTC AGC GTG TCC-3’ 
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Table 2.S2. List of Synthetic RNA Oligonucleotides. d, deoxy ribose. 
 

25 nt sense RNA 
for 25 bp dsRNA 

5ʹ′-ACC CUG AAG UUC AUC UGC ACC ACdC dG-3ʹ′ 

27 nt anti-sense RNA 
for 25 bp dsRNA 

5ʹ′-CGG UGG UGC AGA UGA ACU UCA GGG UCA -3ʹ′ 

29 nt sense RNA 
for 29 bp dsRNA 

5ʹ′-ACC CUG AAG UUC AUC UGC ACC GUC CAC dCdG-3ʹ′ 

31 nt anti-sense RNA 
for 29 bp dsRNA 

5ʹ′-CGG UGG ACG GUG CAG AUG AAC UUC AGG GUC A-3ʹ′ 

pre-let 7 
5ʹ′-UGA GGU AGU AGG UUG UAU AGU AGU AAU UAC ACA UCA UAC UAU ACA AUG UGC UAG 
CUU UCU-3ʹ′ 

 



84

Table 2.S3. DNA Templates for Transcription and DNA Splints for RNA Ligation, Used in Figures 2.3 and 
2.4. m, 2ʹ′-O-methyl ribose. 

 

DNA template to transcribe 
antisense RNA strand in Figure 4 

5ʹ′-ACT CCT CAA CAA ATC ATA AAC TAC AAT ATA CAT CAA TAC GAC ATT 
ACC CTC ACA ATC AAT CAT ACA ACC ATC CCT AAA GAC CAA CAG CAC 
CCC ACG ATC AAG AAT AAG AAC TAT AAT CCC TAT AGT GAG TCG TAT 
TAC GC 3ʹ′ 

T7 RNAP promoter sequence annealed to 
the DNA template for transcription 

5ʹ′-GCG TAA TAC GAC TCA CTA TAG-3ʹ′ 

DNA splint for RNA ligation 
to generate sense strand in Figure 4 

5ʹ′-GGG ATT ATA GTT CTT ATT CTT GAT CGT GGG GTG CTG TTG GTC TTT 
AGG GAT GGT TGT ATG ATT GAT TGT GAG GGT AAT GTC GTA TTG ATG 
TAT ATT GTA GTT TAT GAT TTG TTG AGG AGT-3ʹ′ 

DNA template to transcribe 40 nt sense RNA 
in Figure 3G 

5ʹ′-mGGC TTC ATG TGG TCG GGG TAG CGG CTG AAG CAC TGC ACG CCT 
ATA GTG AGT CGT ATT ACG C-3ʹ′ 

DNA template to transcribe 40 nt anti-sense 
RNA in Figure 3G 

5ʹ′-mGGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CCT 
ATA GTG AGT CGT ATT ACG C-3ʹ′ 

DNA template to transcribe 60 nt sense RNA 
in Figure 3G 

5ʹ′-mGGT GAA CTT CAG GGT CAG CTT GCT TCA TGT GGT CGG GGT AGC 
GGC TGA AGC ACT GCA CGC CTA TAG TGA GTC GTA TTA CGC-3ʹ′ 

DNA template to transcribe 60 nt anti-sense 
RNA in Figure 3G 

5ʹ′-mGGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CAA 
GCT GAC CCT GAA GTT CAC CTA TAG TGA GTC GTA TTA CGC-3ʹ′ 
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Table 2.S4. List of Synthetic RNA Oligonucleotides Assembled by Splinted Ligation into Site-
Specifically Labeled Sense-Strand RNA and Used in Figure 2.4, 2.5 and S4. 

 

RNA #1 5ʹ′-ACU CCU CAA CAA AUC A-3ʹ′ 

RNA #2 
5ʹ′-UAA ACU ACA AUA UAC AUC AAU ACG ACA UUA CCC UCA CAA UCA AUC AUA CAA CCA UCC CUA 
AAG ACC AAC AG CAC CCC A-3ʹ′ 

RNA #3 5ʹ′-CGA UCA AGA AUA AGA ACU AUA AUC dCdC-3ʹ′ 

RNA #4 5ʹ′-ACU CCU CAA CAA AUC AUA AAC UAC AAU AUA CAU CA-3ʹ′ 

RNA #5 
5ʹ′-AUA CGA CAU UAC CCU CAC AAU CAA UCA UAC AAC CAU CCC UAA AGA CCA ACA GCA CCC CA-
3ʹ′ 

RNA #6 5ʹ′-UCC UCA ACA AAU CA-3ʹ′ 

RNA #7 5ʹ′-UCC UCA ACA AAU CAU AAA CUA CAA UAU ACA UCA-3ʹ′ 

 
 



Discussion 

Purified Dicer-1 and Dicer-2 both process pre-miRNAs, but generate 

different length products (22 versus 21 nt). Genetic analyses suggest that Dicer-1 

and Dicer-2 are restricted to specific substrate classes in vivo (Lee et al. 2004). 

For example, Dicer-2 cannot replace Dicer-1 in the miRNA pathway. Similarly, 

dicer-2 mutants are defective for RNAi, even though they express normal levels 

of Dicer-1 (Lee et al., 2004). Despite structural similarities, Dicer-2 specifically 

processes esiRNA hairpins, while Dicer-1 cleaves pre-miRNAs (Lee et al., 2004; 

Förstemann et al., 2005; Jiang et al., 2005; Saito et al., 2005; Miyoshi et al., 

2010). This observation suggests that the length of a dsRNA is the primary 

determinant of substrate choice. 

Our data argue that the combination of R2D2 and cellular phosphate 

restricts Dicer-2 to its biologically relevant substrates by inhibiting the processing 

of short substrates such as pre-miRNA. Thus, a protein, R2D2, and a small 

molecule, phosphate, convert a promiscuous dsRNA endonuclease into one 

specific for the long dsRNA substrates that trigger RNAi. It is tempting to 

speculate that inorganic phosphate interferes with recognition of the 5ʹ′ 

monophosphate present on all pre-miRNAs, and that 5ʹ′ phosphate recognition is 

unnecessary for longer substrates, because their greater length allows additional 

protein-RNA contacts—perhaps by the dsRNA-binding and the helicase 

domains—between Dicer-2 and long dsRNA. We note that human Dicer has 
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been reported to recognize a 5ʹ′ monophosphate on single-stranded RNA (Kini 

and Walton, 2007). 

In flies, the Dicer-2 partner proteins Loqs-PD and R2D2 likely enhance 

substrate specificity by increasing the affinity of the enzyme for long dsRNA. The 

kcat for and Dicer-2 and Dicer-2/R2D2 were similar, but R2D2 decreased the KM 

of Dicer-2 for long dsRNA (Table 2.1 and Figure 2.S2). We note that the 

specificity constant, kcat/KM, was ~4 fold higher for the Dicer-2/R2D2 heterodimer 

than for Dicer-2 alone. Similarly, Loqs-PD lowered the KM of Dicer-2 for long 

dsRNA without reducing the catalytic rate, resulting in a ~10-fold higher kcat/KM. 

Processing of pre-miRNA by Dicer-1 was unaffected by phosphate. We 

find that the intrinsic properties of Dicer-1, which cannot efficiently catalyze 

multiple-turnover processing of long dsRNA, restrict that enzyme to process pre-

miRNA. We do not yet know whether the transition of substrates from Dicer-1 to 

Dicer-2 is gradual, such that some substrates are processed equally well by both 

enzymes. In theory, such intermediate substrates might be selected against in 

evolution, enforcing the distinction between Dicer-1 and Dicer-2 substrates. 

The Dicer-2 helicase domain is similar to that of RIG-I, a sensor in the 

mammalian innate immune system. The RIG-like ATPase/helicase domain is 

conserved among plant and animal Dicers. Yet, its function has remained 

unknown. Our data suggest that this domain of Dicer-2 is involved in ATP-

dependent production of successive siRNAs from long dsRNA. Notably, two 

other members of this helicase family, DRH-3 and RIG-I are also bona fide 
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ATPases: DRH-3, a C. elegans protein required for RNA silencing and germ-line 

development (Nakamura et al., 2007), is a dsRNA-stimulated ATPase (Matranga 

and Pyle, 2010); and the mammalian protein RIG-I, which recognizes viral 5ʹ′ 

triphosphorylated dsRNA and initiates an innate immune response, uses ATP to 

translocate along dsRNA (Myong et al., 2009). Our data are consistent with the 

idea that ATP hydrolysis fuels translocation of Dicer-2 along long dsRNA 

substrates. An alternative view—that the ATP-dependent binding of a molecule 

of Dicer at the end of the substrate promotes the complete and rapid 

oligomerization of Dicer-2 along the entire extent of the dsRNA—would require 

that the Dicer and RIG-I helicase domains share a conserved sequence but have 

highly divergent functions. 

ATP was not required for Dicer-2 to process pre-miRNA, and a mutant 

Dicer-2 unable to hydrolyze ATP remained able to process pre-miRNA but not 

long dsRNA. These results help explain why in C. elegans, in which a single 

Dicer processes both long dsRNA and pre-miRNA, a mutation in the DCR-1 

helicase domain disrupted endo-siRNA, but not miRNA, accumulation (Welker et 

al., 2010). 

Four lines of evidence support a role for ATP hydrolysis in the production 

of successive siRNAs along the dsRNA by Dicer-2. First, Dicer-2 consumes a 

constant amount of ATP per base-pair. Second, ~23 molecules of ATP were 

consumed for each 21 nt siRNA produced. Third, the rate of production of the 

first, second, and fourth siRNAs from a long dsRNA substrate were 
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indistinguishable in the presence of ATP, but in the absence of ATP, the rate of 

siRNA production declined with increasing distance from the end of the dsRNA. 

Finally, the association of Dicer-2 with a long dsRNA was resistant to dilution 

provided ATP was present, suggesting that after binding the end of its substrate, 

Dicer-2 remains bound to the dsRNA and uses ATP energy to reposition itself to 

produce the next 21 bp siRNA. Translocation along the dsRNA seems a likely 

mechanism. 

Although helicase mutant Dicer-2G31R processed pre-miRNAs as efficiently 

as wild-type Dicer-2, the mutant was unable to produce even the terminal siRNA 

from a long RNA duplex under multiple turnover conditions. This suggests an 

inherent ability of the helicase domain of Dicer-2 to distinguish between long and 

short substrates. We note that the helicase domain of human Dicer auto-inhibits 

processing of an RNA duplex, and its dsRNA-binding protein partner TRBP, a 

homolog of R2D2 and Loqs, relieves this inhibition (Ma et al., 2008; Chakravarthy 

et al., 2010). We hypothesize that Drosophila Dicer-2 can occupy two distinct 

conformations. When inorganic phosphate is low, Dicer-2 assumes a 

conformation—perhaps similar to the auto-inhibited conformation of human 

Dicer—that can bind and load siRNA. This conformation is unaffected by ATP 

and, we presume, is involved in promiscuously processing pre-miRNA in vitro. 

When inorganic phosphate is higher and the enzyme’s helicase and dsRNA-

binding domains engage its substrate, Dicer-2 assumes a conformation that 

requires ATP for binding and hydrolysis to process dsRNA. 
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Materials and Methods 

Protein Expression and Purification 

Expression and purification of His6-Dicer-2 or His6-Dicer-2 and His6-

R2D2 in Sf21 cells was as described (Liu et al., 2003; Tomari et al., 2004). His6-

Dicer-2G31R, His6-Dicer-2D1217,1614N  and His6-Dicer-1 were expressed in Sf9 insect 

cells using the BAC-to-BAC Baculovirus Expression System (Invitrogen, 

Carlsbad, CA) and purified from cell lysates by using Ni-NTA agarose (QIAGEN, 

Valencia, CA), HiTrap Q, HiTrap Heparin (GE Healthcare, Pittsburgh, PA), and 

Superdex 200 gel filtration. Loqs-PD was expressed in Escherichia coli 

Rosetta2(DE3), isolated using Ni-Sepharose (GE Healthcare), treated with 

HRV3C protease cleavage to remove the His-tag, and purified using HiTrap SP 

and HiTrap Heparin. Proteins were exchanged into 20 mM HEPES-KOH (pH 

8.0), 100 mM NaCl, 1 mM Tris(2-carboxyethyl)phosphine hydrochloride. Protein 

concentrations were determined by quantitative amino acid analysis (Keck 

Biotechnology Resource Laboratory, New Haven, CT). Two different 

preparations of recombinant Dicer-2 were used in this study. Preparation 1 was 

used for Table 2.1 and Figures 2.2, 2.3E, 2.4C, 2.S2B, 2.S3A, 2.S3D, and 2.S2. 

Preparation 2 was used for Table 2.2 and Figures 2.1, 2.3A–D, 2.3F, 2.3G, 2.4A, 

2.4B, 2.5, 2.S1, 2.S2A, 2.S3B, 2.S3C, and 2.S4. 
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RNA Substrates 

dsRNAs were prepared as described (Haley et al., 2003). PCR 

templates for transcription of sense and antisense RNAs were generated from 

the EGFP sequence of pN3-eGFP using primers listed in Table 2.S1. Twenty-five 

and 29 bp dsRNAs (Figure 2.S2A, 2.S3B, 2.S4A, Table 2.S2) were as previously 

described (Rose et al., 2005). Synthetic RNAs and synthetic Drosophila pre-let-7 

(Dharmacon, Lafayette, CO) were 5ʹ′ 32P-radiolabeled using γ-32P ATP (6000 

Ci/mmol; PerkinElmer, Waltham, MA) and T4 polynucleotide kinase (NEB, 

Ipswich, MA). After gel purification, RNA strands or pre-let-7 were incubated at 

65°C for 5 min and then at 25°C for 30 min. Site-specifically radiolabeled 120 nt 

dsRNAs were prepared by DNA-splinted ligation (Table 2.S3 and 2.S4) (Moore 

and Sharp, 1993; Moore and Query, 2000). To monitor formation of the fourth 

siRNA in Figure 2.4B, we used a 120 nt substrate in which the 5th siRNA (the last 

siRNA generated by Dicer-2 from this substrate) was site-specifically 32P-

radiolabeled. The fourth siRNA produced corresponds to the sum of the two 32P-

radiolabeled cleavage products produced when the dsRNA was cleaved to 

generate the fourth and fifth siRNAs. 

In Vitro RNA Processing 

For Dcr-2 +Loqs-PD, Loqs-PD was first mixed with Dicer-2 or Dicer-

2/R2D2 and incubated 10 min on ice followed by 5 min at room temperature. 

Dicing reactions contained 7.5 mM DTT, 3.3 mM magnesium acetate, 0.25% v/v 

glycerol, 100 mM potassium acetate, 18 mM HEPES-KOH (pH 7.4), 15 mM CP, 
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2.25 µg CK, and 1 mM ATP; –ATP reactions contained 1 mM EDTA but no CK or 

CP; ATPγS reactions contained 1 mM ATPγS only. In Figure 2.2A-D, 2.3, 2.4B-E, 

2.5 , 2.S3, and 2.S4, +ATP reactions contained no CP or CK; +CP and +CK 

reactions in Figure 2B and S2B contained 20 mM CP or 2.25 µg CK. Reactions 

were assembled on ice and pre-incubated at 25°C for 5 min before adding RNA. 

In Figure S4, dilution buffer contained 0.1% NP-40. 

Aliquots (1 µl) of reactions with radiolabeled RNA substrate were 

quenched by the addition of 25 volumes of formamide loading buffer (98% v/v 

formamide, 0.1% w/v bromophenol blue and xylene cyanol, 10 mM EDTA), 

incubated 5 min at 95°C, and analyzed by electrophoresis through a denaturing 

polyacrylamide 7 M urea gel using 0.5× Tris-borate-EDTA buffer (National 

Diagnostics, Atlanta, GA). In Figure 5, 200 µL aliquots from dilution reactions 

were stopped with 300 mM sodium acetate and 25 mM EDTA, isopropanol 

precipitated, and dissolved in formamide loading buffer before gel analysis. Gels 

were exposed to image plates and analyzed with an FLA-5000 and ImageGauge 

3.0 software (Fujifilm, Tokyo, Japan). In Figure 1, let-7 and let-7* strands were 

detected by Northern hybridization with 5ʹ′ 32P-radiolabeled DNA probes (Table 

S1). 

ATP Hydrolysis 

α-32P-ATP (250 nM, 3000 mmol/Ci; PerkinElmer) was used to monitor 

hydrolysis. Reactions were stopped with a 25 vol formamide loading dye and 

spotted onto 20 cm × 20 cm cellulose plates (EMD, Darmstadt, Germany) and 
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chromatographed in 0.75 M KH2PO4 (adjusted to pH 3.3 with H3PO4) until the 

solvent reached the top of the plate. The plate was dried and analyzed by 

phosphorimagery. For Figure 2.S3B, ATP hydrolysis was monitored using the 

ATP Bioluminescent Assay Kit (Sigma, St. Louis, MO). The reaction was stopped 

by diluting the sample 10 times in H2O and immediately flash-freezing in liquid 

nitrogen. Samples were stored at –80°C until they were measured. A standard 

curve spanning at least 100-fold less than and greater than the experimental 

values was used to determine ATP concentrations. 

Rate Analyses 

Substrate converted to siRNA versus time was fit to y = y0 + A(1 – e–

kt), where dy/dt = Ake–kt. When t = 0, dy/dt = Ak (Lu and Fei, 2003). Data were 

fit to the Michaelis-Menten scheme using Visual Enzymics 2008 (Softzymics, 

Princeton, NJ) for Igor Pro 6.11 (WaveMetrics, Lake Oswego, OR). The rate of 

substrate consumption was fit for each replicate separately, and two-tailed, two 

sample equal variance t-test used to compare rates (Excel, Microsoft, Seattle, 

WA). R 2.6.0 software was used for other statistical analyses.  
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CHAPTER III: PROCESSING OF PRE-MIRNAS BY DROSOPHILA 

DICER-1 
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Abstract 

Drosophila Dicer-1 is responsible for generating miRNAs from pre-

miRNAs. Despite structural similarities to endo-siRNAs and other double 

stranded RNA, pre-miRNAs are processed in a very specific manner by Dicer-1 

and not Dicer-2. What confers this specificity is unknown. Here we report that a 

partner protein of Dicer-1, Loqs-PB, and ATP enhance substrate specificity of 

Dicer-1. More specifically, ATP and Loqs-B likely facilitate efficient processing of 

the miRNA/miRNA* duplex by Dicer-1 by lowering the KM. Our data highlight the 

role of ATP and regulatory dsRNA-binding partner proteins to achieve substrate 

specificity in Drosophila RNA silencing. 
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Introduction 

 Both siRNAs and miRNAs rely on members of the Dicer family of 

double-stranded (ds) RNA-specific RNase III endonucleases for their processing 

from longer RNA precursors (Bernstein et al., 2001; Hutvágner et al., 2001; 

Ketting et al., 2001; Knight and Bass, 2001). In Drosophila melanogaster, two 

separate pathways produce siRNAs and miRNAs. Primary miRNA precursors are 

transcribed by Pol II and contain one or a few miRNA precursors (pre-miRNAs) 

(Lee et al., 2002; Cai et al., 2004; Lee et al., 2004a). The RNase III enzyme 

Drosha, in collaboration with its dsRNA-binding domain partner protein, Pasha, 

cleaves primary miRNAs to release pre-miRNAs, ~70 nt long stem-loop 

structures that contain the mature miRNA within this structure (Lee et al., 2003; 

Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Han et al., 2006). 

Subsequently, pre-miRNAs are exported from the nucleus to the cytoplasm by 

Exportin 5 (Yi et al., 2003; Bohnsack et al., 2004; Lund et al., 2004). In the 

cytoplasm, the pre-miRNAs are cleaved by Dicer-1, which acts in concert with its 

dsRNA-binding protein partner, Loquacious-PB (Loqs-PB). This processing step 

liberates a duplex comprising the mature miRNA bound to its miRNA*, a partially 

complementary small RNA derived from the opposite arm of the pre-miRNA stem 

(Förstemann et al., 2005; Jiang et al., 2005; Saito et al., 2005; Ye et al., 2007). 

