11 research outputs found

    Fast simulation of transient temperature distributions in power modules using multi-parameter model reduction

    Get PDF
    In this study, a three-dimensional model with multi-parameter order reduction is applied to the thermal modelling of power electronics modules with complex geometries. Finite element or finite difference method can be used to establish accurate mathematical models for thermal analyses. Unfortunately, the resulting computational complexity hinders the analysis in parametric studies. This study proposes a parametric order reduction technique that can significantly increase simulation efficiency without significant penalty in the prediction accuracy. The method, based on the block Arnoldi method, is illustrated with reference to a multi-chip SiC power module mounted on a forced air-cooled finned heat sink with a variable mass flow rate

    Trace Metals in Global Air: First Results from the GAPS and GAPS Megacities Networks

    No full text
    Trace metals, as constituents of ambient air, can have impacts on human and environmental health. The Global Atmospheric Passive Sampling (GAPS) and GAPS Megacities (GAPS-MC) networks investigated trace metals in the air at 51 global locations by deploying polyurethane foam disk passive air samplers (PUF–PAS) for periods of 3–12 months. Aluminum and iron exhibited the highest concentrations in air (x̅ = 3400 and 4630 ng/m3, respectively), with notably elevated values at a rural site in Argentina thought to be impacted by resuspended soil. Urban sites had the highest levels of toxic Pb and Cd, with enrichment factors suggesting primarily anthropogenic influences. High levels of As at rural sites were also observed. Elevated trace metal concentrations in cities are associated with local emissions and higher PM2.5 and PM10 concentrations. Brake and tire wear-associated metals Sb, Cu, and Zn are significantly correlated and elevated at urban locations relative to those at background sites. These data demonstrate the versatility of PUF–PAS for measuring trace metals and other particle-associated pollutants in ambient air in a cost-effective and simple manner. The data presented here will serve as a global baseline for assessing future changes in ambient air associated with industrialization, urbanization, and population growth

    Trace Metals in Global Air: First Results from the GAPS and GAPS Megacities Networks

    No full text
    Trace metals, as constituents of ambient air, can have impacts on human and environmental health. The Global Atmospheric Passive Sampling (GAPS) and GAPS Megacities (GAPS-MC) networks investigated trace metals in the air at 51 global locations by deploying polyurethane foam disk passive air samplers (PUF–PAS) for periods of 3–12 months. Aluminum and iron exhibited the highest concentrations in air (x̅ = 3400 and 4630 ng/m3, respectively), with notably elevated values at a rural site in Argentina thought to be impacted by resuspended soil. Urban sites had the highest levels of toxic Pb and Cd, with enrichment factors suggesting primarily anthropogenic influences. High levels of As at rural sites were also observed. Elevated trace metal concentrations in cities are associated with local emissions and higher PM2.5 and PM10 concentrations. Brake and tire wear-associated metals Sb, Cu, and Zn are significantly correlated and elevated at urban locations relative to those at background sites. These data demonstrate the versatility of PUF–PAS for measuring trace metals and other particle-associated pollutants in ambient air in a cost-effective and simple manner. The data presented here will serve as a global baseline for assessing future changes in ambient air associated with industrialization, urbanization, and population growth

    Tools and Tactics for the Optical Detection of Mercuric Ion

    No full text
    corecore