12 research outputs found

    Patch Finder Plus (PFplus): A web server for extracting and displaying positive electrostatic patches on protein surfaces

    Get PDF
    Positively charged electrostatic patches on protein surfaces are usually indicative of nucleic acid binding interfaces. Interestingly, many proteins which are not involved in nucleic acid binding possess large positive patches on their surface as well. In some cases, the positive patches on the protein are related to other functional properties of the protein family. PatchFinderPlus (PFplus) http://pfp.technion.ac.il is a web-based tool for extracting and displaying continuous electrostatic positive patches on protein surfaces. The input required for PFplus is either a four letter PDB code or a protein coordinate file in PDB format, provided by the user. PFplus computes the continuum electrostatics potential and extracts the largest positive patch for each protein chain in the PDB file. The server provides an output file in PDB format including a list of the patch residues. In addition, the largest positive patch is displayed on the server by a graphical viewer (Jmol), using a simple color coding

    The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset

    Get PDF
    The MOF (males absent on the first)-containing NSL (non-specific lethal) complex binds to a subset of active promoters in Drosophila melanogaster and is thought to contribute to proper gene expression. The determinants that target NSL to specific promoters and the circumstances in which the complex engages in regulating transcription are currently unknown. Here, we show that the NSL complex primarily targets active promoters and in particular housekeeping genes, at which it colocalizes with the chromatin remodeler NURF (nucleosome remodeling factor) and the histone methyltransferase Trithorax. However, only a subset of housekeeping genes associated with NSL are actually activated by it. Our analyses reveal that these NSL-activated promoters are depleted of certain insulator binding proteins and are enriched for the core promoter motif ‘Ohler 5’. Based on these results, it is possible to predict whether the NSL complex is likely to regulate a particular promoter. We conclude that the regulatory capacity of the NSL complex is highly context-dependent. Activation by the NSL complex requires a particular promoter architecture defined by combinations of chromatin regulators and core promoter motifs

    Seasonal Genetic Drift of Human Influenza A Virus Quasispecies Revealed by Deep Sequencing

    Get PDF
    After a pandemic wave in 2009 following their introduction in the human population, the H1N1pdm09 viruses replaced the previously circulating, pre-pandemic H1N1 virus and, along with H3N2 viruses, are now responsible for the seasonal influenza type A epidemics. So far, the evolutionary potential of influenza viruses has been mainly documented by consensus sequencing data. However, like other RNA viruses, influenza A viruses exist as a population of diverse, albeit related, viruses, or quasispecies. Interest in this quasispecies nature has increased with the development of next generation sequencing (NGS) technologies that allow a more in-depth study of the genetic variability. NGS deep sequencing methodologies were applied to determine the whole genome genetic heterogeneity of the three categories of influenza A viruses that circulated in humans between 2007 and 2012 in France, directly from clinical respiratory specimens. Mutation frequencies and single nucleotide polymorphisms were used for comparisons to address the level of natural intrinsic heterogeneity of influenza A viruses. Clear differences in single nucleotide polymorphism profiles between seasons for a given subtype also revealed the constant genetic drift that human influenza A virus quasispecies undergo

    Transcription Initiation Patterns Indicate Divergent Strategies for Gene Regulation at the Chromatin Level

    Get PDF
    The application of deep sequencing to map 5′ capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: “focused” promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and “dispersed” promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5′ capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization

    Validation of an Automatic Tagging System for Identifying Respiratory and Hemodynamic Deterioration Events in the Intensive Care Unit

    Get PDF
    Objective: Predictive models for critical events in the intensive care unit (ICU) might help providers anticipate patient deterioration. At the heart of predictive model development lies the ability to accurately label significant events, thereby facilitating the use of machine learning and similar strategies. We conducted this study to establish the validity of an automated system for tagging respiratory and hemodynamic deterioration by comparing automatic tags to tagging by expert reviewers. Methods: This retrospective cohort study included 72,650 unique patient stays collected from Electronic Medical Records of the University of Massachusetts\u27 eICU. An enriched subgroup of stays was manually tagged by expert reviewers. The tags generated by the reviewers were compared to those generated by an automated system. RESULTS: The automated system was able to rapidly and efficiently tag the complete database utilizing available clinical data. The overall agreement rate between the automated system and the clinicians for respiratory and hemodynamic deterioration tags was 89.4% and 87.1%, respectively. The automatic system did not add substantial variability beyond that seen among the reviewers. Conclusions: We demonstrated that a simple rule-based tagging system could provide a rapid and accurate tool for mass tagging of a compound database. These types of tagging systems may replace human reviewers and save considerable resources when trying to create a validated, labeled database used to train artificial intelligence algorithms. The ability to harness the power of artificial intelligence depends on efficient clinical validation of targeted conditions; hence, these systems and the methodology used to validate them are crucial

    Patch Finder Plus (PFplus): A web server for

    No full text
    extracting and displaying positive electrostatic patches on protein surface

    Deep sequencing analysis of viral infection and evolution allows rapid and detailed characterization of viral mutant spectrum.

    No full text
    International audienceThe study of RNA virus populations is a challenging task. Each population of RNA virus is composed of a collection of different, yet related genomes often referred to as mutant spectra or quasispecies. Virologists using deep sequencing technologies face major obstacles when studying virus population dynamics, both experimentally and in natural settings due to the relatively high error rates of these technologies and the lack of high performance pipelines. In order to overcome these hurdles we developed a computational pipeline, termed ViVan (Viral Variance Analysis). ViVan is a complete pipeline facilitating the identification, characterization and comparison of sequence variance in deep sequenced virus populations. Applying ViVan on deep sequenced data obtained from samples that were previously characterized by more classical approaches, we uncovered novel and potentially crucial aspects of virus populations. With our experimental work, we illustrate how ViVan can be used for studies ranging from the more practical, detection of resistant mutations and effects of antiviral treatments, to the more theoretical temporal characterization of the population in evolutionary studies. Freely available on the web at http://www.vivanbioinfo.org : [email protected] Supplementary data are available at Bioinformatics online

    Tools for neuroanatomy and neurogenetics in Drosophila

    Get PDF
    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain
    corecore