Different mature miRNAs derive from either the 5ʹ′ or 3′ arm of the pre-miRNA 

stem. 

Drosophila Dicer-1 contains two RNase III domains that form an 
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intramolecular heterodimer whose dimer interface creates two active sites 

(Zhang et al., 2004; Macrae et al., 2006; Ye et al., 2007). Each active site 

positions two Mg2+ ions that catalyze phosphodiester bond hydrolysis on one or 

the other strand of the dsRNA.  Dicer-1 generates a dsRNA terminus bearing a 

two-nucleotide 3ʹ′ overhang characteristic of all RNase III enzymes (Bass, 2000; 

Zhang et al., 2004; Gan et al., 2006; Macrae et al., 2006). Like other members of 

the Dicer family, Dicer-1 contains a C-terminal dsRBD and a central PAZ domain, 

which has an RNA-binding motif that can recognize the two-nucleotide,3ʹ′ single-

stranded ends of Drosha and Dicer products (Cerutti et al., 2000; Lingel et al., 

2003; Song et al., 2003; Yan et al., 2003; Lingel et al., 2004; Ma et al., 2004; 

Macrae et al., 2006; MacRae et al., 2007). The crystal structure of a simple Dicer 

protein from Giardia intestinalis, together with functional studies using human 

Dicer, suggest that the distance between the PAZ domain and the active sites of 

the RNase III domains establishes the length of the small RNA product (Zamore, 

2001; Zhang et al., 2004; Gan et al., 2006; Macrae et al., 2006; MacRae et al., 

2007; Takeshita et al., 2007). 

         Here, we present evidence that Dicer-1 requires ATP to efficiently process 

its substrates. ATP facilitates efficient processing of pre-miRNAs when in excess 

compared to Dicer-1, as would be expected in vivo. ATP modifies the properties 

of Dicer-1 by decreasing its KM for pre-miRNA. Its partner protein Loqs-PB, like 

ATP, decreases the KM of Dicer-1 for pre-miRNA. Thus, the characteristic 

substrate specificitiy of Dicer-1 arise both from its intrinsic properties, and its 
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interactions with a small molecule—ATP—and its cognate dsRNA-binding 

partner protein. 
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Results 

ATP enhances processing of pre-let-7 by Dicer-1 

Previous studies concluded that Dicer-1 requires no ATP for pre-miRNA 

processing (Jiang et al., 2005), yet it wasn’t clear whether the substrate and 

enzyme concentrations were close to intracellular levels (pre-miRNA = 4 × 104 

cpm, enzyme = not specified). Since the Helicase C domain of Dicer-1 contains 

an ATP-binding domain, we asked whether ATP binding or hydrolysis had any 

effect in pre-miRNA processing by Dicer-1 (Figure 3.S1B).  

We analyzed pre-let-7 processing using purified recombinant Dicer-1 and 

Dicer-1/Loqs-PB in ATP presence or absence. Consistent with previous single-

turnover analyses, ATP was dispensable for processing of pre-let-7 when the 

concentration of Dicer-1 or Dicer-1/Loqs-PB was greater than pre-let-7. However, 

when pre-let-7 substrate concentration was much greater than that of Dicer-1, 

ATP enhanced pre-let-7 processing for both Dicer-1 and Dicer-1/Loqs-PB (Figure 

3.1A, right). This multiple-turnover reaction condition likely reflects the 

intracellular environment in which Dicer-1 functions. Surprisingly, ATP had no 

statistically significant effect on the rate of pre-miRNA processing by Dicer-1 at 

saturating substrate concentrations (Table 3.1), rather, it decreased the KM (p-

value = 0.02). 
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Figure 3.S1. Alignment of the Predicted ATP-Binding Site of Dicer-1 with 

Known or Putative ATPase Proteins. The alignment is from the NCBI 

conserved domain database. An asterisk denotes residues predicted to be at the 

ATP-binding site of Dicer-1, based on the crystal structure of the UvrB protein 

bound to ATP (Theis et al., 1999; Marchler-Bauer et al., 2009) 
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Figure 3.1. ATP and Loqs-PB Increase Multiple-Turnover Pre-miRNA 

Processing by Dicer-1. (A) Production of let-7 from a 5 32P-radiolabeled pre-let-

7 substrate by Dicer-1 (black) or Dicer-1/Loqs (green) was measured with or 

without 1 mM ATP under single- (left; 8 nM enzyme, 1 nM substrate) or multiple-

turnover conditions (right; 2 nM enzyme, 150 nM substrate). (B) Pre-let-7 

processing by Dicer-1/Loqs-PB was monitored under single- (left) or multiple-

turnover (right) conditions in the presence (black) or absence (gray) of ATP or in 

the presence of the ATP analogs (blue) ATP αS or ATP γS. Values correspond 

to the mean ± standard deviation from three independent experiments. The data 

were fit to a single exponential function. (C) siRNA production from a 517 bp 

dsRNA (25 nM) by Dicer-1 or Dicer-1/Loqs-PB (235 nM) was monitored in the 

presence or absence of ATP. Left, the amount of siRNA generated by Dicer-1 

alone was measured in the presence (black) or absence (gray) of ATP. Right, the 

amount of siRNA generated by Dicer-1/Loqs-PB was measured in the presence 

(solid line) or absence (dashed line) of ATP. 
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Although ATP is required for efficient pre-miRNA processing in multi-

turnover conditions, using the same thin-layer chromatography assay we were 

unable to detect ATP hydrolysis above background by Dicer-1 or Dicer-1/Loqs 

PB in pre-let-7 substrate presence or absence (Figure 3.S2A). ATP analogs 

modified at the β –γ bond did not affect multiple rounds of pre-miRNA processing 

by Dicer-1/Loqs PB (Figure 3.1B). Single-turnover cleavage of pre-let-7 by Dicer-

1 required no ATP. Our results are suggestive of ATP promoting an alternative, 

higher affinity conformation for Dicer-1. 

Dicer-1 Does Not Process Long dsRNA Efficiently 

Loqs-PB has been proposed to prevent Dicer-1 from processing long 

dsRNA, thereby restricting siRNA production to Dicer-2 (Saito et al., 2005). 

However, we found that Dicer-1 alone did not efficiently process a 517 bp 

dsRNA, nor did Loqs-PB inhibit the low level of siRNA production by Dicer-1 

(Figure 3.1C). In fact, we could only detect siRNA production from a 517 bp 

dsRNA when Dicer-1 was in ~10-fold excess compared to the dsRNA substrate  

(225 nM Dicer-1, 25 nM long dsRNA), (Figure 3.1C). Moreover, we were unable 

to detect siRNA production by Dicer-1 (data not shown) using the same multiple-

turnover conditions (25 nM dsRNA and 2 nM Dicer) under which Dicer-2 

efficiently generated siRNAs. Unlike Dicer-2, processing of long dsRNA by Dicer-

1 or Dicer-1/ Loqs-PB was distributive, with intermediate products readily 

detected (Figure 3.2).  
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Figure 3.S2. Non-hydrolyzable β-γ ATP Analogs do not Replace ATP for 

Pre-miRNA Processing by Dicer-1. (A) ATP (1 mM) hydrolysis to ADP was 

measured for 450 nM Dicer-1 or Dicer-1/Loqs-PB in the presence and absence 

of 2 µM pre-let-7 substrate. (B) pre-let-7 (150 nM) processing by Dicer-1/Loqs-PB 

(2 nM) was measured in the presence of the non-hydrolyzable ATP analogs, 

AMPPcP or AMPcPP (1mM) under conditions of substrate excess. For 

comparison, pre-let-7 processing by Dicer-1/Loqs-PB in the absence (gray) or 

presence of ATP (black) is shown.  
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Figure 3.2. Dicer-1, but not Dicer-2, Generates Intermediates when 

Processing Long dsRNA. 25 nM internally 32P-radiolabeled 515 bp dsRNA was 

incubated with either 225 nM Dicer-1 or 5.4 nM Dicer-2. The top gel was run to 

visualize both the uncleaved substrate and the 21–22 bp siRNA products; the 

lower gel was run to resolve the intermediates (arrowheads) generated by Dicer-

1. 
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Loqs-PB Decreases the KM of Dicer-1 for Pre-let-7 

Although Loqs-PB does not alter the affinity of Dicer-1 for long dsRNA, it 

might be expected to increase the affinity of Dicer-1 for its authentic substrate, 

pre-miRNA. Michaelis-Menten analyses of pre-let-7 processing by Dicer-1 and 

Dicer-1/Loqs-PB revealed a small increase in catalytic rate when Loqs-PB was 

present (kcat = 2.4 ± 1.1 min-1 for Dicer-1 versus 1.1 ± 0.9 min-1 for Dicer-1/Loqs-

PB; p-value = 0.01) and a large decrease in KM (44.3 ± 32.3 nM for Dicer-1 

versus 4.4 ± 3.5 nM for Dicer/Loqs-PB) in the presence of ATP (Table 3.1). The 

effect of ATP on the kinetics of pre-miRNA processing was similar for Dicer-

1/Loqs-PB and Dicer-1 alone. For Dicer-1/Loqs-PB, ATP had no statistically 

significant effect on kcat, but significantly decreased the KM (Table 3.1, p-value = 

0.008). Overall, the combination of ATP and Loqs-PB decreased the KM for 

Dicer-1 by 25-fold and increased its specificity constant, kcat/KM by 75-fold. 
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Table 3.1. Michaelis-Menten Analysis of Dicer-1. 
Purified recombinant Dicer-1 was incubated with pre-let-7 and the production of let-7 miRNA measured. 

Dicer-1 
plus: ATP KM (nM) Change 

in KM kcat (min-1) Change 
in kcat 

kcat / KM 
(nM-1 min-1) 

Change 
in kcat / KM 

Ø 
– 116.5 ± 13.7 1 1.0 ± 0.5 1 0.008 ± 0.003 1 

+ 44.3 ± 32.3 0.4 1.1 ± 0.9 1.1 0.04 ± 0.03 5 

Loqs-PB 
– 73.3 ± 12.8 0.6 3.1 ± 0.5 3.1 0.04 ± 0.009 5 

+ 4.4 ± 3.5 0.04 2.4 ± 1.1 2.4 0.6 ± 0.2 75 
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Discussion 

Our data suggest a model in which ATP and dsRNA binding partners 

channel Dicer-1 to its biologically appropriate substrate class. To the best of our 

knowledge, the use of a nucleotide cofactor to ensure biologically appropriate 

substrate specificity in an RNA silencing pathway is without precedent. Loqs-PB 

increases the efficiency of pre-miRNA processing by Dicer-1 most likely by 

increasing its affinity for pre-miRNA. 

Genetic data suggested that Dicer-1 and Dicer-2 are restricted to specific 

substrate classes in vivo. Dicer-2 cannot replace Dicer-1 in the miRNA pathway, 

and dicer-2 mutants are defective for RNAi, even when Dicer-1 is expressed at 

normal levels. Despite structural similarity between endo siRNA hairpins, and 

pre-miRNAs, Drosophila Dicers can effectively discriminate these substrates 

suggesting that the length of a dsRNA is the primary determinant for substrate 

choice. In the presence of ATP and dsRNA-binding domain partner proteins, 

longer precursors are processed by Dicer-2, while shorter ones are processed 

more efficiently by Dicer-1. We do not yet know if the transition from Dicer-1 

substrate to Dicer-2 substrate is gradual; with some substrates processed 

equally well by each enzyme. Nor do we know if biologically relevant precursor 

RNAs exist that are cleaved by both Dicer-1 and Dicer-2. Evolution might have 

selected against such dual substrates, ensuring the production of precise small 

RNA products. 
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While attractive, partner proteins specifying substrate choice for 

Drosophila Dicers is not entirely consistent with our data. Specifically, we did not 

observe a role for Loqs-PB in restricting Dicer-1 to the miRNA pathway. Instead, 

Loqs-PB appears to increase the affinity of Dicer-1 for pre-miRNA (i.e., it 

decreased the KM).  

The ATPase/helicase domain scaffold of Dicer is widely conserved among 

plants and animals, including in human Dicer. Yet, detailed functional analysis of 

the domain has yet be carried out. The helicase domains of Dicers might 

potentially provide an interface for protein-protein interactions. Supporting this 

possibility, Drosphila Dicer-2’ ATPase/helicase domain interacts with innate 

immunity pathway proteins, promoting an immune response upon entry of an 

RNA virus (Wang et al., 2006; Deddouche et al., 2008). Our data suggest that 

ATP binding or hydrolysis catalyzed by ATPase/helicase domains may also 

enhance the catalytic function of Dicers, by one or more of several possible 

mechanisms including improved substrate binding, enhanced catalytic efficiency, 

and promotion of processivity. In this regard, it is striking that the dsRNA-binding 

partner protein for human Dicer, TRBP, binds Dicer through its ATPase/helicase 

domain (Ma et al., 2008; Daniels et al., 2009). 
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Materials and Methods 

Protein Expression and Purification 

Dicer-1 protein was expressed from a recombinant baculovirus containing 

a Dicer-1 cDNA isolated from Drosophila S2 cells and inserted into the 

pFastBac1 vector (Invitrogen, Carlsbad, CA, USA). The sequence of this cDNA 

corresponds to the genomic sequence of S2 cells and some Oregon R fly stocks, 

but bears 9 polymorphic differences from the FlyBase reference genome. A His6 

tag was added to the amino-terminus of Dicer-1 to facilitate purification. Similarly, 

a cDNA encoding full-length Drosophila Loqs-PB (Förstemann et al., 2005) was 

inserted into pFastBac1 with an N-terminal His6 tag. His-Dicer-1 alone or together 

with His-Loqs-PB was expressed in Sf9 insect cells using the BAC-to-BAC 

Baculovirus Expression System (Invitrogen) and purified from cell lysates by 

successive chromatography using Ni-NTA agarose (QIAGEN), HiTrap Q (GE 

Healthcare, Pittsburgh, PA, USA), HiTrap Heparin (GE Healthcare), and 

Superdex 200 gel filtration. The final purified proteins were exchanged into 20 

mM HEPES-KOH (pH 8.0), 100 mM NaCl, and 1 mM tris(2-

carboxyethyl)phosphine hydrochloride. 

cDNAs encoding each Loqs isoform were generated by RT-PCR of fly 

total RNA and inserted in between the SalI and NotI restriction sites of a modified 

pCold I vector (Takara, Otsu, Shiga, Japan) containing the HRV3C protease 

recognition site. Amino-terminally His-tagged Loqs proteins were expressed in 

Rosetta2(DE3) Escherichia coli cells. The proteins were purified using Ni-
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Sepharose (GE Healthcare), followed by HRV3C protease cleavage to remove 

the His-tag, and then further purified using HiTrap SP and HiTrap Heparin (GE 

Healthcare). 

RNA Substrates 

Synthetic pre-let-7 (Dharmacon, Lafayette, CO, USA)( Sequence: 5ʹ′-UGA 

GGU AGU AGG UUG UAU AGU AGU AAU UAC ACA UCA UAC UAU ACA AUG UGC 

UAG CUU UCU-3ʹ′) were 5ʹ′ radiolabeled using γ-32P ATP (6000 Ci/mmol; Perkin 

Elmer) and T4 polynucleotide kinase (NEB, Ipswich, MA, USA). Synthetic 

Drosophila pre-let-7 was 5ʹ′ 32P-radiolabeled, gel purified, incubated at 65°C for 5 

min and then at 25°C for 30 min.  

In Vitro RNA Processing 

For multiple-turnover dicing reactions, 150 nM substrate was incubated 

with 2 nM recombinant Dicer-1 and Dicer-1/Loqs-PB. For single-turnover 

reactions, 1 nM RNA substrate was incubated with 8 nM Dicer. Dicing reactions 

contained 7.5 mM DTT, 3.3 mM magnesium acetate, 0.25% v/v glycerol, 100 mM 

potassium acetate, 18 mM HEPES-KOH (pH 7.4) and 15 mM creatine 

phosphate, 2.25 µg creatine kinase, and 1 mM ATP for +ATP reactions; 1 mM 

EDTA but no creatine kinase or creatine phosphate for –ATP and non-

hydrolyzable ATP analog reactions. One mM ATPαS, ATPγS, AMPcPP, or 

AMPPcP were used for ATP analog reactions. Reactions were assembled on ice 

and then pre-incubated at 25°C for 5 min before adding the RNA substrate 

(Haley et al., 2003). 
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Aliquots (1 µl) of reactions with radiolabeled RNA substrate were quenched by 

the addition of 25 volumes of  formamide loading buffer (98% v/v formamide, 

0.1% w/v bromophenol blue, 0.1% w/v xylene cyanol, 10 mM EDTA), incubated 5 

min at 95°C, and analyzed by electrophoresis through a denaturing 

polyacrylamide 7 M urea gel using 0.5× tris-borate-EDTA buffer (National 

Diagnostics, Atlanta, GA, USA). To resolve substrate from product a 15 % 

polyacrylamide/urea gel was used for pre-let-7. Gels were exposed to image 

plates and analyzed with an FLA-5000 instrument and ImageGauge 3.0 software 

(Fujifilm, Tokyo, Japan).  

Measuring ATP Hydrolysis 

To monitor ATP consumption by Dicer-1, α-32P-ATP (250 nM, 3000 

mmol/Ci; PerkinElmer, Waltham, MA, USA) was added. Reactions were 

quenched by adding a 25-fold excess of formamide loading dye, and samples 

were spotted onto 20 cm × 20 cm cellulose thin-layer glass plates (EMD, 

Darmstadt, Germany) 1.5 cm above the bottom and chromatographed in 0.75 M 

KH2PO4 (adjusted to pH 3.3 with H3PO4) until the solvent reached the top of the 

plate, and then the plate was dried and analyzed by phosphorimagery.  

Rate Analyses 

As described in the Material & Methods section of Chapter II.  
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CHAPTER IV: PRESENCE OF PIRNAS IN DROSOPHILA HEADS 
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Abstract 

Piwi-dependent small RNAs (piRNAs) are a distinct class of small RNAs 

differing from miRNAs and siRNAs in their biogenesis and function. piRNAs are 

discovered in animal germlines as a ~23-30nt small RNA family that function in 

repressing transposon expression. piRNA biogenesis and function are Dicer-

independent, and instead require Piwi family proteins. Despite their critical role in 

the germline, the function and presence piRNA-like RNAs in the somatic tissues 

has not been clearly established. Here, we investigated whether reads that have 

piRNA-like properties generated from Drosophila head small RNA sequencing 

libraries come from the germline as a contaminant or are soma-specific. The 

distribution of piRNAs from our previously published head libraries revealed a 

very strong correlation to that of germline piRNAs. However, piRNAs from 

manually dissected heads are distinct from germline piRNAs, strongly suggesting 

the presence of a distinct set of somatic piRNAs. We are currently investigating 

whether these distinct head piRNAs are dependent on the Piwi family proteins in 

a manner similar to germline piRNAs. 
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Introduction 

 piRNAs guide PIWI proteins to silence transposons in the germ line of 

animals (Cox et al. 2000; Aravin et al. 2001; Aravin et al. 2003; Grivna et al. 

2006; Brennecke et al. 2007; Batista et al. 2008; Das et al. 2008; Chamberyron 

et al. 2008; Desset et al. 2008). Unlike siRNAs and miRNAs, piRNA production 

does not require Dicer and likely involves only single-stranded precursor RNAs 

(Vagin et al. 2006; Girard et al. 2006; Saito et al. 2007; Kirino et al. 2007; Ohara 

et al. 2007; Brennecke et al. 2007; Batista et al. 2008). The biogenesis of piRNAs 

and their role in transposon silencing have been elucidated mainly from studies 

of Drosophila ovaries and testes (Aravin et al. 2001; Brennecke et al. 2007; Li et 

al. 2009). Drosophila gonads express three PIWI proteins: Piwi, Aubergine, and 

Ago3 (Ghildiyal et al. 2009; Cox et al. 1998; Cox et al. 2000; Harris et al. 2001; 

Vagin et al. 2006; Saito et al. 2006; Nishida et al. 2007; Yin et al. 2007; 

Klattenhoff et al. 2007; Desset et al. 2008; Malone et al. 2009). Piwi localizes to 

the nucleus in both the germline and the surrounding somatic follicle cells, and 

helps regulate differentiation and patterning of the germline nurse cells as well as 

the oocyte (Cox et al. 1998; Cox et al. 2000). Transposon derived piRNAs bound 

to Piwi silence transposon expression in the nucleus by a poorly understood 

mechanism.  

