1,076 research outputs found

    UAV BLOCK GEOREFERENCING AND CONTROL BY ON-BOARD GNSS DATA

    Get PDF
    Abstract. Unmanned Aerial Vehicles (UAV) are established platforms for photogrammetric surveys in remote areas. They are lightweight, easy to operate and can allow access to remote sites otherwise difficult (or impossible) to be surveyed with other techniques. Very good accuracy can be obtained also with low-cost UAV platforms as far as a reliable ground control is provided. However, placing ground control points (GCP) in these contexts is time consuming and requires accessibility that, in some cases, can be troublesome. RTK-capable UAV platforms are now available at reasonable costs and can overcome most of these problems, requiring just few (or none at all) GCP and still obtaining accurate results. The paper will present a set of experiments performed in cooperation with ARPA VdA (the Environmental Protection Agency of Valle d'Aosta region, Italy) on a test site in the Italian Alps using a Dji Phantom 4 RTK platform. Its goals are: a) compare accuracies obtainable with different calibration procedures (pre- or on-the-job/self-calibration); b) evaluate the accuracy improvements using different number of GCP when the site allows for it; and c) compare alternative positioning modes for camera projection centres determination, (Network RTK, RTK, Post Processing Kinematic and Single Point Positioning)

    UAV BLOCK GEOREFERENCING and CONTROL by ON-BOARD GNSS DATA

    Get PDF
    Unmanned Aerial Vehicles (UAV) are established platforms for photogrammetric surveys in remote areas. They are lightweight, easy to operate and can allow access to remote sites otherwise difficult (or impossible) to be surveyed with other techniques. Very good accuracy can be obtained also with low-cost UAV platforms as far as a reliable ground control is provided. However, placing ground control points (GCP) in these contexts is time consuming and requires accessibility that, in some cases, can be troublesome. RTK-capable UAV platforms are now available at reasonable costs and can overcome most of these problems, requiring just few (or none at all) GCP and still obtaining accurate results. The paper will present a set of experiments performed in cooperation with ARPA VdA (the Environmental Protection Agency of Valle d'Aosta region, Italy) on a test site in the Italian Alps using a Dji Phantom 4 RTK platform. Its goals are: a) compare accuracies obtainable with different calibration procedures (pre- or on-the-job/self-calibration); b) evaluate the accuracy improvements using different number of GCP when the site allows for it; and c) compare alternative positioning modes for camera projection centres determination, (Network RTK, RTK, Post Processing Kinematic and Single Point Positioning)

    Structural validation of a realistic wing structure: the RIBES test article

    Get PDF
    Several experimental test cases are available in literature to study and validate fluid structure interaction methods. They, however, focus the attention mainly on replicating typical cruising aerodynamic conditions forcing the adoption of fully steel made models able to operate with the high loads generated in high speed facilities. This translates in a complete loss of similitude with typical realistic aeronautical wing structures configurations. To reverse this trend, and to better study the aerolastic mechanism from a structural point of view, an aeroelastic measurement campaign was carried within the EU RIBES project. A half wing model for wind tunnel tests was designed and manufactured replicating a typical metallic wing box structure, producing a database of loads, pressure, stress and deformation measurements. In this paper the design, manufacturing and validation activities performed within the RIBES project are described, with a focus on the structural behavior of the test article. All experimental data and numerical models are made freely available to the scientific community

    Advanced monitoring systems for biological applications in marine environments

    Get PDF
    The increasing need to manage complex environmental problems demands a new approach and new technologies to provide the information required at a spatial and temporal resolution appropriate to the scales at which the biological processes occur. In particular sensor networks, now quite popular on land, still poses many difficult problems in underwater environments. In this context, it is necessary to develop an autonomous monitoring system that can be remotely interrogated and directed to address unforeseen or expected changes in such environmental conditions. This system, at the highest level, aims to provide a framework for combining observations from a wide range of different in-situ sensors and remote sensing instruments, with a long-term plan for how the network of sensing modalities will continue to evolve in terms of sensing modality, geographic location, and spatial and temporal density. The advances in sensor technology and digital electronics have made it possible to produce large amount of small tag-like sensors which integrate sensing, processing, and communication capabilities together and form an autonomous entity. To successfully use this kind of systems in under water environments2 , it becomes necessary to optimize the network lifetime and face the relative hindrances that such a field imposes, especially in terms of underwater information exchange

    A Swendsen-Wang update algorithm for the Symanzik improved sigma model

    Get PDF
    We study a generalization of Swendsen-Wang algorithm suited for Potts models with next-next-neighborhood interactions. Using the embedding technique proposed by Wolff we test it on the Symanzik improved bidimensional non-linear σ\sigma model. For some long range observables we find a little slowing down exponent (z≃0.3z \simeq 0.3) that we interpret as an effect of the partial frustration of the induced spin model.Comment: Self extracting archive fil

