2,358 research outputs found

    The SU(3) deconfining phase transition with Symanzik action

    Get PDF
    We report on the determination of the deconfining temperature in SU(3) pure gauge theory, using the Symanzik tree level improved action, on lattices of size 3 x 12^3, 4 x 16^3, 5 x 20^3, 6 x24^3. We find that the asymptotic scaling violation pattern is similar to the one observed using the Wilson action. We conclude that the irrelevant operators do not affect, in the range of couplings considered, the lattice beta function. An analysis based on an effective coupling formulation shows an apparent improvement.Comment: 8 pages, report IFUP-TH 12/9

    The two-phase issue in the O(n) non-linear σ\sigma-model: A Monte Carlo study

    Full text link
    We have performed a high statistics Monte Carlo simulation to investigate whether the two-dimensional O(n) non-linear sigma models are asymptotically free or they show a Kosterlitz- Thouless-like phase transition. We have calculated the mass gap and the magnetic susceptibility in the O(8) model with standard action and the O(3) model with Symanzik action. Our results for O(8) support the asymptotic freedom scenario.Comment: 3 pgs. espcrc2.sty included. Talk presented at LATTICE96(other models

    LIGO End-to-End simulation Program

    Get PDF
    A time-domain simulation program has been developed to provide an accurate description of interferometric gravitational wave detectors. This is being utilized to build a model of LIGO with the aim of aiding in the shakedown and integration of the interferometer subsystems, and ultimately the optimization of detector sensitivity

    Stochastic background from extra-galactic double neutron stars

    Full text link
    We present Monte Carlo simulations of the extra galactic population of inspiralling double neutron stars, and estimate its contribution to the astrophysical gravitational wave background, in the frequency range of ground based interferometers, corresponding to the last thousand seconds before the last stable orbit when more than 96 percent of the signal is released. We show that sources at redshift z>0.5 contribute to a truly continuous background which may be detected by correlating third generation interferometers.Comment: 13 pages, 7 figures - proceeding of a talk given at the 11th GWDAW, to appear in CQ

    MIRELLA: a mathematical model explains the effect of microRNA-mediated synthetic genes regulation on intracellular resource allocation

    Get PDF
    Competition for intracellular resources, also known as gene expression burden, induces coupling between independently co-expressed genes, a detrimental effect on predictability and reliability of gene circuits in mammalian cells. We recently showed that microRNA (miRNA)-mediated target downregulation correlates with the upregulation of a co-expressed gene, and by exploiting miRNAs-based incoherent-feed-forward loops (iFFLs) we stabilise a gene of interest against burden. Considering these findings, we speculate that miRNA-mediated gene downregulation causes cellular resource redistribution. Despite the extensive use of miRNA in synthetic circuits regulation, this indirect effect was never reported before. Here we developed a synthetic genetic system that embeds miRNA regulation, and a mathematical model, MIRELLA, to unravel the miRNA (MI) RolE on intracellular resource aLLocAtion. We report that the link between miRNA-gene downregulation and independent genes upregulation is a result of the concerted action of ribosome redistribution and ‘queueing-effect’ on the RNA degradation pathway. Taken together, our results provide for the first time insights into the hidden regulatory interaction of miRNA-based synthetic networks, potentially relevant also in endogenous gene regulation. Our observations allow to define rules for complexity- and context-aware design of genetic circuits, in which transgenes co-expression can be modulated by tuning resource availability via number and location of miRNA target sites

    The b→sγγb\to s\gamma\gamma transition in softly broken supersymmetry

    Full text link
    We study the effect of supersymmetric contributions to the effective quark transition b→sγγb\to s\gamma\gamma, including leading order QCD effects. We apply the discussion to the decay Bs→γγB_s\to\gamma\gamma. Even though one-particle irreducible contributions could play a role, numerical cancelations make the amplitude for the two-photon emission strongly correlated to the b→sγb\to s\gamma amplitude which is sharply constrained by experiment. A quite general statement follows: as long as non-standard physics effects appear only in the matching of the Wilson coefficients of the standard effective operator basis, the deviations from the standard model expectations of the decay rates induced by b→sγγb\to s\gamma\gamma are bound to follow closely the corresponding deviations on b→sγb\to s\gamma. Effects of new physics are therefore bound to be small.Comment: Latex2e, RevTex, 22 pages, 8 eps figures, comments and references adde

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    b→sγb \to s \gamma Decay and Right-handed Top-bottom Charged Current

    Full text link
    We introduce an anomalous top quark coupling (right-handed current) into Standard Model Lagrangian. Based on this, a more complete calculation of b→sγb \to s\gamma decay including leading log QCD corrections from mtopm_{top} to MWM_W in addition to corrections from MWM_{W} to mbm_b is given. The inclusive decay rate is found to be suppressed comparing with the case without QCD running from mtm_t to MWM_W except at the time of small values of ∣fRtb∣|f_R^{tb}|. e.g. when fRtb=−0.08f_R^{tb}=-0.08, it is only 1/101/10 of the value given before. As ∣fRtb∣|f_R^{tb}| goes smaller, this contribution is an enhancement like standard model case. From the newly experiment of CLEO Collaboration, strict restrictions to parameters of this top-bottom quark coupling are found.Comment: 20 Pages, 2 figures( ps file uuencoded)

    Exclusive B --> K^* l^+ l^-$ decay in the three Higgs doublet model

    Get PDF
    We study the differential Branching ratio and CP asymmetry for the exclusive decay B --> K^* l^+ l^- in the three Higgs doublet model with additional global O(2) symmetry in the Higgs sector. We analyse dilepton mass square q^2 dependency of the these quantities. Further, we study the effect of new parameter of the global symmetry in the Higgs sector on the differential branching ratio and CP asymmetry. We see that there exist an enhancement in the branching ratio and a considerable CP violation for the relevant process. In addition to this, we realize that fixing dilepton mass gives information about the sign of the Wilson coefficient C_7^{eff}.Therefore, the future measurements of the CP asymmetry for B\to K^* l^+ l^- decay will give a powerful information about the sign of Wilson coefficient C_{7}^{eff} and new physics beyond the SM.Comment: 19 pages, 6 figure
    • 

    corecore