In contrast, Ago3 and Aub reside in the germ cell cytoplasm (Kotelnikov et 

al. 2009; Li et al. 2009). High throughput sequencing of piRNAs bound to Piwi, 

Aubergine, and Ago3 suggested a model called the “Ping-Pong” mechanism for 
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the production and subsequent amplification of piRNAs in response to 

transcription of the transposons they target. The Ping-Pong model proposes that 

Aubergine and Ago3 collaborate both to increase the abundance of piRNAs and 

to bias piRNAs toward the antisense strand (Brennecke et al. 2007; Gunawarde 

et al. 2007). The detailed mechanism by which Aubergine and Piwi acquire 

primary piRNAs is unknown, but recent results suggest that they derive from long 

RNAs transcribed from “piRNA clusters”. These regions of the genome are 

specifically transcribed in the gonads and are characterized by transposon-

richness, and a dearth of genes (Olivieri et al. 2010). The Ping-Pong model 

postulates that Aubergine, bound to an anti-sense primary piRNA pairs with the 

mRNA transcript of an active transposon, resulting in cleavage of the target and 

generation of a 3ʹ′ cleavage product bearing a 5ʹ′ monophosphate. The 5ʹ′ end of 

the 3ʹ′ cleavage fragment then becomes the 5ʹ′ end of a sense piRNA bound to 

Ago3. This “secondary piRNA” can then direct cleavage of a primary piRNA 

transcript derived from a piRNA cluster. The next step reverses this process. The 

Ago3:sense piRNA complex cleaves the long transcript from a piRNA cluster, 

generating antisense RNA fragments that bind to Aub. These fragments are 

envisioned to be trimmed to mature piRNAs (Brennecke et al. 2007; Gunawarde 

et al. 2007; Li et al. 2009).   

piRNAs are best known for their transposon repression function in the 

germline. Yet, they seem to be mapping to regions other than transposons and 

there is some preliminary evidence suggesting their presence in tissues other 
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than the germline. Of particular interest are piRNAs that were reported to map to 

coding genes (Robine et al. 2009; Saito, Inagaki et al. 2009).  Furthermore, 

methylated small RNAs longer than 23nt were detected in Drosophila heads in 

mutants defective of siRNA production, suggesting the presence piRNAs 

(Ghildiyal et al. 2008). Longer species of small RNAs have also been reported in 

somatic tissues (Yan et al. 2011; Morazzani et al. 2012). Furthermore, the RNAs 

from the Aplysia central nervous system have been shown to be methylated and 

are found in complex with Piwi. One such piRNA species is antisense to the 

promoter region of CREB2 and its expression is regulated by serotonin. This 

piRNA species derives from a serotonin dependent methylation of a conserved 

CpG island in the promoter region of CREB2, and promotes long term changes in 

neurons upon stimulation (Rajasethupathy et al. 2012).  

In Drosophila embryos, piRNA species have recently been proposed to 

bind  3ʹ′ untranslated region (UTR) and promote deadenylation of the mRNA 

encoding Nanos, a protein required for anterior-posterior patterning of the 

developing embryo (Rouget et al. 2010).  

In this work, we analyzed piRNA-like small RNAs reads derived from 

Drosophila heads. We analyzed the extent of contamination from the germline to 

understand whether they are soma specific or germline derived. Next, we 

optimized cloning of small RNAs from manually dissected Drosophila heads to 

minimize germline contamination. We observe a distinct population of methylated 
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piRNA-like species in manually dissected heads, and their distribution differs 

significantly from germline tissues.   
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Results 

piRNAs are observed in the absence of endo-siRNAs.  

Endogenous methylated siRNA reads (endo-siRNAs) were discovered in 

Drosophila heads by oxidation enriched small RNA cloning (Ghildiyal et al. 2008). 

Endogenous siRNAs were dependent on siRNA pathway genes Dicer-2, R2D2 

and Argonaute-2. Interestingly, in the absence of these genes, production of 

endo-siRNAs was abolished but longer transposon mapping reads were 

observed (Ghildiyal et al. 2008).  In that study, Drosophila heads were extracted 

by rigorously shaking flies frozen in liquid nitrogen in a two layer sieve allowing 

the entrapment of bodies on the upper sieve while the heads were trapped in the 

lower sieve. Although this method is a very time efficient way to extract a large 

number of Drosophila heads, the chance of contamination of the head samples 

with other parts of the body is high. Therefore, one cannot confidently claim that 

the observed longer piRNA-like reads were from the head tissue as opposed to 

germline contamination from the body.  

To explore this very important problem, we first undertook a bioinformatics 

approach. We used many small RNA sequencing datasets previously generated 

from Drosophila germline or heads. We specifically searched for the extent of 

similarity between the piRNA-like reads from the head and germline datasets 

(Figure 4.1, 4.1A, 4.1B).  

 

 



127

 



128

Figure 4.1. Summary of Sequencing Reads. (A) dcr2 or r2d2 homozygous 

mutations is sufficient to abolish the majority of 21nt small RNAs. Length 

distribution of genome mapped reads were shown as histograms. Three 

previously published small RNA head libraries from different genotype flies were 

used (left column: wildtype, center column: dcr-2, right column: r2d2; see 

Materials and Methods for details). First row depicts all unique genome mapping 

reads. The second row shows the length distribution for only transposon mapping 

reads. Blue and red bars annote sense and anti-sense directions, respectively.  
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Transposon mapping piRNAs suggest a high probability of contamination.  

piRNA reads from both head and germline datasets were mapped to the 

Drosophila melanogaster genome or transposons (see Methods for the full list of 

datasets and methods).  The number of piRNA reads mapping to each 

transposon family was compared (Figure 4.2A). The spearman and pearson 

correlations are shown in Table 4.1. Given the extremely high correlation 

between to two datasets, the most parsimonious explanation is a contamination 

from germline in the head datasets. The other but less likely possibility is that all 

transposons mapping piRNAs are expressed at the same level between 

Drosophila heads and germline. 
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Figure 4.2. Transposon Mapping piRNAs Suggest a High Probability of 

Contamination. (A) piRNA reads that mapped to each Drosophila transposon 

family were compared in the dcr2 mutant head and germline. For the germline 

piRNAs, the sum of reads from ovaries and testes for each transposon family 

was used. piRNA reads were normalized such that the total number of piRNA 

reads in the head and germline datasets are equal. (B) piRNA reads that mapped 

to Drosophila coding exons were grouped by transcripts. piRNAs from dcr2 

mutant heads were compared to germline (maximum number of piRNA reads 

from either ovaries or testes). Similar results were obtained from comparisons 

with ago2 and r2d2 mutant heads instead of dcr-2 (data not shown).   
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Table 4.1. Pearson and Spearman Correlations between Transposon 
Mapping piRNA Reads from Several Published Datasets. Correlation values 

were calculated by using normalized number of piRNAs mapping to each 

transposon family. 

 
 Comparison pair Pearson’s 

product-moment 
correlation 

Spearman's 
rank correlation 

dcr2Het heads/wt testis 0.81 0.94 
dcr2Het heads/wt ovary 0.55 0.80 
dcr2 heads/wt testis 0.86 0.95 
dcr2 heads/wt ovary 0.48 0.77 
ago2 heads/wt testis 0.44 0.55 
ago2 heads/wt ovary 0.74 0.74 
r2d2 Het heads/wt testis 0.27 0.80 
r2d2 Het heads t/wt ovary 0.40 0.80 
r2d2 heads/wt testis 0.71 0.88 
r2d2 heads/wt ovary 0.76 0.86 
wt testis/ wt ovary 0.20 0.72 
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Next, we mapped the piRNA-like reads from oxidized head libraries to the 

entire genome and plotted regions with mapped piRNAs as a histogram for each 

chromosome arm at a 1000 base resolution. Visual inspection of histograms for 

head versus ovary or testis datasets indicated a lower correlation for non-

transposon mapping regions. A careful examination showed that a significant 

proportion of piRNAs mapped to coding genes (data not shown).  

piRNAs map to coding genes 

To more systematically analyze protein-coding gene mapping piRNAs, 

genomic coordinates of coding transcripts were extracted from Flybase. Each 

transcript was further divided into exonic, and intronic regions as well as into 

5’UTR, CDS, and 3’UTR. We then matched the coordinates of genome mapping 

piRNA-like reads from each dataset to count the number of piRNA species 

mapping to 5´, 3´UTR or open reading frame. We analyzed raw read counts as 

well as read density for each given region. The density was measured as reads 

per kilobase per million reads (RPKM). However, we should note that as we don’t 

a priori expect the reads to tile the entire length of a transcript region, this length 

normalization might yield a biased estimator of piRNA abundance (Figure 4.3A).    

We found that more 3´UTR regions contained piRNAs on average in dcr2 mutant 

fly dataset compared to 5´UTR or open reading frame. piRNAs that map to the 

coding transcripts had a length distribution that is typical of piRNAs (23-30 nt). 

(Figure 4.3B).    Furthermore, 70% of gene-mapping piRNAs had U as the 5´ 
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most nucleotide and were more likely to be oriented in the same direction as the 

transcript.  

Gene mapping piRNAs abundance and gene expression correlate weakly.  

Next, we wanted to address was whether the observed piRNA-like reads 

are degradation products of mRNAs. Even though the characteristic U-bias and 

the enrichment of these reads in oxidation libraries argue against this bias, the 

predominantly sense orientation of these reads is suggestive of a degradation 

process. We predicted that if these piRNA-like reads are simply degradation 

products then the number of piRNA species for a given mRNA should be highly 

correlated to the corresponding mRNAs expression. To test this idea, we 

downloaded pre-normalized expression profiling data using Affymetrix 

microarrays from Flyatlas (Chintapalli VR et al. 2007, GEO accession number 

GSE7763). We extracted gene expression values from relevant tissues, namely 

ovary, testes and head.  

The number of piRNA species mapping to a particular transcript and the 

corresponding mRNA expression in the relevant tissue (head, ovary or testis) 

were compared. The correlation values were as follows (Table 4.2.). Transcripts 

enriched in piRNA species are not necessarily from the most highly expressed 

genes. This result is suggestive that observed gene-mapping piRNAs are not 

artifactual products resulting from degradation (Figure 4.4).   
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Figure 4.3 piRNAs are More Concentrated in the 3´UTR Region of Coding 

Transcripts. (A) A boxplot was used to compare piRNA reads mapping to 

5’UTR, coding region or 3´UTR in the sense or anti-sense direction. The width of 

the box is proportional to the number of datapoints shown with each box. Open 

circles denote data points that lie outside 1.5 times the interquartile range. The 

thick line in the box corresponds to the median of the distribution. The same 

boxplot was drawn using absolute read count (top) or read counts divided by the 

length of the corresponding region of the transcript (bottom) (B) Length 

distribution of gene mapping dcr-2 head piRNAs in the sense (blue) or anti-

sense(red) orientation was shown as before.  
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Table 4.2. Correlations between Transposon Mapping piRNA Reads from 
Several Published Datasets.  Number of piRNA reads that map to coding 

transcriptis and corresponding expression values in relevant tissues were 

compared.  

 

 

 

  

piRNA 
reads 

Flyatlas 
Expression 

value 

Pearson’s Product 
-Moment’s 
Correlation 

Spearman’s 
Rank 

correlation 

dcr2 ovary wt ovary 0.01 0.57 
wt testes wt testes 0.03 0.44 

dcr2 heads wt heads 0.03 0.58 
ago2 heads wt heads 0.04 0.47 
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Figure 4.4. Gene Mapping piRNA Abundance and Gene Expression 

Correlate Weakly. piRNAs (y axis) that mapped to coding transcripts from ago2 

mutant (top panel) and dcr2 mutant (bottom panel) head small RNA libraries 

were compared with Drosophila head expression values of corresponding 

transcripts from Flyatlas (see Methods). 
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Gene mapping piRNAs predominantly map to a small set of coding genes. 

The vast majority of genes do not have any transcripts with mapped 

piRNAs (Table 4.3). GO enrichment was done for the genes whose 3´UTR 

enriched for piRNA species. Among the enriched cellular processes for piRNA 

mapping genes are kinase activity, neural processes and phosphate metabolism 

(Table 4.4). Top 20 of transcripts with most 3´UTR exon mapped piRNA species, 

there are several with functions specific to nervous system (Table 4.5). These 

transcripts are likely to be important for neural functions. Images of examples of 

such transcripts with mapped piRNAs are shown in Table 4.3, 4.5 and Figure 4.5 

(visualization was rendered using the UCSC Genome Browser).  
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Figure 4.5. Representative coding genes with mapping piRNAs. 

Representative transcripts were visualized using UCSC genome browser (Kent 

et al. 2002, Fujita et al. 2010). (A) The coding gene region of hsc70 gene is 

shown in blue and piRNA reads from dcr2 mutant heads (user track) are shown 

in black. 3´UTR region of hsc70 is shown in more detail at the bottom revelaing 

that several different species of reads were mapping to the 3’UTR. (B) Gene 

regions of retinin, rfabg, CG4933, CG6770 genes are shown with mapping 

piRNA reads. (C) Gene regions of adh, adhr, CG17108, nplp2 are shown with 

mapping piRNA reads.  
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Table 4.3. Gene mapping piRNA are Concentrated in a Small Subset of Coding Transcripts. Number of 

piRNAs mapping to transcripts in either the same (sense) or reverse (anti-sense) orientation was shown. Each 

transcript is further divided into 5´, 3´ UTR and coding sequence. Only the top 35 transcripts with the highest 

number of total species were shown.  

dcr2 
Heads 

5´UTR 
  
  
  

CDS 
  
  
  

3´ UTR 
  
  
  

TOTAL 

  Sense 
species 

Sense 
reads 

Anti 
sense 
species 

Anti 
sense 
reads 

Sense 
species 

Sense 
reads 

Anti 
sense 
species 

Anti 
sense 
reads 

Sense 
species 

Sense 
reads 

Anti 
sense 
species 

Anti 
sense 
reads 

Species 

CG41580 0 0 0 0 1004 4051 4 15 0 0 0 0 1008 
CG33239 3 4 0 0 696 1103 2 2 36 50 0 0 737 
CG33241 3 4 0 0 696 1103 2 2 27 42 0 0 728 
CG33237 3 4 0 0 681 1084 2 2 37 52 0 0 723 
CG33245 3 4 0 0 674 1077 2 2 37 52 0 0 716 
CG33244 3 4 0 0 674 1077 2 2 37 52 0 0 716 
CG33236 0 0 0 0 674 1077 2 2 37 52 0 0 713 
CG33242 3 4 0 0 667 1061 2 2 37 52 0 0 709 
CG33247 3 4 0 0 660 1056 2 2 37 52 0 0 702 
CG33240 3 4 0 0 639 1022 1 1 37 52 0 0 680 
CG32616 0 0 0 0 677 1082 2 2 0 0 0 0 679 
CG33238 0 0 0 0 630 1013 2 2 17 21 0 0 649 
CG33243 3 4 0 0 614 990 1 1 17 21 0 0 635 
CG33246 3 4 0 0 576 923 2 2 37 52 0 0 618 
CG17461 0 0 0 0 0 0 0 0 565 1270 9 12 574 
CG42398 5 7 1 2 412 627 0 0 7 9 0 0 425 
CG32320 0 0 0 0 0 0 0 0 400 6416 2 2 402 
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CG11064 2 2 0 0 168 189 0 0 107 222 0 0 277 
CG40715 0 0 0 0 267 376 0 0 0 0 0 0 267 
CG34421 253 389 1 3 0 0 0 0 11 11 0 0 265 
CG32377 0 0 0 0 246 246 0 0 0 0 0 0 246 
CG40609 0 0 0 0 226 250 8 8 0 0 0 0 234 
CG41529 0 0 0 0 228 312 0 0 0 0 0 0 228 
CG5119 4 4 0 0 4 4 0 0 153 173 0 0 161 
CG12717 6 6 0 0 146 161 2 2 6 7 0 0 160 
CG4027 2 3 0 0 8 8 0 0 143 192 0 0 153 
CG17870 0 0 0 0 0 0 0 0 152 209 0 0 152 
CG41423 0 0 0 0 137 156 2 2 0 0 0 0 139 
CG33715 0 0 0 0 134 134 0 0 1 1 0 0 135 
CG33653 0 0 0 0 3 3 0 0 118 291 3 5 124 
CG34339 0 0 0 0 0 0 0 0 122 162 0 0 122 
CG3481 3 3 0 0 5 5 0 0 112 171 0 0 120 
CG32120 0 0 0 0 0 0 0 0 94 573 25 354 119 
CG9674 3 3 0 0 7 7 0 0 86 431 21 219 117 
CG40748 0 0 0 0 114 134 2 2 0 0 0 0 116 
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Table 4.4. Gene Ontology (GO) Enrichment of Transcripts with the Most 
Mapped piRNAs in dcr-2 Heads. GO enrichment was performed using 

FuncAssociate. Transcripts with at least 20 piRNA species in their 3´UTR exons 

was provided as a query set (Berriz et al. 2009).  

 
GO annotation Odds ratio adjusted P 

value 
metarhodopsin inactivation 316.5 0.009 

protein kinase CK2 complex 56.1 <0.001 

sex differentiation 40.3 0.001 

kinase regulator activity 13.8 <0.001 

protein kinase regulator activity 13.5 <0.001 

bristle morphogenesis 12.7 0.019 

cell morphogenesis involved in differentiation 10.6 0.02 

neuron differentiation 10.4 0.019 

regulation of kinase activity 10.2 <0.001 

regulation of protein kinase activity 10.2 <0.001 

regulation of transferase activity 10.2 <0.001 

ATP metabolic process 8.9 0.019 

regulation of protein phosphorylation 8.7 <0.001 
ATPase activity, coupled to transmemb. mov. of ions, 
phosphorylative mechanism 8.7 0.001 

ATPase activity, coupled to transmembrane movement of 
ions 7.8 0.002 

regulation of phosphorylation 7.7 <0.001 

regulation of phosphate metabolic process 7.0 <0.001 

regulation of phosphorus metabolic process 7.0 <0.001 

lipid particle 6.6 <0.001 

regulation of protein modification process 6.4 <0.001 

growth 6.1 <0.001 

learning or memory 5.9 0.012 

cognition 5.9 0.012 
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Table 4.5. Many transcripts with 3´UTR Mapping piRNAs have Neurological 
Function. Top 20 transcripts with the most 3’UTR mapped piRNA species are 

shown along with their functions. 7 out of 20 genes are likely to be involved in 

neurobiological processes (shown in red).  
 
Gene name GO annotation 
senseless axon guidance 
CG9674 glutamate biosynthetic process 
pathetic amino acid transmembrane transport, gro 
CG18854 inositol-1,4,5-trisphosphate 3-kinase activity 
dcaps neurotransmitter secretion 
CG9941 zinc ion binding 
dHCF histone H3 acetylation 
14-3-3ζ learning or memory 
CG8765 lateral inhibition 
CG14216 mRNA processing 
RfaBp smoothened signaling pathway 
raspberry axon guidance 
CG32850 zinc ion binding 
CG40228 cellular component 
unkempt compound eye development 
Atf6 regulation of transcription, DNA-dependent 
Tequila long-term memory 

Hr4 intracellular steroid hormone receptor signaling 

pathway 
Pdh oxidation-reduction process 
desat1 male mating behavior 
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Distribution of piRNA species from manually dissected male heads does 

not correlate with that of testis piRNA species.  

Given the high contamination risk from germline in previous head piRNA 

datasets, we decided to generate small RNA sequencing libraries from 

Drosophila heads using a different method. Instead of using the double sieve 

shaking technique described above, we first froze the flies in liquid nitrogen and 

manually dissected their heads on dry ice.  