    An unusual dysphagia for solids in a 17-year-old girl due to a lusoria artery: A case report and review of the literature

    Get PDF
    Background: Dysphagia is a condition that can have many underlying causes, often different between adults and children and its early diagnosis is crucial especially during childhood and adolescence, given the importance of proper nutritional intake to ensure adequate growth and development. Case report: We described the case of a 17-year-old girl reporting dysphagia for solids for approximately one month. No symptoms were previously referred. Oesophagogastroduodenoscopy was performed, detecting an image of ab extrinseco compression at the level of the mid-cervical oesophagus. An upper gastrointestinal tract radiography confirmed an oesophageal impression above the arch of the aorta suggestive of vascular abnormality. Computed tomography angiography and three-dimensional reconstruction techniques showed the presence of a lusoria artery that originated from the medial margin of the descending aorta and crossed the trachea and oesophagus posteriorly to the distal third. The lusoria artery was transected via a left thoracotomy and re-implanted into the right common carotid artery with complete symptom resolution. Conclusions: Dysphagia lusoria is an impairment of swallowing due to compression from an aberrant right subclavian artery. The diagnosis is always difficult, as the symptoms are often nonspecific. It is imperative to accurately identify and properly manage dysphagia in pediatric age and this is only possible with an anamnestic, clinical and instrumental process that takes into account an adequate differential diagnosis

    Warming permafrost and active layer variability at Cime Bianche, Western European Alps

    Get PDF
    The objective of this paper is to provide a first synthesis on the state and recent evolution of permafrost at the monitoring site of Cime Bianche (3100 m a.s.l.) on the Italian side of the Western Alps. The analysis is based on 7 years of ground temperature observations in two boreholes and seven surface points. The analysis aims to quantify the spatial and temporal variability of ground surface temperature in relation to snow cover, the small-scale spatial variability of the active layer thickness and current temperature trends in deep permafrost.Results show that the heterogeneity of snow cover thickness, both in space and time, is the main factor controlling ground surface temperatures and leads to a mean range of spatial variability (2.5 ± 0.1 °C) which far exceeds the mean range of observed inter-annual variability (1.6 ± 0.1 °C). The active layer thickness measured in two boreholes at a distance of 30 m shows a mean difference of 2.0 ± 0.1 m with the active layer of one borehole consistently deeper. As revealed by temperature analysis and geophysical soundings, such a difference is mainly driven by the ice/water content in the sub-surface and not by the snow cover regimes. The analysis of deep temperature time series reveals that permafrost is warming. The detected trends are statistically significant starting from a depth below 8 m with warming rates between 0.1 and 0.01 °C yr⁻Âč

    Testing fixed points in the 2D O(3) non-linear sigma model

    Full text link
    Using high statistic numerical results we investigate the properties of the O(3) non-linear 2D sigma-model. Our main concern is the detection of an hypothetical Kosterlitz-Thouless-like (KT) phase transition which would contradict the asymptotic freedom scenario. Our results do not support such a KT-like phase transition.Comment: Latex, 7 pgs, 4 eps-figures. Added more analysis on the KT-transition. 4-loop beta function contains corrections from D.-S.Shin (hep-lat/9810025). In a note-added we comment on the consequences of these corrections on our previous reference [16

    Contrasting responses of forest growth and carbon sequestration to heat and drought in the Alps

    Get PDF
    >Climate change is expected to increase both the frequency and the intensity of climate extremes, consequently increasing the risk of forest role transition from carbon sequestration to carbon emission. These changes are occurring more rapidly in the Alps, with important consequences for tree species adapted to strong climate seasonality and short growing season. In this study, we aimed at investigating the responses of a high-altitude Larix decidua Mill. forest to heat and drought, by coupling ecosystem- and tree-level measurements. From 2012 to 2018, ecosystem carbon and water fluxes (i.e., gross primary production, net ecosystem exchange, and evapotranspiration) were measured by means of the eddy covariance technique, together with the monitoring of canopy development (i.e., larch phenology and normalized difference vegetation index). From 2015 to 2017 we carried out additional observations at the tree level, including stem growth and its duration, direct phenological observations, sap flow, and tree water deficit. Results showed that the warm spells in 2015 and 2017 caused an advance of the phenological development and, thus, of the seasonal trajectories of many processes, at both tree and ecosystem level. However, we did not observe any significant quantitative changes regarding ecosystem gas exchanges during extreme years. In contrast, in 2017 we found a reduction of 17% in larch stem growth and a contraction of 45% of the stem growth period. The growing season in 2017 was indeed characterized by different drought events and by the highest water deficit during the study years. Due to its multi-level approach, our study provided evidence of the independence between C-source (i.e., photosynthesis) and C-sink (i.e., tree stem growth) processes in a subalpine larch forest
    • 

    corecore