Using 1000-2000 fly heads, we were able to isolate very minute amounts 

of methylated small RNAs. In fact, we were unable to see any visible RNA 

footprint after 15 cycles of PCR forcing us to increase the number of cycles to an 

undesirably high number of 25. The lack of sufficient starting material also 

manifested itself in the low complexity of the sequenced reads. Using stringent 

criteria for 5’ and 3’ adapter matching, we obtained a total of ~2.3M reads. 

However, the library complexity was very poor. We observed only 123K different 

species and ~33K out of these mapped to the genome. This poor complexity and 

minute amount of starting material suggests that sample preparation needs to be 

scaled up at least an order of magnitude (see Table 4.S1 for number of reads 

and species).  

Despite the limited size of this sequencing library and the issues with 

sample complexity, we next tried to address the issue of contamination. As an 

additional way to test for contamination, we utilized only male heads in this study. 

Nearly 50% of testis piRNAs map to a single locus called suppressor of stellate 
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(su(ste)), and these piRNAs are required for suppressing stellate elements in the 

germline. By contrast, in the manually dissected head dataset we observed that 

su(ste) mapping piRNAs are not abundant (Figure 4.6). The choice of male 

heads, thus, allowed us to estimate an upper bound on the level of contamination 

using the assumption of no su(ste) expression in heads. Using this assumption, 

the overall germline piRNA contamination in the manually dissected head dataset 

was shown to be  <1%. Using this upper bound for contamination, we cannot 

explain the presence of other piRNAs that map to somatic transposons such as 

gypsy that are more enriched in the heads compared to the germline.  

Altough gene mapping piRNAs were still detected in this manually 

dissected small datasets, due to small number of species the conclusions should 

be drawn with a larger scale manually dissected head library (Figure 4.7). 

These results strongly suggest that manually dissected heads is a good 

alternative way to avoid germline contamination. However, only a minute amount 

of material can be extracted from even 1000 heads. Therefore, an order of 

magnitude scale-up is needed for analysis. 
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Figure 4.6. piRNAs Isolated from Manually Dissected Male Heads do not 

Originate from Germline Contamination. (A) Length distribution of all small 

RNA reads (left), and that of transposon mapping small RNAs divided into sense 

(blue) and antisense (red) orientation from manually dissected male heads (right) 

were plotted as before. (B) piRNA reads from from manually dissected male 

heads were mapped to the Drosophila melanogaster transposons. The number 

of normalized piRNA reads mapping to each transposon family was shown as a 

scatter plot. Linear (left) and logarithmic (right) scale graphs were plotted.  
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Figure 4.7. Coding Region Mapping piRNAs are Found in Manually 

Dissected Head Small RNA Library. (A) Distribution of head piRNAs from 

manually dissected flies that map to each 5 ´UTR, coding region or 3´UTR in the 

sense or anti-sense direction were plotted as a boxplot. The width of the box is 

proportional to the number of datapoints shown with each box. Open circles 

denote data points that lie outside 1.5 times the interquartile range. The thick line 

in the box corresponds to the median of the distribution. (B) Length distribution of 

gene mapping head piRNAs in the sense (blue) or anti-sense(red) direction of 

the coding gene. (C) Nucleotide frequency plot of the gene mapping piRNA 

species. Nucleotides G and U are represented more frequently compared with C 

and A on the 5´most nucleotide.  
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Table 4.S1. Summary of Manually Dissected piwi Mutant, ago2 
Heterozygous Male Head Small RNA Library Reads.   
 
 Number of reads Number of species 

Inserts  2285582 123344 

Genome mapping  624897 32661 

miRNAs 47100 158 

piRNAs 262009 16756 
Transposon mapping 
piRNAs 98935 5825 

siRNAs 61637 3875 
Transposon mapping 
siRNAs 13479 692 

 
 
 
  



156

Discussion 

piRNA-like small RNAs have previously been reported in somatic tissues 

of several organisms. Yet, the specific biochemical and genetic properties of 

these RNAs have not been fully explored. For example, it is unclear whether 

these longer species are methylated or depend on piwi family proteins for their 

biogenesis. To overcome these limitations we utilize two strategies. First, we use 

Drosophila lines that have homozygous null mutations in piwi family proteins to 

test whether the longer species observed in the head are dependent on the piwi 

family proteins.  Second, we use an oxidation procedure that specifically enriches 

for methylated small RNA species during small RNA sequencing library 

preparation. This approach is well suited for resolving the question of piRNA 

presence in Drosophila heads. 

With this work, we attempted to characterize the sequence landscape of 

somatic piRNAs in detail. In addition to previously well characterized, transposon 

mapping piRNAs, we observed a clear signature of piRNAs that map to 

intergenic and coding regions of the genome. An important question is whether 

gene mapping piRNAs result merely from unspecific degradation of coding 

mRNAs?  Given that these reads are enriched in oxidized libraries, their 3´ end 

are very likely methylated. This modification argues against these products to be 

unspecific degradation product. Yet, it would be important to detecting these 

piRNAs on northern blot after oxidation followed by β elimination as a more direct 

way to test their methylation.   
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Another key question to address is how gene mapping piRNAs are made. 

These piRNAs are likely to be produced by RNA polymerase II, which also is 

responsible for synthesizing protein-coding mRNAs. Then, what differentiates 

whether a transcript will be a mature mRNA or get processed into piRNAs? To 

answer this question the first step would be to test whether piRNAs are 

processed from the protein-coding mRNAs or they are independently transcribed. 

One speculative idea is the presence of chromatin associated factors that mark 

certain transcripts for processing by the piRNA machinery.  

Finally, the function of somatic piRNAs especially those that map to 

protein-coding mRNAs need to be explored. Are these piRNAs function in a 

similar silencing role as the germline specific transposons mapping piRNAs?  To 

address this question, genome-wide expression profiling of piwi mutant 

Drosophila heads could be used. However, it should be noted that isolation of 

pure samples from Drosphila without any contamination is very time consuming. 

Therefore, other model organisms that are amenable to genetic alternations 

might be preferred for studying this problem.  
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Materials and methods 

Small RNA cloning and sequencing 

 Small RNA cloning was performed as described before with the same set of 

5´and 3´adapters  (Li et al. 2009). Briefly, 2-4 day flies were frozen with liquid 

nitrogen and their heads were manually dissected. Between 1000-2000 fly heads 

were used for generating one sequencing library. In addition to the previously 

described methods, we depleted 2S rRNA using biotinylated antisense oligos 

that were subsequently removed using 2.5mg of Dynabeads MyOne 

strepteavidin C1 beads (Invitrogen, Carlsbad, CA, USA). Beads were washed 3 

times in B&W buffer (5 mM Tris-HCl(pH 7.5), 0.5 mM EDTA,1M NaCl) and 2 

times in Solution A(0.1 M NaOH, 50 mM NaCl), and resuspended in 600 µl 0.5X 

SSC buffer before incubation with the RNA sample. A DNA oligo complementary 

to Drosophila 2S rRNA was added to a final concentration of 125 nM. After 

incubation of the reaction for 30 min, heat denatured RNA sample (80 oC for 5 

min) was added to the reaction. The reaction was incubated at 50 oC for 1 hr. 

Supernatant and magnetic beads were separated with a magnet and the RNA 

from the supernatant was ethanol precipitated. For oxidation of 2S rRNA 

depleted small RNAs, RNA was incubated with 25 mM NaIO4 in 60 mM borax, 

60 mM boric acid, pH 8.6, for 30 min at 25oC. RNA was similarly extracted by 

ethanol precipitation.  
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Genome mapping of small RNA reads 

 Perfect matching 5´and 3 ´ linkers were selected and removed to identify 

insert sequences. Extracted raw inserts were mapped to the Drosophila genome 

using pre-compiled Bowtie index for D. melanogaster, Flybase, r5.22 (Langmead 

et al. 2009; McQuilton,et al. 2012 ). For the mapping, one mismatch was allowed 

and only the best match was reported using Bowtie parameters <a --best --strata 

-v 1>. Only unique mapping reads were reported using bowtie parameter <k 1>. 

To identify 5´UTR, coding region and 3´UTR mapping reads, exon sequences 

were extracted from Flybase using Galaxy website (Goecks et al. 2010; 

Blankenberg et al. 2010; Giardine et al. 2005). Separate Bowtie indexes were 

prepared from 5´UTR, coding region and 3´UTR exonic regions using bowtie-

build function. In case of multiple isoforms for a given Flybase gene id, only the 

longest isoform was selected to simplify quantification of mapped piRNA reads.  

To identify and annotate transposon mapping reads, Drosophila melanogaster 

transposon sequences were downloaded from Berkeley Drosophila genome 

project and a bowtie index was built as described above. The alignment 

parameters were the same with the following exception. In addition to unique 

mapping reads, piRNAs mapping to multiple location were used after dividing the 

number of reads to the number of mapped locations.   

Published datasets used for the analyses 

 dcr-2, ago-2 and r2d2 mutant fly head small RNA datasets (Ghildiyal et al. 

2008), wild type testis and ovary small RNA datasets (Li et al. 2009), dcr-2 
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mutant ovary small RNA datasets (Czech et al. 2008) were used for the analyses 

presented throughout the paper.  

Graphs and statistical analysis  

 R software were used for all statistical tests, graphs and correlation 

analyses. 

Frequency analysis  

 Frequency plots were generated using randomly selected 10 000 

sequences by using a sequence logo generator, weblogo (Crooks et al. 2004; 

Schneider et al. 1990).  

Gene expression analysis  

For gene expression analysis tab de-limited pre-normalized data from 

Affymetrix arrays was used (Chintapalli VR et al. 2007, GEO accession number 

GSE7763).  

GO enrichment analysis  

Genes with more than 20 mapped piRNA species were used for GO 

enrichment analysis. Genes were ranked by the number of species and analyzed 

using the “ordered mode” in FuncAssociate software (Berriz et al. 2009).  
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CHAPTER V: FINAL SUMMARY AND CONCLUSIONS 
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The first part of my thesis focused on the function of Drosophila Dicers; 

mechanism of substrate specificity and the function of the helicase domain.  

Genetic studies suggested that Dicer-1 and Dicer-2 are restricted to 

specific substrate classes in vivo. Dicer-2 mutants are defective for RNAi, even 

though they express normal levels of Dicer-1. However, Dicer-2 cannot replace 

Dicer-1 in the miRNA pathway (Lee et al. 2004). It was unclear how Dicers 

specifically recognize their structurally similar substrates. Given that Dicer-2 

processes esiRNA hairpins RNAs while Dicer-1 cleaves pre-miRNAs, suggests 

that the length of a dsRNA is the primary determinant of substrate choice by the 

two Drosophila Dicer enzymes.   

 We found that R2D2 and phosphate are two key factors that confer 

Dicer-2 specificity to longer dsRNA substrates. An intracellular ion, phosphate, 

inhibits Dicer-2 from processing only short substrates but not longer substrates. 

In the presence of R2D2 and inorganic phosphate Dicer-2 became specific to 

longer siRNA precursors. Furthermore, in the presence of ATP, R2D2 and Loqs-

PD, Dicer-2 becomes more specific to its long dsRNA substrate with a KM of  ~2 

nM compared to ~8 nM when Dicer-2 is alone. 

Similarly, ATP and dsRNA binding partners channel Dicer-1 to its 

biologically appropriate substrate class. To our knowledge, the use of a 

nucleotide cofactor to ensure biologically appropriate substrate specificity in an 

RNA silencing pathway is without precedent. Loqs-PB increases pre-miRNA 

processing efficiency by Dicer-1, potentially by increasing its affinity for substrate. 



164

To understand the role of ATP in Dicer-1 function, the first experiment was 

to test whether Dicer-1 binds ATP and measure the affinity of ATP binding. We 

could not detect any ATP hydrolysis by Dicer-1, but we did not test whether 

Dicer-1 binds ATP. Future work could test whether ATP binding affects substrate 

binding. A Dicer-1 mutant that can bind to its substrate but cannot process them 

can be utilized. Another question is whether other molecules such as ADP, AMP 

or other ATP analogs have effects similar to ATP. The efficieny of dicing and 

effects on Dicer-1’s KM for pre-miRNAs should be identified.  

We do not yet know if the transition of substrates from Dicer-1 to Dicer-2 is 

gradual such that some substrates are processed equally well by each enzyme. 

It is also unclear whether there are any biologically relevant precursor RNAs that 

are cleaved by both Dicer-1 and Dicer-2. One speculative possibility is that 

evolution has selected against such dual substrates, ensuring the production of 

precise small RNA products.  

Future work could explore processing of substrates as a function of length. 

Is there a certain length of RNA where Dicer-1 processing is inhibited or is there 

a gradual of effect of length on Dicer-1’s affinity? Similarly, our results suggested 

that ATP dependency of Dicer-2 is length dependent, and there is likely a cutoff 

length at which ATP becomes necessary for Dicer-2 activity. Future work needs 

to clearly identify this length by testing varying lengths of double stranded RNA 

substrates. Another related question is the role of R2D2 and phosphate as a 

function of substrate length. We know that short hairpins such as pre-miRNAs 
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are not processed by Dicer-2 in the presence of phosphate and R2D2. Yet, it is 

unclear whether Dicer-1 or Dicer-2 or both process intermediate length hairpin 

substrates such as long pre-miRNA hairpins or short endogenous siRNA 

precursor hairpins.  

My thesis also explored the ATPase/helicase domain scaffold of Dicers. 

This domain is widely conserved among plants and animals, including in 

humans. Yet, the detailed analysis of its function remains unexplored. One 

possibility is that the helicase domains provide Dicers with the ability to interact 

with proteins in other pathways. In Drosophila, the Dicer-2 ATPase/helicase 

domain interacts with components of the innate immunity pathway, promoting an 

immune response upon entry of an RNA virus into a cell (Wang et al., 2006; 

Deddouche et al., 2008). Our data suggest that ATP binding or hydrolysis 

catalyzed by ATPase/helicase domains may also enhance the catalytic function 

of Dicers.  

Two different conformations of Dicer-2 might be formed. One for dicing of 

long dsRNA and one for loading siRNAs into RNA induced silencing complex. 

We observed that in the absence of phosphate ion and R2D2, Dicer-2 cleaved 

short dsRNAs without the requiring ATP. In the presence of phosphate R2D2 and 

ATP, Dicer-2 might be in a specific conformation where it specifically binds to 

long dsRNA. It would be interesting to test whether Dicer-2 changes 

conformation upon ATP binding/hydrolysis and binding of R2D2 and phosphate. 

Different conformations of Dicer-2 might affect the RNA substrate binding and 
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this could be tested by footprinting Dicer-2–dsRNA complexes in the presence of 

ATP, phosphate and R2D2.  

 We don’t know the exact mechanism of phosphate inhibition of pre-

miRNA processing by Dicer-2. Does the phosphate ion directly bind Dicer-2? Is it 

the same domain –PAZ– that binds to the 5´and 3´end of the RNA substrate? 

From preliminary studies, phosphate seems to mainly increase KM . Therefore, 

the inhibition may be competitive. Phosphate might be binding to the same site 

as the substrate and inhibit its binding. This could tested by using an RNAse III 

mutant Dicer, which can bind to dsRNA substrate but cannot process it. 

Specifically, gel shift dsRNA binding assays could be performed and dissociation 

constant (KD) of dsRNA binding by RNAseIII mutant Dicer-2 could be calculated 

at different phosphate concentrations.  

 Understanding the function of Dicer’s helicase domain is not only 

important for the miRNA/siRNA field, but also for the helicase field. Our work is 

one of the few mechanistic studies on RIG-I like helicases and translocation 

along double-stranded RNAs. A previous study utilized single-molecule 

translocation assays and detected directional movement of human RIG-I along 

dsRNA (REF). Our study was focused on the coupling of ATPase function to the 

translocation of Dicer-2 along dsRNA.  

We discovered that Drosophila Dicer-2 is a double-stranded RNA induced 

ATPase. ATP hydrolysis was required for Dicer-2’s processivity. We found that 

Dicer-2 hydrolyzed ~1 molecule of ATP was per base-pair of processed long 
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dsRNA. ATP seems to be required for Dicer-2’s processivity suggesting that 

Dicer-2 does not release its substrate or any intermediate before fully processing 

the substrate into siRNAs in ATP’s presence.  For Drosophila, this might be 

advantageous during viral infections, as the viral nucleic acids will be efficiently 

processed into siRNAs. Given that neither viral dsRNA precursors nor 

endogenous dsRNA precursors are abundant, energetic cost of ATP hydrolysis 

could be offset by the advantage of increased efficiency and specificity. The 

helicase domain doesn’t make Dicer-2 specific to longer substrates, yet ATP 

dependent mode of dicing is only active in the presence of long substrates. 

Interestingly, Dicer-2 did not hydrolyze as much ATP when processing dsRNAs 

shorter than 40 base-pairs compared to longer substrates. 

We propose an inchworm model of translocation along dsRNA by Dicer-2 

(Pyle 2008). To test whether Dicer-2 moves along dsRNA, traps along the double 

stranded RNA could be introduced such as stretches of deoxyribonucleic acid, 

mismatches or hairpins on one of the strands. Effects of these traps to siRNA 

production by Dicer-2 could be measured. Alternatively, single molecule assays 

could be performed to measure Dicer-2 translocation along double stranded 

RNA.  

Our dilution experiment suggested that ATP is not only required for 

translocation along long dsRNA but also enhances binding to the substrate. 

Directly measuring the effect of ATP on dsRNA substrate binding of Dicer-2 

should be measured by binding assays with RNAse III mutant Dicer-2.  
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ATP dependent processing of siRNAs might not be conserved in 

mammals since published work established that human Dicer function is ATP 

independent (Ma et al., 2008). Alternatively, ATP dependent function or 

hydrolysis might be dependent on the presence of additional factors such as 

TRBP or PACT, two RNA binding partner proteins of human Dicer.  It is crucial to 

test the effect of ATP, phosphate or partner proteins on human Dicer.  

 While the first part of my thesis elucidated how Drosophila Dicers 

process siRNA and miRNA precursors, is the second part focused on piRNAs. IT 

is unknown what marks primary piRNA precursors for processing into mature 

piRNAs. We know that primary piRNAs are loaded to Piwi, and the primary 

piRNA percursors are processed into smaller fragments by a nuclease.  

 Similarly, piRNAs function is still poorly understood. Role of piRNAs in 

DNA methylation and interaction of Piwi with histone proteins such as HP1a were 

reported (Brower-Toland et al., 2007; Watanabe et al., 2011) yet we still lack a 

mechanistic understanding of piRNA function. Repression of transposon activity 

by piRNAs is well known, but their mechanism of action is not clear.  They might 

destabilize transposon transcripts or they might alter DNA methylation or 

chromatin structure.  

 In addition to the well-established role of piRNAs in transposon 

repression of transposons in the germline (Cox et al. 2000; Aravin et al. 2001; 

Aravin et al. 2003; Grivna et al. 2006; Brennecke et al. 2007; Batista et al. 2008; 

Das et al. 2008; Chamberyron et al. 2008; Desset et al. 2008), recent studies 
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elucidated germline independent functions of piRNAs in Drosophila embryos and 

Aplysia central nervous system (Rouget et al. 2010, Rajasethupathy et al. 2012).  

Although the presence of piRNAs in somatic tissues in Drosophila and mammals 

has been reported, the functions of these somatic piRNAs remain unknown (Yan 

et al. 2011; Morazzani et al. 2012).  

 Our study elucidated the presence of piRNAs mapping to the coding 

genes, especially to their 3’ untranslated regions (3’UTRs). A few of these 3´UTR 

mapping piRNAs overlap with polyadenylation cleaveage signal sequences. It is 

tempting to speculate that these to be involved in polyadenylation site selection. 

Future studies should test whether mutations in piRNA genes alter mRNA 

profiles of somatic tissues.  
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SUMMARY

Drosophila Dicer-2 generates small interfering RNAs
(siRNAs) from long double-stranded RNA (dsRNA),
whereas Dicer-1 produces microRNAs (miRNAs)
frompre-miRNA.Whatmakes the twoDicers specific
for their biological substrates? We find that purified
Dicer-2 can efficiently cleave pre-miRNA, but that
inorganic phosphate and the Dicer-2 partner protein
R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains
C-terminal RNase III domains that mediate RNA
cleavage and an N-terminal helicase motif, whose
function is unclear. We show that Dicer-2 is a
dsRNA-stimulated ATPase that hydrolyzes ATP to
ADP; ATP hydrolysis is required for Dicer-2 to
process long dsRNA, but not pre-miRNA. Wild-type
Dicer-2, but not amutant defective in ATP hydrolysis,
can generate siRNAs faster than it can dissociate
from a long dsRNA substrate. We propose that
the Dicer-2 helicase domain uses ATP to generate
many siRNAs from a single molecule of dsRNA
before dissociating from its substrate.

INTRODUCTION

In Drosophila melanogaster, distinct pathways produce 21 nt

small interfering RNAs (siRNAs) and �22 nt microRNAs

(miRNAs). The RNase III enzyme Drosha, aided by its partner

protein, Pasha, cleaves primary miRNAs to release pre-miRNAs,

�70 nt long stem-loop structures that contain a mature miRNA

within their stems (Lee et al., 2003; Denli et al., 2004; Gregory

et al., 2004; Han et al., 2004, 2006). The pre-miRNA is then

cleaved by Dicer-1, acting with its double-stranded RNA

(dsRNA)-binding domain (dsRBD) protein partner, Loquacious-

PB (Loqs-PB), to liberate a duplex comprising themature miRNA

bound to its miRNA*, a partially complementary small RNA

derived from the opposite arm of the pre-miRNA stem (Förste-

mann et al., 2005; Jiang et al., 2005; Saito et al., 2005; Ye

et al., 2007). Mature miRNAs can derive from either the 50 or 30

arm of the pre-miRNA stem.

In contrast to miRNAs, Drosophila siRNAs are generated by

Dicer-2 (Lee et al., 2004), which forms a stable complex with

the dsRNA-binding protein R2D2 (Liu et al., 2003). In vitro,

Dicer-2 can produce siRNAs in the absence of R2D2, but

both Dicer-2 and R2D2 are required to load siRNAs into

Ago2 (Liu et al., 2003, 2006; Tomari et al., 2004, 2007; Pham

and Sontheimer, 2005). Exogenous siRNAs derive from long

dsRNA molecules that are generated experimentally, from viral

RNA genomes or intermediates of replication, whereas endo-

siRNAs derive from convergent transcription of mRNAs or

from RNA from mobile genetic elements (Yang and Kazazian,

2006; Czech et al., 2008; Ghildiyal et al., 2008; Kawamura

et al., 2008; Okamura et al., 2008a, 2008b; Tam et al., 2008;

Watanabe et al., 2008). A special class of endogenous siRNAs,

hp-esiRNAs, derive from partially self-complementary hairpin

transcripts. Production of esiRNAs by Dicer-2 requires an alter-

native partner protein, Loqs-PD. This Loqs isoform contains only

two of the three dsRBDs found in the Dicer-1 partner protein,

Loqs-PB (Okamura et al., 2008b; Hartig et al., 2009; Zhou

et al., 2009; Miyoshi et al., 2010; Hartig and Förstemann, 2011).

Dicer-1 and Dicer-2 each contain two RNase III domains,

which form an intramolecular heterodimer whose dimer interface

creates two active sites (Zhang et al., 2004; Macrae et al., 2006;

Ye et al., 2007). Like other members of the Dicer family, Dicer-1

and Dicer-2 each contain a C-terminal dsRBD and a central PAZ

domain, an RNA-binding motif specialized to recognize the two-

nucleotide, 30 single-stranded tails of Drosha and Dicer products

(Bass, 2000; Cerutti et al., 2000; Lingel et al., 2003, 2004; Song

et al., 2003; Yan et al., 2003; Ma et al., 2004; Zhang et al.,

2004; Gan et al., 2006; Macrae et al., 2006; MacRae et al.,

2007). The structure of Giardia intestinalis Dicer and functional

studies using human Dicer suggest that the distance between

the PAZ domain and the active sites of the RNase III domains

establishes the length of the small RNA product (Zhang et al.,

2004; Gan et al., 2006; Macrae et al., 2006; MacRae et al.,

2007; Takeshita et al., 2007).

Differences in the domain architecture of Dicer-1 and Dicer-2

(Figure S1A) are unlikely to explain their distinct substrate spec-

ificities. Drosophila Dicer-2 shares its domain architecture—

including N-terminal DExDc, Helicase C, PAZ, RNase IIIa, RNase

IIIb, and dsRBD domains—with human Dicer, which produces

both siRNAs and miRNAs. In contrast, Dicer-1 lacks a DExDc
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domain, yet has a Helicase C domain. DExDc/H and DEAD box

domains are found in a wide range of RNA ‘‘helicases,’’ proteins

that couple ATP hydrolysis to RNA binding or unwinding (Pyle,

2008). In addition to unwinding nucleic acids, helicase domains

can couple ATP hydrolysis to translocation along nucleic acid

molecules, rearrange RNA:protein or protein:protein interac-

tions, or act as RNA chaperones (Bianco and Kowalczykowski,

2000; Beran et al., 2006; Bowers et al., 2006; Dumont et al.,

2006; Halls et al., 2007; Pyle, 2008; Franks et al., 2010).

In Drosophila, Caenorhabditis elegans, and Schizosaccharo-

myces pombe, siRNA production from long dsRNAs requires

ATP (Zamore et al., 2000; Bernstein et al., 2001; Ketting et al.,

2001; Nykänen et al., 2001; Colmenares et al., 2007). Moreover,

apointmutation (G31R) in theDrosophilaDicer-2helicasedomain

blocks siRNA production in vivo, although the protein retains the

ability to collaborate with R2D2 to load synthetic siRNAs (Lee

et al., 2004; Pham et al., 2004) and highly paired miRNA/miRNA*

duplexes (Förstemann et al., 2007) into Ago2. In contrast, amuta-

tion predicted to inhibit nucleotide binding by the human Dicer

helicase domain does not affect dicing (Zhang et al., 2002).

What restricts a given Dicer to a specific dsRNA substrate?

We find that purified, recombinant Dicer-2 can cleave pre-

miRNA, but that R2D2 inhibits processing of pre-miRNA by

Dicer-2, while promoting use of its biologically relevant substrate

by reducing the KM of Dicer-2 for long dsRNA. Moreover, phys-

iological concentrations of inorganic phosphate block pre-

miRNA processing by Dicer-2, but do not inhibit processing of

long dsRNA by Dicer-2 or pre-miRNA processing by Dicer-1.

Thus, the characteristic specificity of Dicer-2 for long dsRNA is

not intrinsic to the enzyme, but rather emerges in the presence

of inorganic phosphate and R2D2. We also find that Dicer-2 is

a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP

hydrolysis is required for Dicer-2 to process long dsRNA, but

not pre-miRNA. Wild-type Dicer-2, but not a mutant defective

in ATP hydrolysis, can generate siRNAs faster than it dissociates

from its long dsRNA substrate. We envision that the Dicer-2 heli-

case domain uses ATP to drive the movement of Dicer-2 along

dsRNA, enabling it to generate many siRNAs from a single mole-

cule of substrate before dissociating from the dsRNA.

RESULTS

Dicer-2 Processes Pre-miRNA Inaccurately
In vivo, Dicer-1 but not Dicer-2 is required to produce miRNAs

from the stems of pre-miRNA. Surprisingly, purified, recombi-

nant Dicer-2 cleaved pre-miRNA (Figure 1). However, the size

of the miRNA and miRNA* products generated by Dicer-2

differed from those produced by Dicer-1: the predominant

Dicer-2 product was one nucleotide shorter than that produced

by Dicer-1. For miRNAs residing on the 50 arm of their pre-

miRNA, such a difference in size would not alter the miRNA

seed sequence, but could promote their inappropriate loading

into Argonaute2, which favors 21 nt RNAs, rather than Argo-

naute1, which prefers 22-mers (Ameres et al., 2011). For the

�60% of D. melanogaster miRNAs derived from the 30 arm of

their pre-miRNA, the seed sequence of the Dicer-2 product

would differ from the authentic miRNA and would therefore regu-

late a repertoire of mRNAs different from that controlled by the

authenticmiRNA. The biological consequences of suchmisregu-

lation are predicted to be dramatic, suggesting that processing

of pre-miRNA by Dicer-2 is suppressed in vivo.

Dicer-1 Does Not Efficiently Process Long dsRNA
In the absence of Dicer-2, flies do not accumulate siRNAs (Lee

et al., 2004; Ghildiyal et al., 2008; Okamura et al., 2008a,

2008b; Czech et al., 2008). Why does Dicer-1 not make

siRNAs in the absence of Dicer-2, especially since immunopuri-

fied Dicer-1 has been reported to dice long dsRNA (Saito et al.,

2005)? Loqs-PB has been proposed to prevent Dicer-1 frompro-

cessing long dsRNA, restricting it to the miRNA pathway (Saito

et al., 2005). However, we find that Dicer-1 is unable to catalyze

multiple-turnover cleavage of long dsRNA (data not shown). In

fact, 225 nM Dicer-1 was approximately as active at siRNA

production from 25 nM long dsRNA as 5.4 nM Dicer-2. Unlike

Dicer-2, Dicer-1 generated intermediates when processing

long dsRNA (Figure S1B). Our data argue against Loqs-PB

restricting Dicer-1 to the miRNA pathway. Instead, they suggest

that the fundamental block to Dicer-1 processing long dsRNA is

its inherent inefficiency in using this substrate.

R2D2 Inhibits Dicing of Pre-miRNA by Dicer-2
We compared the rate of pre-let-7 processing by Dicer-2 alone

to the rate of purified Dicer-2/R2D2 heterodimer, Dicer-2

supplemented with equimolar Loqs-PD, and Dicer-2/R2D2

heterodimer supplemented with Loqs-PD. R2D2 significantly

inhibited pre-let-7 processing by Dicer-2 when either enzyme

(data not shown) or substrate was in excess (Figure 2A) (p value

for excess substrate = 0.0009). Similar inhibition of Dcr-2 pro-

cessing by R2D2 was observed for a 25 bp RNA duplex (Fig-

ure S2A), suggesting that R2D2 suppresses processing of short,

Figure 1. Dicer 1 and Dicer 2 Produce Different Products

from Pre let 7

Synthetic, 50 monophosphorylated pre let 7 (1.0 mM) was incubated with

Dicer 1 (6.0 nM) or Dicer 2 (16.2 nM) for 1 hr. Products were resolved by elec

trophoresis. let 7 and let 7* were detected by northern hybridization.

Molecular Cell

Phosphate and R2D2 Restrict Dicer-2 to Long dsRNA

Molecular Cell 42, 172–184, April 22, 2011 ª2011 Elsevier Inc. 173



A

B

E

D

C

Figure 2. R2D2 and Phosphate Inhibit Dicer 2 Processing of Short Substrates

(A) let 7 production was monitored using 50 32P radiolabeled pre let 7 (100 nM) with or without ATP for Dicer 2 alone (8 nM), Dicer 2/R2D2 (8 nM), Dicer 2 +

Loqs PD (8 nM + 8 nM), or Dicer 2/R2D2 + Loqs PD (8 nM + 8 nM).

(B) Processing of internally 32P radiolabeled long dsRNA or 50 32P radiolabeled pre let 7 (100 nM) by Dicer 2 (8 nM). CK, creatine kinase; CP, creatine phosphate.

(C) Initial velocities for the processing of 100 nMpre let 7 or long dsRNA (106 bp blunt ended or 104 bpwith 2 nt, 30 overhanging ends) by 8 nMDicer 2 or Dicer 2/

R2D2 in the presence of increasing concentrations of potassium phosphate. Total potassium in the reaction was kept constant.

(D) Initial velocities for Dicer 2 processing pre let 7, 106 bp blunt ended dsRNA or 104 bp dsRNA with 2 nt, 30 overhanging ends in the presence of 25 mMpotas

sium phosphate, acetate, chloride, or glutamate.
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double-stranded substrates irrespective of the extent of comple-

mentarity or the presence of a loop. In contrast, we did not detect

any inhibition of pre-let-7 processing when Loqs-PD was added

to Dicer-2, even though the same preparation of Loqs-PD low-

ered the KM of Dicer-2 for long dsRNA 10-fold (Table 1). These

data suggest that, R2D2, but not Loqs-PD, helps suppress

pre-miRNA processing by Dicer-2 in vivo.

R2D2 and Loqs-PD Decrease the KM of Dicer-2
for Long dsRNA
Dicer-2 forms a stable heterodimer with R2D2 (Liu et al., 2003,

2006; Tomari et al., 2004), but it is unknown whether R2D2

modulates dicing rate. We measured the initial rate of dicing by

Dicer-2 alone or by the Dicer-2/R2D2 heterodimer using

increasing concentrations of long dsRNA substrate and satu-

rating ATP (1 mM). For both Dicer-2 and Dicer-2/R2D2, the

data fit well to the Michaelis-Menten kinetic scheme (Figure S5)

E+S4
k1

k 1

ES/
kcat

E+ 24P

where kcat is the rate of complete conversion of substrate into

siRNAs at saturating dsRNA concentration. The kcat of Dicer-

2/R2D2 processing a 515 bp dsRNA (0.03 ± 0.02 min�1) was

indistinguishable from that of Dicer-2 alone (0.03 ± 0.01 min�1)

(Table 1). In contrast, the KM for Dicer-2/R2D2 (2 ± 1 nM) was

less than that of Dicer-2 alone (6 ± 2 nM, p value = 0.04), suggest-

ing that R2D2 increases the affinity of Dicer-2 for long dsRNA

(Table 1). Similarly, supplementing Dicer-2 (2 nM) with purified

recombinant Loqs-PD (2 nM) did not alter the kcat but did

decrease KM (0.4 ± 0.1 nM, p value = 0.02), suggesting that

Loqs-PD also increases the affinity of Dicer-2 for long dsRNA

(Table 1).

Phosphate Inhibits Dicing of Pre-miRNA by Dicer-2
In flies, dicing of long dsRNA requires ATP (Nykänen et al., 2001).

Typically, creatine kinase (CK) and creatine phosphate (CP) are

included in dicing reactions to maintain high levels of ATP and

constant levels of free Mg2+. Relative to ATP alone, the inclusion

of CK and CP modestly enhanced Dicer-2 processing of both

a 106 bp dsRNA bearing a 50 monophosphorylated blunt end

(Figure 2B) and a 316 bp dsRNA bearing a 50 triphosphorylated,
2 nt, 50 overhang (Figure S2B), but did not enhance processing

of a 104 bp dsRNA with a 50 monophosphorylated, 2 nt, 30

overhang (Figure 2B). In contrast, standard ‘‘ATP’’ conditions

(+ATP, +CP, +CK) inhibited pre-let-7 processing by Dicer-2.

More detailed analyses revealed that CP sufficed to inhibit pre-

let-7 dicing.

CP can be hydrolyzed in water to creatine and phosphate. We

therefore tested whether inorganic phosphate inhibited pre-let-7

processing by Dicer-2. We measured the initial rate of process-

ing (v0) with increasing concentrations of potassium phosphate

(KH2PO4/K2H PO4, pH 7.4) for pre-let-7, a 106 bp blunt end

dsRNA, and a 104 bp dsRNA with 2 nt, 30 overhanging ends.

Physiological concentrations of phosphate (Burt et al., 1976;

Ereci�nska et al., 1977; Auesukaree et al., 2004) inhibited pro-

cessing of pre-let-7 but neither of the two dsRNAs (Figure 2C).

We observed little or no inhibition of pre-miRNA processing by

Dicer-2 with 25 mM acetate, chloride, or glutamate (Figure 2D).

Moreover, none of the anions—including phosphate—had

a significant effect on the dicing of long dsRNA. Phosphate

further inhibited the low level of pre-let-7 processing of

Dicer-2/R2D2 (Figure 2C) andDicer-2/R2D2 + Loqs-PD and sup-

pressed pre-let-7 processing by Dicer-2 + Loqs-PD (data not

shown). In contrast, processing of pre-let-7 by Dicer-1 was unaf-

fected by phosphate (Figure 2C). We conclude that under

physiological conditions—2–25 mM phosphate and a majority

of Dicer-2 complexed with R2D2—Dicer-2 is unlikely to use

pre-miRNA as a substrate.

ATP Hydrolysis and siRNA Production by Dicer-2
The Dicer-2 G31R point mutation, which lies in the protein’s

DExDc motif, uncouples Argonaute2 loading from dsRNA dicing

(Lee et al., 2004). The mutation is predicted to disrupt ATP

binding. Consistent with the requirement for ATP in siRNA

production by Dicer-2, dsRNA processing by purified recombi-

nant Dicer-2G31R was significantly less than wild-type Dicer-2

for substrateswith either blunt or 30 overhanging ends (Figure 2D)

(p value = 2.23 10�6 for blunt end substrate). While dsRNA pro-

cessing by wild-type Dicer-2 was strongly stimulated by ATP,

mutant Dicer-2G31R was not (Figure 2D). Nonetheless, Dicer-

2G31R cleaved pre-let-7 as efficiently as the wild-type enzyme,

consistent with the finding that ATP was not required for wild-

type Dicer-2 to cleave pre-let-7 (Figure 2A). Moreover, process-

ing of long dsRNA by wild-type Dicer-2 was inhibited by

(E) Processing of internally 32P radiolabeled long dsRNA or 50 32P radiolabeled pre let 7 substrate (100 nM) by wild type or G31R mutant Dicer 2 (8 nM)

with or without ATP or with ATPgS (1 mM). Values are mean ± standard deviation for three independent experiments.

Table 1. Michaelis-Menten Analysis of Dicer-2

KM (nM)

Change

in KM Vmax (nM min 1) [ET] (nM) kcat (min 1)

Change

in kcat kcat/KM (nM 1 min 1)

Change

in kcat/KM

Dicer 2 6 ± 2 1 0.07 ± 0.01 2 0.03 ± 0.01 1 0.005 ± 0.003 1

Dicer 2/R2D2 2 ± 1 0.3 0.09 ± 0.06 3 0.03 ± 0.02 1 0.02 ± 0.02 4

Dicer 2 + Loqs PD 0.4 ± 0.1 0.07 0.06 ± 0.02 2 0.03 ± 0.01 1 0.08 ± 0.03 10

Dicer 2, Dicer 2/R2D2, or Dicer 2 supplemented with equimolar Loqs PD was incubated with a 515 bp dsRNA and saturating ATP (1 mM) ATP. The

initial rates of converting dsRNA into siRNA for increasing amounts of substrate were measured and fit to the Michaelis Menten equation (Figure S5).

The table reports mean ± standard deviation for three trials.
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Figure 3. Dicer 2 Requires ATP Hydrolysis to Process Long dsRNA

(A) Dicer 2 (10.8 nM) was incubated with 2.5 mM [a 32P]ATP and 150 nM 515 bp dsRNA, and ATP hydrolysis was monitored by thin layer chromatography.

(B) siRNA production by Dicer 2 (5.4 nM) from a 515 bp dsRNA (25 nM) was monitored with or without ATP or ATPgS (1 mM).

(C) ATP hydrolysis by Dicer 2 (5.4 nM) was monitored for 120 nt long nucleic acid substrates (20 nM): dsRNA, single stranded RNA, single stranded DNA, RNA/

DNA heteroduplex, or double stranded DNA in the presence of ATP (1 mM).
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adenosine 50-O-(3-thio)triphosphate (ATPgS), but processing of

pre-let-7 was not (Figure 2D).

In agreement with ATPgS inhibiting dsRNA processing, Dicer-

2 hydrolyzed ATP to ADP (Figure 3A). Both ATP and ATPaS sup-

ported the production of siRNA from long dsRNA, but ATPgS did

not (Figure 3B). In the presence of 1 mM ATP, the rate of dicing

long dsRNA declined exponentially with increasing ATPgS, sug-

gesting that ATPgS competes with ATP for binding to Dicer-2

and that, once bound, ATPgS is not efficiently hydrolyzed, pre-

venting the production of siRNAs from long dsRNA.

Dicer-2 Is a dsRNA-Stimulated ATPase
ATP hydrolysis by Dicer-2 increased when dsRNA was added

(Figure 3C) (p value = 0.024, Wilcoxon rank-sum test). The inclu-

sion of 120 nt single-stranded RNA or DNA or 120 bp DNA/RNA

heteroduplex or double-stranded DNA stimulated ATP hydro-

lysis less than the 120 bp dsRNA (all 20 nM) (Figure 3C). A

25 nt single-stranded RNA or DNA, a 21 bp dsRNA, and a

21 bp DNA/RNA heteroduplex all failed to stimulate the Dicer-2

ATPase activity above the rate observed when no substrate

was present (Figure S3B). Neither the end structure of the

dsRNA—blunt versus 30 overhang—nor the presence of a 50

monophosphate (v0
50 PO4 = 0.4 ± 0.1 mM min�1 versus v0

50 OH

0.3 ± 0.1 mM min�1) significantly changed the ATP hydrolysis

rate (Figure 3D).

ATP hydrolysis by Dicer-2 does not require dsRNA cleavage.

A Dicer-2 mutant, D1217,1615N, in which a key aspartate

in each of the two RNase III domain active sites was

changed to asparagine, retained significant dsRNA-stimulated

ATPase activity (p value = 0.02) (Figure 3E). Under multiple-

turnover conditions, Dicer-2D1217,1615N was essentially inactive

for dicing, and siRNA production was detected only when

[Dicer-2D1217,1615N] >> [substrate] (data not shown). In contrast,

Dicer-2G31R, which also does not support multiple-turnover

dicing of long dsRNA, did not hydrolyze ATP in the presence of

dsRNA (Figure 3E). We conclude that the Dicer-2 helicase

domain is responsible for the enzyme’s dsRNA-stimulated

ATPase activity.

ATP Consumption and Dicing Are Coupled
We measured the initial rates of siRNA production and ATP

hydrolysis using a 515 bp dsRNA in the presence of increasing

concentrations of ATP. The dependence on ATP concentration

of both siRNA production and ATP hydrolysis fit well to the

Michaelis-Menten kinetic scheme (Figure 3F). When both

substrate and ATP were saturating (i.e., R10 3 KM), the kcat for

ATP hydrolysis was 93 ± 14 min�1, whereas the kcat for siRNA

production was 4 ± 1 min�1, as inferred from the kcat for the

complete conversion of a molecule of substrate into siRNA.

These values predict that 23 ± 8molecules of ATP are hydrolyzed

for each 21 nt siRNA formed (Figure 3F and Table 2). Such a high

rate of ATP hydrolysis for each siRNA produced might suggest

that ATP energy and siRNA production are poorly coupled. Alter-

natively, ATP might be hydrolyzed to power translocation of

Dicer-2 along the dsRNA, with approximately one ATP molecule

consumed for each base pair traversed, a rate similar to DNAand

RNA translocases containing ATPase/helicase domains (Bianco

and Kowalczykowski, 2000; Patel and Donmez, 2006; Seidel

et al., 2008). Consistent with this idea, the rate of ATP consump-

tion was essentially unchanged for different substrate lengths

when the molar concentration of base pairs was kept constant

(Pearson correlation, r = 0.98) (Figures 3G and S3B).

Evidence that Dicer-2 Is Processive
If ATP fuels the translocation of Dicer-2 along dsRNA, dicing

should produce successive siRNAs along the substrate. In the

presence of ATP, Dicer-2 would be predicted to produce the first

siRNA—i.e., the terminal siRNA—at roughly the same rate as

subsequent, internal siRNAs. In contrast, in the absence of

ATP, the rate of production of siRNA should decline as its

distance from the 50 end increases. To test these predictions,

we synthesized three identical 120 nt dsRNA substrates, each

bearing a single 32P radiolabel at position 16, 35, or 104 from

the 50 end of one strand (Figure 4A). All substrates contained

two deoxynucleotides at one end, forcing Dicer-2 to initiate

processing from the opposite end (Figure S4A) (Rose et al.,

2005). We used this ‘‘one-ended’’ substrate to examine the

(D) ATP hydrolysis by Dicer 2 (5.4 nM) in the presence of ATP (1mM) wasmeasured for 20 nMdsRNA bearing a 50 monophosphate and a 2 nt, 30 overhang or blunt

ends (left) or a blunt ended dsRNA bearing either 50 monophosphate or 50 hydroxy termini (right).

(E) ATP hydrolysis by mutant Dicer 2D1217,1614N (3.3 nM), Dicer 2G31R (2 nM), and wild type Dicer 2 (2 nM) was measured in the absence or presence of 20 nM

dsRNA bearing 50 monophosphate, blunt ends.

(F) Left panel: Initial rates for the conversion of substrate into siRNA by Dicer 2 (2.7 nM) for an internally 32P radiolabeled 515 bp dsRNA (150 nM) were measured

at increasing concentrations of ATP. Right panel: Initial rates for the hydrolysis of ATP to ADP by Dicer 2 in the presence of 150 nM 515 bp dsRNAweremeasured

for increasing ATP concentrations. The data were fit to the Michaelis Menten equation. Table 2 reports the Michaelis Menten parameters.

(G) ATP consumption by Dicer 2 was measured in the presence of ATP (350 mM) and dsRNA substrates with blunt, 50 triphosphorylated termini for six different

lengths: 40 bp (420 nM), 60 bp (280 nM), 106 bp (158 nM), 208 bp (80.5 nM), 345 bp (49 nM), and 558 bp (30 nM). Substrate concentrations were selected to ensure

an equal number of base pairs in each reaction. Values are mean ± standard deviation for three independent experiments.

Table 2. Michaelis-Menten Analysis of Dicer-2 Incubated with a 515 bp dsRNA and ATP

KM (nM) Vmax (nM min 1) [ET] (nM) kcat (min 1) kcat/KM (nM 1 min 1)

Substrate consumed 6 ± 2 0.2 ± 0.1 1.2 0.2 ± 0.1 0.03 ± 0.02

siRNA produced 6 ± 2 5 ± 2 1.2 4 ± 1 0.7 ± 0.4

ATP hydrolyzed 14,000 ± 4,000 460 ± 70 5 93 ± 14 0.007 ± 0.002

The initial rates of converting dsRNA into siRNA for increasing amounts of substrate were measured at saturating ATP (1 mM), and the initial rates of

hydrolysis of ATP to ADPweremeasured at saturating dsRNA (150 nM) for increasing amounts of ATP. The table reports mean ± standard deviation for

four trials. Different preparations of Dicer 2 were used here and in Table 1.
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Figure 4. Evidence that Dicer 2 Is Processive
(A) Site specifically 32P radiolabeled 120 bp dsRNAs were used to measure the rate of production of the first, second, and fourth siRNAs from the all RNA end of

the substrate; the 30 end of the sense strand contained two deoxynucleotides (red) to block entry of Dicer 2 from the other end (Figure S4A). Production of siRNA

was monitored in the presence or absence of ATP using 100 nM dsRNA and 5.4 nM Dicer 2. Values correspond to the mean ± standard deviation from three

independent experiments. The data were fit to a single exponential function. In (A) and (B), pink denotes the position of the 32P radiolabel.

(B) The rate of production of the initial siRNA was measured as in (A) but using a site specifically 32P radiolabeled dsRNA with either a blunt (black) or a 2 nt,

30 overhanging (red) end in the presence or absence of ATP.

(C) The rate of production of the initial siRNAwasmonitored using 100 nMDicer 2 and 10 nM dsRNA bearing either a blunt (left) or a 2 nt 30 overhanging (right) end

in the presence or absence of ATP or ATPgS.

(D) The rate of production of the initial siRNA from a 120 bp blunt ended dsRNA (10 nM) was measured using 100 nM mutant Dicer 2G31R.

(E) The rate of production of the first and fourth siRNAs from a 120 bp blunt ended dsRNA (100 nM) was measured using 100 nM Dicer 2G31R. Values are mean ±

standard deviation for three independent experiments.
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production of the first, second, or fourth siRNA (see Experi-

mental Procedures) in the presence or absence of ATP (Fig-

ure 4A). With 1 mM ATP, the initial rates for the production of

the first, second, and fourth siRNAs were essentially indistin-

guishable (�28 nM min�1); with no ATP, the rate for the first

siRNA (1.4 ± 0.3 nM min�1) was greater than that of the second

(0.9 ± 0.1 nM min�1), which was greater than the rate for the

fourth siRNA (0.2 ± 0.1 nM min�1) (Figure 4A).

We can envision two explanations consistent with these

results and previous studies on Dicer enzymes: either ATP fuels

processive dicing of long dsRNA, or dicing of long dsRNA in the

presence of ATP comprises a slow initial binding step to the end

of the substrate, followed by rapid but ATP-dependent produc-

tion of subsequent siRNAs. Such a two-step process might

occur if the rate of production of the first siRNA was slowed by

the blunt structure of the substrate; the first dicing event would

convert the substrate end to a 2 nt, 30 overhang bearing a 50

monophosphate, with all subsequent siRNAs produced rapidly.

To test this idea, we prepared a substrate bearing one blocked

end and a 2 nt, 30 overhang bearing a 50 monophosphate at the

other end (Figure S4B). The rates of first siRNA production

from both blunt and 30-overhanging end substrates were indis-

tinguishable when the reactions contained ATP—conditions

where dicing was efficient. They were also similar when ATP

was omitted—when dicing was slow (Figure 4B). The subse-

quent siRNAs were also produced at similar rates from the two

different substrates (Figure S4B). Thus, we favor the hypothesis

that ATP converts Dicer-2 from an inefficient, distributive

enzyme into a processive enzyme.

Surprisingly, ATP also enhanced the production of the terminal

siRNA from long dsRNA under single-turnover conditions

([Dicer-2] >> [dsRNA]); the enhancement by ATPgS was consid-

erably weaker (Figure 4C). This suggests that ATP hydrolysis is

required for the production of even the first siRNA. ATP was

required irrespective of the terminal structure of the dsRNA

(blunt versus 30 overhang), excluding a role for ATP in the binding

of Dicer-2 to a particular type of dsRNA end.

Moreover, when the [enzyme] > [dsRNA], helicase mutant

Dicer-2G31R produced the first siRNA at similar rates in the pres-

ence or absence of either ATP or ATPgS (Figures 4D and S4C).

For Dicer-2G31R, the rate of production of the terminal siRNA

was faster than that of the fourth siRNA, consistent with the

idea that ATP hydrolysis converts Dicer-2 from a distributive to

a processive enzyme (Figure 4E).

Dicer-2 Produces siRNAs without Dissociating
from the dsRNA
A processive enzyme can act multiple times on its substrate

before dissociating. Thus, catalysis by processive enzymes

resists dilution (Rivera and Blackburn, 2004). To test whether

Dicer-2 remains physically associated with the long dsRNA after

three subsequent dicing events, we used the 120 nt, site-specif-

ically 32P-radiolabeled dsRNA to monitor the rate of production

of the fourth siRNA following dilution (Figure 4A). The dsRNA

substrate (200 fmol) was first preincubated with Dicer-2

(54 fmol) for 2 min at 4�C to allow the enzyme to bind substrate.

During this preincubation step, no siRNA was detected (data not

shown). Next, the reaction was diluted 1000-fold into buffer

prewarmed to 25�C. The diluted reaction was incubated at

25�C, and production of the fourth siRNA was measured over

time (Figure 5A). During the preincubation, the substrate concen-

tration (20 nM) was >3-fold greater than the KM of Dicer-2 for long

dsRNA; after dilution, the substrate concentration was �300

times less than the KM. For both the preincubation and the dilu-

tion steps, the dsRNA substrate was present at �4-fold higher

concentration than Dicer-2. When the preincubation was

omitted, little fourth siRNA was produced (Figure 5B), demon-

strating that the conditions largely prevented reassociation of

Dicer-2 with dsRNA once it dissociated from the substrate.

When ATP was included in both the preincubation and the

dilution buffer, 54 fmol of Dicer-2 produced 10 fmol of fourth

siRNA in 1 hr. About half as much fourth siRNA was produced

when ATP was present in the dilution buffer but omitted from

the preincubation. When ATP was omitted from the dilution

buffer, essentially no fourth siRNA was produced, regardless of

whether ATP was present during the preincubation, suggesting

that ATP dissociates rapidly from Dicer-2. More fourth siRNA

was made when ATP was present in both the preincubation

A

B

Figure 5. Dicer 2 Remains Associated with Its Substrate in the

Presence of ATP

(A) Design of the experiment. The reaction contained 54 fmol Dicer 2 and

200 fmol dsRNA, corresponding to 5.4 nM enzyme and 20 nM dsRNA before

dilution.

(B) The rate of production of the fourth siRNA was measured for six different

combinations of preincubation (no preincubation, without ATP, and with

ATP) and dilution (without andwith ATP). Values aremean ± standard deviation

for three independent experiments.
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and dilution buffers than when preincubation was carried out in

the absence of ATP (p value = 0.015). We conclude that the initial

binding of Dicer-2 to the end of long dsRNA is enhanced by ATP

and that in the presence of ATP, Dicer-2 remains associated with

the dsRNA. We propose that the stably bound Dicer-2 then

cleaves successive siRNAs along the dsRNA (Figure 6).

DISCUSSION

Purified Dicer-1 and Dicer-2 both process pre-miRNAs, but

generate products of different length (22 versus 21 nt). Genetic

analyses suggest that Dicer-1 and Dicer-2 are restricted to

specific substrate classes in vivo (Lee et al., 2004). For example,

Dicer-2 cannot replace Dicer-1 in the miRNA pathway. Similarly,

Figure 6. A Model for Drosophila Dicer 2

dicer-2 mutants are defective for RNAi,

even though they express normal levels

of Dicer-1 (Lee et al., 2004). Despite

structural similarities, Dicer-2 specifically

processes esiRNA hairpins, while Dicer-1

cleaves pre-miRNAs (Lee et al., 2004;

Förstemann et al., 2005; Jiang et al.,

2005; Saito et al., 2005; Miyoshi et al.,

2010). This observation suggests that

the length of a dsRNA is the primary

determinant of substrate choice.

Our data argue that the combination of

R2D2 and cellular phosphate restricts

Dicer-2 to its biologically relevant

substrates by inhibiting the processing

of short substrates such as pre-miRNA.

Thus, a protein, R2D2, and a small mole-

cule, phosphate, convert a promiscuous

dsRNA endonuclease into one specific

for the long dsRNA substrates that trigger

RNAi (Figure 6). It is tempting to speculate

that inorganic phosphate interferes with

recognition of the 50 monophosphate

present on all pre-miRNAs and that 50

phosphate recognition is unnecessary

for longer substrates, because their

greater length allows additional protein-

RNA contacts—perhaps by the dsRNA-

binding and the helicase domains—

between Dicer-2 and long dsRNA. We

note that human Dicer has been reported

to recognize a 50 monophosphate on

single-stranded RNA (Kini and Walton,

2007).

In flies, the Dicer-2 partner proteins

Loqs-PD and R2D2 likely enhance

substrate specificity by increasing the

affinity of the enzyme for long dsRNA.

The kcat for Dicer-2 and Dicer-2/R2D2

were similar, but R2D2 decreased the

KM of Dicer-2 for long dsRNA (Table 1 and Figure S5). We note

that the specificity constant, kcat/KM, was �4 fold higher for the

Dicer-2/R2D2 heterodimer than for Dicer-2 alone. Similarly,

Loqs-PD lowered the KM of Dicer-2 for long dsRNA without

reducing thecatalytic rate, resulting in an�10-foldhigher kcat/KM.

Processing of pre-miRNA by Dicer-1 was unaffected by phos-

phate. We find that the intrinsic properties of Dicer-1, which

cannot efficiently catalyze multiple-turnover processing of long

dsRNA, restrict that enzyme to process pre-miRNA. We do not

yet know whether the transition of substrates from Dicer-1 to

Dicer-2 is gradual, such that some substrates are processed

equally well by both enzymes. In theory, such intermediate

substrates might be selected against in evolution, enforcing

the distinction between Dicer-1 and Dicer-2 substrates.
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The Dicer-2 helicase domain is similar to that of RIG-I, a

sensor in the mammalian innate immune system. The RIG-like

ATPase/helicase domain is conserved among plant and animal

Dicers. Yet its function has remained unknown. Our data suggest

that this domain of Dicer-2 is involved in ATP-dependent

production of successive siRNAs from long dsRNA. Notably,

two other members of this helicase family, DRH-3 and RIG-I,

are also bona fide ATPases: DRH-3, a C. elegans protein

required for RNA silencing and germline development (Naka-

mura et al., 2007), is a dsRNA-stimulated ATPase (Matranga

and Pyle, 2010), and the mammalian protein RIG-I, which

recognizes viral 50 triphosphorylated dsRNA and initiates an

innate immune response, uses ATP to translocate along dsRNA

(Myong et al., 2009). Our data are consistent with the idea

that ATP hydrolysis fuels translocation of Dicer-2 along long

dsRNA substrates. An alternative view—that the ATP-dependent

binding of a molecule of Dicer at the end of the substrate

promotes the complete and rapid oligomerization of Dicer-2

along the entire extent of the dsRNA—would require that the

Dicer and RIG-I helicase domains share a conserved sequence

but have highly divergent functions.

ATP was not required for Dicer-2 to process pre-miRNA, and

a mutant Dicer-2 unable to hydrolyze ATP remained able to

process pre-miRNA but not long dsRNA. These results help

explain why in C. elegans, in which a single Dicer processes

both long dsRNA and pre-miRNA, a mutation in the DCR-1 heli-

case domain disrupted endo-siRNA, but not miRNA, accumula-

tion (Welker et al., 2010).

Four lines of evidence support a role for ATP hydrolysis in the-

production of successive siRNAs along the dsRNA by Dicer-2.

First, Dicer-2 consumes a constant amount of ATP per base

pair. Second, �23 molecules of ATP were consumed for each

21 nt siRNA produced. Third, the rate of production of the first,

second, and fourth siRNAs from a long dsRNA substrate were

indistinguishable in the presence of ATP, but in the absence of

ATP, the rate of siRNA production declined with increasing

distance from the end of the dsRNA. Finally, the association of

Dicer-2 with a long dsRNA was resistant to dilution provided

ATP was present, suggesting that after binding the end of its

substrate, Dicer-2 remains bound to the dsRNA and uses ATP

energy to reposition itself to produce the next 21 bp siRNA.

Translocation along the dsRNA seems a likely mechanism.

Although helicase mutant Dicer-2G31R processed pre-miRNAs

as efficiently as wild-type Dicer-2, the mutant was unable to

produce even the terminal siRNA from a long RNA duplex under

multiple turnover conditions. This suggests an inherent ability of

the helicase domain of Dicer-2 to distinguish between long and

short substrates. We note that the helicase domain of human

Dicer autoinhibits processing of an RNA duplex, and its dsRNA-

binding protein partner TRBP, a homolog of R2D2 and Loqs,

relieves this inhibition (Ma et al., 2008; Chakravarthy et al.,

2010). We hypothesize that Drosophila Dicer-2 can occupy two

distinct conformations. When inorganic phosphate is low, Dicer-

2 assumes a conformation—perhaps similar to the autoinhibited

conformation of human Dicer—that can bind and load siRNA.

This conformation is unaffected by ATP and, we presume, is

involved in promiscuously processing pre-miRNA in vitro. When

inorganic phosphate is higher and the enzyme’s helicase and

dsRBDs engage its substrate, Dicer-2 assumes a conformation

that requires ATP for binding and hydrolysis to process dsRNA.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Expression and purification of His6 Dicer 2 or His6 Dicer 2 and His6 R2D2

in Sf21 cells was as described (Liu et al., 2003; Tomari et al., 2004). His6
Dicer 2G31R, His6 Dicer 2D1217,1614N, and His6 Dicer 1 were expressed in Sf9

insect cells using the BAC to BACBaculovirus Expression System (Invitrogen,

Carlsbad, CA) and purified from cell lysates by using Ni NTA agarose

(QIAGEN, Valencia, CA), HiTrap Q, HiTrap Heparin (GE Healthcare, Pitts

burgh), and Superdex 200 gel filtration. Loqs PDwas expressed in Escherichia

coli Rosetta2(DE3), isolated using Ni Sepharose (GE Healthcare), treated with

HRV3C protease cleavage to remove the His tag, and purified using HiTrap

SP and HiTrap Heparin. Proteins were exchanged into 20 mM HEPES KOH

(pH 8.0), 100 mM NaCl, 1 mM tris(2 carboxyethyl)phosphine hydrochloride.

Protein concentrations were determined by quantitative amino acid analysis

(Keck Biotechnology Resource Laboratory, New Haven, CT). Two different

preparations of recombinant Dicer 2 were used in this study. Preparation 1

was used for Table 1 and Figures 2, 3E, 4C, S2B, S3A, S3D, and S5. Prepara

tion 2 was used for Table 2 and Figures 1, 3A 3D, 3F, 3G, 4A, 4B, 5, S1, S2A,

S3B, S3C, and S4.

RNA Substrates

DsRNAs were prepared as described (Haley et al., 2003). PCR templates for

transcription of sense and antisense RNAs were generated from the EGFP

sequence of pN3 eGFP using primers listed in Table S1. Twenty five and

29 bp dsRNAs (Figures S2A, S3B, and S4A and Table S2)

were as previously described (Rose et al., 2005). Synthetic RNAs and synthetic

Drosophila pre let 7 (Dharmacon, Lafayette, CO) were 50 32P radiolabeled

using [g 32P]ATP (6000 Ci/mmol) (PerkinElmer, Waltham, MA) and T4 polynu

cleotide kinase (NEB, Ipswich, MA). After gel purification, RNA strands or pre

let 7were incubated at 65�C for 5min and then at 25�C for 30min. Site specif

ically radiolabeled 120 nt dsRNAs were prepared by DNA splinted ligation

(Tables S3 and S4) (Moore and Sharp, 1993; Moore and Query, 2000). To

monitor formation of the fourth siRNA in Figure 4B, we used a 120 nt substrate

in which the fifth siRNA (the last siRNA generated by Dicer 2 from this

substrate) was site specifically 32P radiolabeled. The fourth siRNA produced

corresponds to the sum of the two 32P radiolabeled cleavage products

produced when the dsRNA was cleaved to generate the fourth and fifth

siRNAs.

In Vitro RNA Processing

For Dcr 2 +Loqs PD, Loqs PD was first mixed with Dicer 2 or Dicer 2/R2D2

and incubated for 10min on ice, followed by 5min at room temperature. Dicing

reactions contained 7.5mMDTT, 3.3mMmagnesium acetate, 0.25% v/v glyc

erol, 100 mM potassium acetate, 18 mM HEPES KOH (pH 7.4), 15 mM CP,

2.25 mg CK, and 1 mM ATP; ATP reactions contained 1 mM EDTA but no

CK or CP; ATPgS reactions contained 1 mM ATPgS only. In Figures 2A 2D,

3, 4B 4E, 5, S3, and S4, +ATP reactions contained no CP or CK; +CP and +CK

reactions in Figures 2B and S2B contained 20 mM CP or 2.25 mg CK. Reac

tions were assembled on ice and preincubated at 25�C for 5min before adding

RNA. In Figure S4, dilution buffer contained 0.1% NP 40.

Aliquots (1 ml) of reactions with radiolabeled RNA substrate were quenched

by the addition of 25 volumes of formamide loading buffer (98% v/v form

amide, 0.1% w/v bromophenol blue and xylene cyanol, 10 mM EDTA), incu

bated for 5 min at 95�C and analyzed by electrophoresis through a denaturing

polyacrylamide 7 M urea gel using 0.53 Tris borate EDTA buffer (National

Diagnostics, Atlanta). In Figure 5, 200 ml aliquots from dilution reactions were

stopped with 300 mM sodium acetate and 25 mM EDTA, isopropanol precip

itated, and dissolved in formamide loading buffer before gel analysis. Gels

were exposed to image plates and analyzed with an FLA 5000 and Image

Gauge 3.0 software (Fujifilm, Tokyo). In Figure 1, let 7 and let 7* strands

were detected by northern hybridization with 50 32P radiolabeled DNA probes

(Table S1).
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ATP Hydrolysis

[a 32P]ATP (250 nM, 3000 mmol/Ci) (PerkinElmer) was used to monitor hydro

lysis. Reactions were stopped with a 25 vol formamide loading dye, spotted

onto 203 20 cm cellulose plates (EMD, Darmstadt, Germany), and chromato

graphed in 0.75 M KH2PO4 (adjusted to pH 3.3 with H3PO4) until the solvent

reached the top of the plate. The plate was dried and analyzed by phosphor

imagery. For Figure S3B, ATP hydrolysis was monitored using the ATP Biolu

minescent Assay Kit (Sigma, St. Louis). The reaction was stopped by diluting

the sample ten times in H2O and immediately flash freezing in liquid nitrogen.

Samples were stored at 80�C until they were measured. A standard curve

spanning at least 100 fold less than and greater than the experimental values

was used to determine ATP concentrations.

Rate Analyses

Substrate converted to siRNA versus time was fit to y = y0 + A(1 e kt), where

dy/dt = Ake kt. When t = 0, dy/dt = Ak (Lu and Fei, 2003). Data were fit to the

Michaelis Menten scheme using Visual Enzymics 2008 (Softzymics, Prince

ton, NJ) for Igor Pro 6.11 (WaveMetrics, Lake Oswego, OR). The rate of

substrate consumption was fit for each replicate separately, and two tailed,

two sample equal variance t test was used to compare rates (Excel, Microsoft,

Seattle). R 2.6.0 software was used for other statistical analyses.
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Figure S1, related to Figure 1. Dicer-1, but not Dicer-2, Generates 

Intermediates when Processing Long dsRNA 

(A) Domain Structures of Drosophila Dicer-1 and Dicer-2 and human Dicer. 

Domain structures were adapted from SMART protein domain database 

(Schultz et al., 1998; Ponting et al., 1999). The DExDc motif in these proteins has 

the sequence DECH. 

(B) 25 nM internally 32P-radiolabeled 515 bp dsRNA was incubated with either 

225 nM Dicer-1 or 5.4 nM Dicer-2. The top gel was run to visualize both the 

uncleaved substrate and the 21–22 bp siRNA products; the lower gel was run to 

resolve the intermediates (arrowheads) generated by Dicer-1. 
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Figure S2, related to Figure 2. R2D2 Inhibits Dicer-2 Processing of a 25 bp 

dsRNA Substrate and Creatine Phosphate Inhibits Dicer-2 Processing of a 

Long dsRNA Bearing 5  Triphosphate termini 

(A) siRNA production by Dcr-2 (5.4 nM) or Dcr-2/R2D2 heterodimer (12 nM) 

was measured for a 25 bp dsRNA (100 nM). Red indicates deoxynucleotides. 

(B) A 5  triphosphorylated 316 bp dsRNA (100 nM) bearing 2 nt 5  overhanging 

ends was incubated with Dicer-2 (8 nM) in the presence or absence of ATP, 

creating kinase (CK), or creatine phosphate (CP). Values are mean ± standard 

deviation for three independent experiments. 
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Figure S3, related to Figure 3. ATP Hydrolysis is Required for Efficient Long 
dsRNA Processing by Dicer-2 

(A) siRNA formation from 5  monophosphorylated, internally 32P-radiolabeled, 

blunt ended, 106 bp dsRNA was monitored in the presence of 1 mM ATP in the 

presence of increasing concentrations of ATP S. Initial rates of conversion of 

dsRNA to siRNA were plotted as a function of ATP S concentration. 

(B) ATP consumption was measured over time for a 40 bp (420 nM), 60 bp (280 

nM), 106 bp (158 nM), 208 bp (81 nM), 345 bp (49 nM), and a 558 bp (30 nM) 

dsRNA substrate. Initial rates (v0) were calculated from the fitted exponential 

curves and used in Figure 3F. 

(C) The hydrolysis of ATP to ADP was measured for Dicer-2 alone (5.4 nM) or 

with 25 nt single-stranded (ss) synthetic RNA, 25 nt synthetic ssDNA, 25 bp 

synthetic RNA or RNA-DNA duplex. ATP hydrolysis by Dicer-2 (5.4 nM) in the 

presence of a 515 bp dsRNA is shown in gray for reference. Substrate 

concentrations were chosen to achieve equivalent nt.mole.l-1: ssRNA and 
ssDNA, 4.4 µM; RNA and DNA-RNA duplex, 2.2 µM; and 515 bp dsRNA, 100 

nM. 

(D) The hydrolysis of ATP to ADP was measured for Dicer-2 (5 nM) with pre-

let-7 (5 µM) or with 558 bp dsRNA (100 nM) in the presence of 1 mM ATP. 

Values are mean ± standard deviation for three independent experiments. 
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Figure S4, related to Figure 4. The Rate of siRNA Production for Different 
dsRNA Termini: Two 5  Deoxynucleotides Block Entry of Dicer-2, but Blunt 
and 3  Overhanging Ends are Processed Similarly 

(A) Twenty-five and 29 bp dsRNA substrates (73 nM) containing two 2  

deoxycytidine nucleotides at the 3´ end were incubated with 5.4 nM Dicer-2, 

and total siRNA production measured at 45 min. For each substrate, the 5  

ribonucleotide of the 5  end or the end that contained 3  deoxynucleotides on 

the complementary strand was 32P-radiolabeled to allow measurement of 

siRNA production from that end alone. 

(B) Site-specifically 32P-radiolabeled 120 bp dsRNAs (100 nM) were incubated 

with Dicer-2 (5.4 nM) in the presence of 1 mM ATP to detect production of the 

first, second and fourth siRNAs as diagrammed here and in Figure 4A. Right, 

the substrate end where Dicer-2 enters was either blunt (top) or had a 2 nt 3  

overhang (bottom). 

(C) Production of the initial siRNA (i.e., the first siRNA) by Dicer-2G31R (100 nM) 

from a 118 bp dsRNA (10 nM) bearing a 2 nt 3  overhanging end was measured 

in the presence or absence of ATP or in the presence of ATP S (see also Figures 

4A and S4A). 

Panels (B) and (C) report mean ± standard deviation for three independent 

experiments. 
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Figure S5, related to Table 1. Michaelis-Menten analysis of Dicer-2, Dicer-2 + 
Loqs-PD, and Dicer-2/R2D2 using a 515 bp dsRNA substrate 

The initial rate (velocity) of substrate processing by 2 nM Dicer-2 , 3 nM Dicer-

2/R2D2, and 2 nM Dicer-2 + 2 nM Loqs-PD was measured for increasing 

concentrations of a 515 bp long dsRNA in the presence of 1 mM ATP. The data 

were fit to the Michaelis-Menten equation. Vmax corresponds to the rate of 

complete conversion of a molecule of substrate into 24 siRNAs at saturating 

dsRNA concentration. Values are mean ± standard deviation for three 

independent experiments. 
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Table S1. Synthetic DNA Oligonucleotides. m, 2 -O-methyl ribose. 

 

Forward primer for 515 bp product 
for sense RNA from pEGFP-N3 

5 -GCG TAA TAC GAC TCA CTA TAG GAC TCA GAT CTC GAG CTC AAG-3  

Reverse primer for 515 bp product 
for sense RNA from pEGFP-N3 

5 -GCT GTT GTA GTT GTA CTC CAG-3  

Forward primer for 515 bp product 
for antisense RNA from pEGFP-N3 

5 -GCG TAA TAC GAC TCA CTA TAG GCT GTT GTA GTT GTA CTC CAG-3  

Reverse primer for 515 bp product 
for antisense RNA from pEGFP-N3 

5 -GAC TCA GAT CTC GAG CTC AAG-3  

Forward primer for 316 bp product 
for sense RNA from pEGFP-N3 

5 -GCGTAATACGACTCACTATAGGGCCACAAGTTCAGCGTGTCC-3  

Reverse primer for 316 bp product 
for sense RNA from pEGFP-N3 

5 -TCGATGCCCTTCAGCTCG-3  

Forward primer for 316 bp product 
for antisense RNA from pEGFP-N3 

5 -GCGTAATACGACTCACTATAGTCGATGCCCTTCAGCTCG-3  

Reverse primer for 316 bp product 
for antisense RNA from pEGFP-N3 

5 -GCCACAAGTTCAGCGTGTCC-3  



let-7 probe 
for Northern hybridization 

5 -CTA TAC AAC CTA CTA CCT CAA-3  

let-7* probe 
for Northern hybridization 

5 -AAA GCT AGC ACA TTG TAT AGT-3  

Forward primer for 558, 345, 208, 106 
bp product 

for sense RNA from pEGFP-N3 (Figure 
3G) 

5 -TAA TAC GAC TCA CTA TAG GCA AGC TGA CCC TGA AGT TC-3  

Reverse primer for 558 bp product 
for sense RNA from pEGFP-N3 5 -mGmGT CAC GAA CTC CAG CAG GAC-3  

Forward primer for 558 bp product 
for anti-sense RNA from pEGFP-N3 

5 -TAA TAC GAC TCA CTA TAG GTC ACG AAC TCC AGC AGG AC-3  
 

Reverse primer for 558, 345, 208, 106 
bp product 

for anti-sense RNA from pEGFP-N3 
5 -mGmGC AAG CTG ACC CTG AAG TTC-3  

Reverse primer for 345 bp product 
for sense RNA from pEGFP-N3 5 -mGmGC CAT GAT ATA GAC GTT GTG-3  

Forward primer for 345 bp product 
for anti-sense RNA from pEGFP-N3 5 -TAA TAC GAC TCA CTA TAG GCC ATG ATA TAG ACG TTG TG-3  

Reverse primer for 208 bp product 
for sense RNA from pEGFP-N3 5 -mGmGG TCT TGT AGT TGC CGT CGT-3  



Forward primer for 208 bp product 
for anti-sense RNA from pEGFP-N3 5 -TAA TAC GAC TCA CTA TAG GGT CTT GTA GTT GCC GTC GT-3  

Reverse primer for 106 bp product 
for sense RNA from pEGFP-N3 5 -mGmGT AGC GGC TGA AGC ACT GCA-3  

Forward primer for 106 bp product 
for sense RNA from pEGFP-N3 (Figure 

2) 
5 -GCG TAA TAC GAC TCA CTA TAG GGC CAC AAG TTC AGC GTG TCC-3  

Reverse primer for 106 bp product 
for sense RNA from pEGFP-N3  

5 -mGmGG CCA GGG CAC GGG CAG CTT GCC G-3  

Forward primer for 106 bp product 
for anti-sense RNA (blunt end) from 

pEGFP-N3 (Figure 2) 
5 -mGmGG CCA CAA GTT CAG CGT GTC C-3  

Reverse primer for 106 bp product 
for anti-sense RNA (blunt end) from 

pEGFP-N3 (Figure 2) 
5 -GTA CTT AAT ACG ACT CAC TAT AGG GCC AGG GCA CGG GCA GCT TGC CG-3  

Forward primer for 104 bp product 
for anti-sense RNA (3 overhang) from 

pEGFP-N3 (Figure 2) 
5 -GTA CTT AAT ACG ACT CAC TAT AGC CAG GGC ACG GGC AGC TTG CCG-3  

Reverse primer for 104 bp product 
for sense RNA (3’overhang) from 

pEGFP-N3 (Figure 2) 
5’-mTmTG GGC CAC AAG TTC AGC GTG TCC-3’ 



Table S2. Synthetic RNA Oligonucleotides. d, deoxy ribose. 

25 nt sense RNA 

for 25 bp dsRNA 
5 -ACC CUG AAG UUC AUC UGC ACC ACdC dG-3  

27 nt anti-sense RNA 

for 25 bp dsRNA 
5 -CGG UGG UGC AGA UGA ACU UCA GGG UCA -3  

29 nt sense RNA 

for 29 bp dsRNA 
5 -ACC CUG AAG UUC AUC UGC ACC GUC CAC dCdG-3  

31 nt anti-sense RNA 

for 29 bp dsRNA 
5 -CGG UGG ACG GUG CAG AUG AAC UUC AGG GUC A-3  

pre-let 7 
5 -UGA GGU AGU AGG UUG UAU AGU AGU AAU UAC ACA UCA UAC UAU ACA AUG UGC UAG 

CUU UCU-3  



Table S3. DNA Templates for Transcription and DNA Splints for RNA Ligation, used in Figures 3 and 4. m, 2 -O-
methyl ribose. 

DNA template to transcribe 

antisense RNA strand in Figure 4 

5 -ACT CCT CAA CAA ATC ATA AAC TAC AAT ATA CAT CAA TAC GAC ATT 

ACC CTC ACA ATC AAT CAT ACA ACC ATC CCT AAA GAC CAA CAG CAC CCC 

ACG ATC AAG AAT AAG AAC TAT AAT CCC TAT AGT GAG TCG TAT TAC GC-3  

T7 RNAP promoter sequence annealed to 

the DNA template for transcription 
5 -GCG TAA TAC GAC TCA CTA TAG-3  

DNA splint for RNA ligation 

to generate sense strand in Figure 4 

5 -GGG ATT ATA GTT CTT ATT CTT GAT CGT GGG GTG CTG TTG GTC TTT 

AGG GAT GGT TGT ATG ATT GAT TGT GAG GGT AAT GTC GTA TTG ATG TAT 

ATT GTA GTT TAT GAT TTG TTG AGG AGT-3  

DNA template to transcribe 40 nt sense RNA 

in Figure 3G 

5 -mGGC TTC ATG TGG TCG GGG TAG CGG CTG AAG CAC TGC ACG CCT 

ATA GTG AGT CGT ATT ACG C-3  

DNA template to transcribe 40 nt anti-sense 

RNA in Figure 3G 

5 -mGGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CCT 

ATA GTG AGT CGT ATT ACG C-3  

DNA template to transcribe 60 nt sense RNA 

in Figure 3G 

5 -mGGT GAA CTT CAG GGT CAG CTT GCT TCA TGT GGT CGG GGT AGC 

GGC TGA AGC ACT GCA CGC CTA TAG TGA GTC GTA TTA CGC-3  

DNA template to transcribe 60 nt anti-sense 

RNA in Figure 3G 

5 -mGGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CAA 

GCT GAC CCT GAA GTT CAC CTA TAG TGA GTC GTA TTA CGC-3  



Table S4. Synthetic RNA Oligonucleotides Assembled by Splinted Ligation into Site-Specifically Labeled Sense-

Strand RNA and Used in Figure 4 and S5. 

RNA #1 5 -ACU CCU CAA CAA AUC A-3  

RNA #2 
5 -UAA ACU ACA AUA UAC AUC AAU ACG ACA UUA CCC UCA CAA UCA AUC AUA CAA CCA UCC CUA 

AAG ACC AAC AG CAC CCC A-3  

RNA #3 5 -CGA UCA AGA AUA AGA ACU AUA AUC dCdC-3  

RNA #4 5 -ACU CCU CAA CAA AUC AUA AAC UAC AAU AUA CAU CA-3  

RNA #5 5 -AUA CGA CAU UAC CCU CAC AAU CAA UCA UAC AAC CAU CCC UAA AGA CCA ACA GCA CCC CA-3  

RNA #6 5 -UCC UCA ACA AAU CA-3  

RNA #7 5 -UCC UCA ACA AAU CAU AAA CUA CAA UAU ACA UCA-3  
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Why did you move back to China? 
First of all, I feel extremely privileged 
to be educated and trained at the 
University of Minnesota. There are 
many superb scientists studying 
vision and brain imaging there. 
My collaboration with them led 
to some intriguing findings on 
visual adaptation, unconscious 
visual processing, and contextual 
modulation in early visual cortical 
areas. From them I learned not just 
experimental skills, but also various 
distinct perspectives on these same 
scientific questions. 

Career-wise, working in China is 
very attractive to me. Government 
research funds in China have been 
growing at an annual rate of more 
than 20%. Ample funding allows me 
to explore and carry out much larger 
and more risky projects. At Peking 
University, I have been enjoying 
working with the country’s most 
intelligent and hardworking students. 
In addition, I am a big ping-pong and 
soccer fan, and living in China gives 
me a lot more opportunity to enjoy 
these sports.

Tell us something about 
neuroscience in China? 
Neuroscience in China has a tradition 
of excellence. I would like to mention 
the founders of modern Chinese 
neuroscience — Robert Kho-Seng 
Lim, Te-Pei Feng and Hsiang-Tung 
Chang. Lim and Feng were members 
of the US National Academy 
of Sciences. Lim carried out 
pioneering work on the physiology of 
neuromuscular junction and synaptic 
plasticity. Interested readers might 
want to read a chapter published in 
the Annual Review of Neuroscience 
in 1988 (11, 1–12) about Lim’s career 
development and the early history 
of neuroscience in China. Chang 
was one of the pioneers of studying 
dendritic potentials and among 
the first to recognize the functional 
significance of dendrites in the 
central nervous system.

Neuroscience in China has grown 
steadily since the 1920s, and 
started to flourish in the 1990s. In 
1995, the Chinese Neuroscience 
Society was founded and it now has 
more than 2500 members. Major 
neuroscience research programs 
are located in the Chinese Academy 
of Sciences, Peking University, 
Fudan University, Beijing Normal 
University, University of Science 

and Technology of China, many 
medical universities and institutes, 
and many more places. Research 
areas include molecular, cellular 
and developmental neurobiology, 
systems and computational 
neuroscience, as well as cognitive 
and behavioral neuroscience. 
Chinese neuroscientists are making 
their contribution to the development 
of this field on a par with their 
peers in the international arena, 
as demonstrated by their frequent 
publications in almost all prestigious 
journals (including Current Biology).

And what about psychology in 
China? Psychology, on the other 
hand, took a slightly different turn.  
In 1917, the first psychology 
laboratory in China was set 
up at Peking University, under 
the guidance of the university 
president Yuen-Pei Tsai. Tsai 
studied psychology with Wilhelm 
Wundt when he was in Germany. 
Unfortunately, the development of 
psychology was suppressed for a 
long time, even halted during the 
Cultural Revolution from 1966 to 
1976. This is because psychology 
was criticized as a pseudo-science. 
In 1981, only four universities 
had a psychology department. 
Interestingly, the turning point for 
the development of psychology was 
also in the 1990s, almost in parallel 
with the time when neuroscience 
started to thrive. Up to now, 
there are more than two hundred 
psychology departments/institutes in 
China. Founded in 1921, the Chinese 
Psychological Society now has 
about 8000 members. Psychological 
research in China covers almost all 
basic and applied fields. Brain and 
cognitive science has been identified 
as one of the eight research frontiers 
by the central government in 2006 
and two national key laboratories 
have been set up targeting 
fundamental issues in this area. The 
rapid development of psychology 
(and neuroscience) in China is partly 
due to the nation’s economic boom 
and thus a rapid growth in research 
funds. I feel honored to live in this 
era and to experience the dramatic 
(positive) changes of science and 
research in China. 

Department of Psychology, Peking 
University, Beijing 100871, P.R. China.  
E-mail: ffang@pku.edu.cn 

Argonaute proteins

Elif Sarinay Cenik1  
and Phillip D. Zamore1,2

What are Argonaute proteins? 
Argonaute proteins form an 
evolutionarily conserved family  
whose members silence gene 
expression in pathways such as RNA 
interference (RNAi). Argonaute family 
proteins can be divided into AGO and 
PIWI proteins (Figure 1). Both types of 
Argonaute proteins bind 21–35 nt long 
small RNA guides whose sequence 
identifies the genes to be silenced. 
Argonaute–small-RNA complexes can 
repress the transcription of genes, 
target mRNAs for site-specific cleavage 
or general degradation, or block mRNA 
translation into protein. AGO proteins 
bind ~21 nt small interfering RNAs 
(siRNAs) and 21–23 nt microRNAs 
(miRNAs). Both siRNAs and miRNAs 
are cut from double-stranded RNA 
precursors by RNase III enzymes such 
as Dicer. AGO proteins are essential for 
development and differentiation, and in 
most plants and animals, defend cells 
against viral infection. In contrast, PIWI 
proteins bind 23–30 nt PIWI-interacting 
RNAs (piRNAs), whose production does 
not appear to involve double-stranded 
RNA or Dicer. piRNAs are unique to 
animals, where they repress transposon 
expression and ensure the successful 
production of sperm and eggs.

How do Argonautes function? An 
Argonaute protein plus its small RNA 
guide compose the RNA-induced 
silencing complex (RISC). RISC 
complexes can also contain additional 
proteins thought to extend the 
functions of Argonautes or to direct 
RISC to specific sub-cellular locations. 
The simplest, and likely ancestral, 
Argonaute function is endonucleolytic 
cleavage of its RNA target at a single 
phosphodiester bond. The structure 
of Argonaute ensures that the bond 
cleaved always lies between the 
target nucleotides paired to the tenth 
and eleventh nucleotides of the 
guide RNA. Increasingly, Argonaute 
aficionados refer to these nucleotides 
as g10 and g11 for the small RNA and 
t10 and t11 for the target, viewing both 
the guide (g) and the target (t) from  

Quick guides
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the 5´-to-3´ perspective of the small 
silencing RNA.

What does Argonaute look like? 
No three-dimensional structure is 
available for an entire eukaryotic 
Argonaute protein, but a series of 
structures of eubacterial and archaeal 
Argonautes, as well as structures 
of individual domains of eukaryotic 
Argonaute proteins, together reveal 
broad principles that hold true in fungi, 
plants, and animals. All Argonaute/Piwi  
proteins comprise three key domains: 
PIWI, MID, and PAZ (Figure 2). The 
Argonaute endonuclease, which 
requires Mg2+ to slice a target RNA 
into products bearing 3´ hydroxyl and 
5´ phosphate groups, resides in the 
carboxy-terminal PIWI domain (Figure 
2A). The PIWI domain resembles 
another nuclease, RNase H, a  
DNA-guided ribonuclease. Like  
RNase H, the PIWI domain contains 
three negatively charged, evolutionarily 
conserved amino acids — typically 
aspartate-aspartate-glutamate  
(DDE) — that form a Mg2+-binding 
catalytic triad. Unlike RNase H, the 
small RNA guide remains stably bound 
to the Argonaute protein through many 
rounds of target cleavage.

The amino-terminal PAZ domain uses 
its oligonucleotide-binding (OB) fold  
to secure the 3´ end of the small  
RNA guide strand to Argonaute   
(Figure 2B). A conserved hydrophobic 
cavity within the PAZ domain 
recognizes the characteristic  
two-nucleotide, 3´ overhanging end 
of the guide-passenger siRNA or 
miRNA/miRNA* duplex generated by 
Dicer. The PAZ domain can also detect 
chemical modification of the 3´ end of 
the small RNA. In plants, all small RNAs 
bear a 2´-O-methyl modification at their 
final ribose sugar. In animals, piRNAs, 
but not typically miRNAs or siRNAs, 
are 2´-O-methyl modified, although in 
insects siRNAs bound to Argonaute2 
are also 2´-O-methyl modified. The 
PAZ domains of human PIWI proteins 
(Hiwi1, Hiwi2, Hili) bind more tightly to 
the two-nucleotide, 3´ overhanging end 
of a dsRNA when it bears a 2´-O-methyl 
than when the end is 2´ hydroxyl. 
Conversely, the PAZ domain of the 
human AGO protein Ago1 prefers a 2´ 
hydroxyl. Comparison of the structures 
of single-stranded RNA bound to the 
PAZ domain from mouse Miwi with that 
of the PAZ domain from human Ago1 
suggests that the wider RNA-binding 
cleft of the Miwi PAZ domain better 

accommodates a terminal 2´-O-methyl 
group than does that of Ago1. However, 
Drosophila Ago1 — whose guide RNAs 
in vivo are thought always to end with 
a 2´ OH — can accept 2´-O-methyl 
guides, at least in vitro.

Finally, the MID domain anchors the 
5´ monophosphate of a small silencing 
RNA to the Argonaute protein, securing 
the guide through multiple cycles of 
target cleavage (Figure 2A). In vitro 
studies suggest that 5´ phosphate 
binding helps align the small RNA on 
the surface of Argonaute, ensuring 
that the correct bond of the target is 
positioned in the endonuclease active 
site. The MID domain also participates 
in sorting small RNAs among various 
Argonaute paralogs according to the 
identity of the first nucleotide of the 
RNA guide. For example, in Arabidopsis 
Ago1 prefers small RNAs that begin 
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Figure 1. Sequence relationships among AGO and PIWI sub-families of Argonaute proteins.
Protein sequences from the thermophilic bacterium Aquifex aeolicus (Aa), the sulfur-reduc-
ing archaea Archaeoglobus fulgidus (Af), the eubacteria Thermus thermophilus (Tt), the 
yeast Schizosaccharomyces pombe (Sp), the plant Arabidopsis thaliana (At), and the animals  
Drosophila melanogaster (Dm), Homo sapiens (Hs), and Nematostella vectensis (Nv; sea  
anemone) were aligned using MUSCLE (http://www.ebi.ac.uk/Tools/msa/muscle/) and  
displayed using Archaeopteryx 0.957beta (http://www.phylosoft.org/archaeopteryx/).

with uridine, Ago2 and Ago4 prefer 
an initial adenosine, and Ago5 prefers 
cytosine. Swapping the MID domain of 
one Arabidopsis Argonaute for that of 
another exchanges the initial nucleotide 
that is favored. Such nucleotide 
preferences likely arise from subtle 
differences in the amino acid side 
chains near the 5´ phosphate-binding 
pocket: structures of the human Ago2 
MID domain bound to nucleoside 
monophosphates suggest that Ago2 
favors small RNAs that begin with 
uridine or adenosine because a rigid 
loop in the domain inhibits binding to 
cytidine or guanosine. 

How do Argonautes obtain their 
small RNA guides? On their own, AGO 
proteins do not accept an siRNA or 
miRNA/miRNA* duplex, yet all available 
evidence suggests that AGO proteins 
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are initially loaded with double-stranded 
small RNAs, which then mature to  
single-stranded RNA-containing, 
functional RISC. Loading of a small 
RNA duplex into an AGO protein 
requires both ATP and the chaperones 
Hsc70 and Hsp90. Hsc70 and Hsp90 
are thought to use ATP energy to open 
AGO proteins to permit them to bind 
double-stranded small RNAs, but the 
details of this process remain unknown.

In Drosophila, mammals, and likely 
other higher plants and animals, 
RISC complexes load a small RNA 
duplex in a defined orientation: the 
thermodynamically less stable 5´ end of 
the double-stranded small RNA ends 
up in the phosphate-binding pocket 
of the MID domain, establishing that 
strand as the future small RNA guide. 
The other RNA strand becomes the 
passenger. Such thermodynamic 

asymmetry, together with first 
nucleotide identity, determines which 
strand of a small RNA duplex becomes 
the guide for an AGO protein. Most 
small RNA duplexes preferentially 
produce a readily predictable siRNA 
guide or miRNA strand, although some 
are bi-functional, with both strands 
loaded into AGO proteins. Even for 
these ‘symmetric’ small RNAs, a single 
molecule of duplex can only load one 
of its two strands; the other strand is 
ultimately destroyed.

An AGO protein bound to an siRNA 
or miRNA/miRNA* duplex is called  
pre-RISC. Once the siRNA passenger or 
miRNA* strand of the duplex small RNA 
is evicted from pre-RISC, the complex 
becomes mature RISC. For catalytically 
active AGO proteins, the siRNA 
passenger strand is thought to be 
cleaved as if it were a target mRNA. 
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Figure 2. The domains of Argonaute proteins.
(A) The structure of Thermus thermophilus Argonaute (PDB ID 3HM9) shows the three key 
functional domains common to all Argonaute proteins: the single-stranded RNA-binding PAZ 
domain (purple), the PIWI endonuclease domain (green) with its characteristic catalytic triad 
(D478, D546 and D660 in T. thermophilus) that cleaves the target RNA (dark blue), and the MID 
domain, which binds the 5´ phosphate and first nucleotide of the nucleic acid guide (red; here, 
a DNA guide, but typically an RNA in eukaryotes). Adapted from Wang et al. (2009). (B) The 
structure of the Drosophila melanogaster Ago2 PAZ domain (PDB ID 1T2R) reveals how this 
domain binds the 3´ single-stranded tail of the guide RNA. Amino acids are colored according 
to their chemical properties: hydrophobic, yellow; acidic, pink; and basic, blue. Adapted from 
Lingel et al. (2004).

The heterodimeric protein C3PO has 
been proposed to facilitate release 
of the cleaved passenger strand. For 
catalytically inactive AGO proteins, 
mismatches within the duplex — in the 
seed or between guide positions g12 
to g15 — promote maturation of  
pre-RISC to RISC.

Many eukaryotes produce multiple 
Argonaute proteins, which are often 
functionally distinct. Flies and plants, 
for example, devote different AGO 
proteins to the RNAi and miRNA 
pathways. Caenorhabditis elegans 
produces 27 Argonautes (including two 
PIWI proteins). Mice and humans make 
four AGO proteins, only one of which, 
Ago2, retains the ability to cleave its 
RNA targets. Whether the functions 
of Ago1, Ago3, and Ago4 differ is not 
known.

How does Argonaute recognize  
and repress its mRNA targets? The 
‘seed sequence’ of a small silencing 
RNA guide — nucleotides 2 to 7 or 2 to 
8 — provides nearly all of the specificity 
for target binding. Argonaute proteins 
pre-organize the seed sequence 
into a one-stranded helix whose 
conformation makes it ready to pair 
with a target without loss of entropy. 
Argonaute proteins accomplish this 
by binding the negatively charged 
phosphodiester backbone of seed 
sequence nucleotides, displaying the 
edges of bases g2 to g8 so that they 
are ready to base-pair with t2 to t8 of a 
target mRNA.

Why the rest of the nucleotides of 
the small RNA guide contribute so little 
to target binding remains unexplained. 
The two-state model envisions that 
guide strand nucleotides 3´ to the 
seed sequence alternate between two 
isoenergetic conformations: bound 
to Argonaute, with the 3´ terminus 
anchored in the PAZ domain, and 
paired to the target mRNA, with the 
3´ end free in solution. The fixed-end 
model proposes that the 3´ end of the 
guide strand remains anchored in the 
PAZ domain at all times, irrespective 
of the presence of a target RNA. Both 
models assume that the 5´ end of the 
small RNA guide always resides in the 
MID domain phosphate-binding pocket.

The structures of T. thermophilus 
Argonaute bound to a DNA guide and 
to a DNA guide together with an RNA 
target support the two-state model: 
the 3´ end of the guide strand binds the 
PAZ domain when only the DNA guide 
is present, but not when a target RNA 
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is present. Interestingly, the side chains 
of the catalytic amino acid triad move 
closer to the phosphodiester bond to 
be cut when the target RNA pairs with 
the guide. Much additional work will be 
needed to determine which, if either, 
of the two models best explains how 
Argonautes bind their targets.

Many Argonaute proteins lack a 
functional DDE catalytic triad and, 
thus, repress their targets through 
mechanisms other than endonucleolytic 
cleavage. For example, miRNA-guided 
Argonaute proteins such as fly or 
human Ago1 reduce the stability of 
their mRNA targets and can also block 
mRNA translation. The miRNA-binding 
Argonaute proteins, miRNAs, and 
their mRNA targets all localize to P 
bodies, cytoplasmic loci where general 
mRNA decay has been proposed to 
occur. In Drosophila and mammals, 
the Argonaute-binding protein GW182 
is required for miRNA-directed mRNA 
repression and the recruitment of 
Argonaute proteins to P bodies, but is 
dispensable for RNAi.

What do we know about how piRNAs 
are made and how they function? 
piRNAs guide PIWI proteins to silence 
transposons in the germ line of animals. 
We know little about the early steps in 
the biogenesis of piRNAs except that 
unlike siRNAs and miRNAs, piRNA 
production does not require Dicer and 
likely involves only single-stranded 
precursor RNAs.

Hints about the biogenesis of piRNAs 
and their role in transposon silencing 
come mainly from studies of Drosophila 
ovaries and testes. Drosophila gonads 
express three PIWI proteins: Piwi, 
Aubergine, and Ago3. Piwi localizes to 
the nucleus in both the germline and the  
surrounding somatic follicle cells, which 
help regulate the differentiation and 
patterning of the germline nurse cells 
and oocytes. Transposon-derived  
piRNAs bound to Piwi silence 
transposon expression in the nucleus 
by poorly understood mechanisms. In 
contrast, Ago3 and Aub reside in the 
germ cell cytoplasm.

What is the ‘Ping-Pong’ mechanism 
of amplification of piRNAs? High 
throughput sequencing of piRNAs 
bound to Piwi, Aubergine, and Ago3 
suggest a model, the ‘Ping-Pong’ 
mechanism, for how this class of 
small silencing RNAs is produced and 
subsequently amplified in response to 
transcription of the transposons they 

target. The Ping-Pong model proposes 
that Aubergine and Ago3 collaborate 
both to increase the abundance of 
piRNAs and to bias piRNAs toward 
the antisense strand. The detailed 
mechanism by which Aubergine 
and Piwi acquire primary piRNAs 
is unknown, but current evidence 
suggests they derive from long RNAs 
transcribed from ‘piRNA clusters’: 
transposon-rich, gene-poor regions 
of the genome which are specifically 
transcribed in the gonads. The  
Ping-Pong model postulates that 
Aubergine, bound to an anti-sense 
primary piRNA, pairs with the mRNA 
transcript of an active transposon, 
cleaving it in two and generating 
a 3´ cleavage product bearing a 5´ 
monophosphate. The 5´ end of the 3´ 
cleavage fragment then becomes the 5´ 
end of a sense piRNA bound to Ago3. 
This ‘secondary piRNA’ can then  
direct cleavage of a primary piRNA 
transcript derived from a piRNA cluster. 
The next step reverses the process: the 
Ago3–sense-piRNA complex cleaves 
the long transcript of a piRNA cluster, 
generating antisense RNA fragments 
that bind to Aub and are envisioned 
to be trimmed to piRNA length by an 
unidentified 3´-to-5´ exonuclease. 

In addition to the transposon-targeting 
piRNAs produced by the Ping-Pong 
cycle early in spermatogenesis 
(‘pre-pachytene piRNAs’), mammals 
generate piRNAs from non-repetitive 
but gene-poor loci as the developing 
spermatocytes enter the pachytene 
stage of meiosis. Mutations that 
block production of these pachytene 
piRNAs arrest spermatogenesis at 
the round spermatid stage. We do 
not know why pachytene piRNAs 
are required for mammalian sperm 
maturation or what genes or DNA 
structures pachytene piRNAs regulate. 

What is on the horizon? piRNAs 
protect the germline from invading 
transposons, but do they actually 
silence expression? We know that 
Piwi proteins cleave transposons 
to generate more piRNAs, which 
then cleave more transposons, but 
it remains to be established that this 
amplification cycle is the primary 
mechanism for transposon silencing 
by piRNAs. In many animals, piRNAs 
repress transcription, but we do not 
know how. Do Piwi proteins bind DNA 
or nascent transcripts? Do they recruit 
factors that alter chromatin structure or 
histone modifications?

Moreover, piRNA biogenesis, 
especially primary piRNA production, 
remains obscure. Are the piRNA 
precursors transcribed from large 
clusters initially fragmented to generate 
the 5´ monophosphorylated ends of 
piRNAs, then trimmed by exonucleases 
to generate discrete 3´ ends? What 
is the function of piRNAs derived 
from non-repetitive sequences? In 
Drosophila embryos, piRNAs have 
recently been proposed to bind the 
3´ untranslated region (UTR) and 
promote deadenylation of the mRNA 
encoding Nanos, a protein required 
for anterior–posterior patterning of the 
developing embryo. Are piRNAs that 
map to 3´ UTRs generally involved in 
the temporal or spatial control of gene 
expression?

The sorting of small RNAs among 
different Argonaute proteins according 
to the structure and sequence of an 
siRNA or miRNA duplex suggests that 
each Argonaute protein might have a 
unique or specific regulatory function 
or that individual Argonautes might be 
specifically retained or degraded during 
cell differentiation. Yet no functional 
difference has been discovered 
distinguishing human Ago1, Ago3, 
and Ago4. Perhaps these three human 
AGOs bind different regulatory proteins. 
Defining the repertoire of proteins 
bound by each human Argonaute 
protein may help reveal their specific 
functions.
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