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ABSTRACT

Competition for intracellular resources, also known
as gene expression burden, induces coupling be-
tween independently co-expressed genes, a detri-
mental effect on predictability and reliability of gene
circuits in mammalian cells. We recently showed that
microRNA (miRNA)-mediated target downregulation
correlates with the upregulation of a co-expressed
gene, and by exploiting miRNAs-based incoherent-
feed-forward loops (iFFLs) we stabilise a gene of in-
terest against burden. Considering these findings,
we speculate that miRNA-mediated gene downreg-
ulation causes cellular resource redistribution. De-
spite the extensive use of miRNA in synthetic cir-
cuits regulation, this indirect effect was never re-
ported before. Here we developed a synthetic genetic
system that embeds miRNA regulation, and a math-
ematical model, MIRELLA, to unravel the miRNA (MI)
RolE on intracellular resource aLLocAtion. We re-
port that the link between miRNA-gene downregula-
tion and independent genes upregulation is a result
of the concerted action of ribosome redistribution
and ‘queueing-effect’ on the RNA degradation path-
way. Taken together, our results provide for the first
time insights into the hidden regulatory interaction
of miRNA-based synthetic networks, potentially rel-
evant also in endogenous gene regulation. Our ob-
servations allow to define rules for complexity- and
context-aware design of genetic circuits, in which

transgenes co-expression can be modulated by tun-
ing resource availability via number and location of
miRNA target sites.
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INTRODUCTION

Engineering mammalian cells with synthetic regulatory net-
works to obtain novel functionalities with predictable be-
haviour, requires a deep understanding of the dynamic in-
teractions between the genetic circuits and the intracellular
context in which they are intended to operate.

We recently showed that when exogenous DNAs are
transiently delivered to mammalian cells, they compete for
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limited shared transcriptional and translational resources,
reshaping RNA and protein levels, and leading to the cou-
pling of otherwise independent genes (1,2). This becomes
a pervasive problem, either when implementing regulatory
circuits, or in attempts to carry out studies using system per-
turbations (i.e. overexpression or downregulation of a tran-
sient gene). The observation that synthetic circuits impose a
gene expression burden to their host cells (1,3,4), prompted
the development of ‘context-aware’ gene networks in which
incoherent feedforward loops (iFFLs) that use biomolec-
ular controllers such as endoribonucleases (2), or endoge-
nous and synthetic miRNAs (1) were successfully exploited
as burden mitigators. In miRNA-based iFFL, we observed
that the protein levels of two independently expressed genes,
one of which was regulated by miRNA, were strongly linked
to the miRNA activity (1). As a point in case, using two
co-expressed fluorescent proteins, EGFP and mKate, with
mKate levels linked by design to the endogenous miRNA-
31 (miR-31), we showed that the higher the number of
miRNA target sites (TS) in the mKate UTRs, the stronger
its downregulation, and the higher the levels of EGFP (Fig-
ure 1A). Conversely, by inhibiting miR-31, mKate levels
increased, counterbalanced by reduced EGFP levels (1),
supporting the miRNA-dependency of the observed ef-
fect. Results were robust to changing plasmid design (co-
transfection vs single plasmid) and cellular context (1).

Given the biological importance and high applicability
of miRNAs to synthetic circuits, we sought to investigate
the molecular mechanisms involved in miRNA-dependent
resource distribution. We postulate that this understanding
will enable more precise circuits’ design with enhanced ro-
bustness and predictability, and may shed light on the sec-
ondary regulatory effect in endogenous pathways.

miRNAs are small non-coding RNAs produced from
transcripts with stem-loop structures which undergo pro-
cessing both in the nucleus and cytoplasm to be converted
into mature, 21–26 nucleotides-long miRNAs. Mature miR-
NAs are assembled into the RNA-induced silencing com-
plex (RISC) and bind their target mRNAs by base pair-
ing usually to their 3’UTR or 5’UTR (5,6). Upon binding,
miRNAs modulate their target through mRNA degrada-
tion and/or translational repression (7,8). Target sites (TS)
can be fully or partially complementary to the miRNA.
In the former case, the target is degraded through en-
donucleolytic cleavage (9), while in the latter translational
repression dominates and transcript degradation occurs
after deadenylation (7,8). Typically, in mammalian cells
miRNAs bind to the 3’UTR of the endogenous target
mRNA, and have non-perfect complementarity to the TS
(7). Thus, their main mechanism of action is to repress
translation. Moreover, miRNAs are often found in endoge-
nous feedforward or negative feedback loops exploiting ad-
ditional functions such as buffering gene expression against
noise or fluctuations in external inducer concentration
(10–13).

In synthetic biology, miRNAs have been repurposed as
a versatile tool to build cell-specific devices, and have been
largely used to create cell classifiers with biotechnological
or biomedical applications (14,15) or to modulate the ex-
pression of the genetic devices (16,17). In these applica-
tions, to achieve strong downmodulation of the target genes,

and increase the sensitivity to small concentrations of miR-
NAs, perfectly complementary target sites are typically used
(18).

Here, we use a two-gene reporter system (EGFP
hereafter named capacity monitor, and miR31TS-mKate,
hereafter named miTarget), along with a mathemati-
cal model (MIRELLA) that qualitatively captures post-
transcriptional events, to explain the effect of miRNA (MI)
REgulation on intracellular resource aLLocAtion, effec-
tively identifying key processes responsible for miRNA-
based burden mitigation in mammalian cells (Figure 1A, B).

MIRELLA builds on an existing modelling framework
(1) and considers that mRNA translation and degrada-
tion use pools of shared resources, among which we ac-
count as main players ribosomes and RNases, respectively.
MIRELLA replaces reaction rates that involve shared cel-
lular resources with effective reaction rates that account for
the availability of each individual resource pool according
to the overall gene expression demand (Figure 1B). We use
MIRELLA to predict the effect of miRNA regulation on re-
source availability considering the strength of the downreg-
ulation (number of target sites), and the effect of TS location
(i.e. as part of the 5’UTR or 3’UTR). The model suggests
that miRNA-mediated downregulation of the target mR-
NAs causes a redistribution of translational resources (i.e.
ribosomes) and impacts the RNA degradation machinery,
overall contributing to a change in protein expression levels
(Figure 1C). We then experimentally validated the model
predictions for the expression of exogenous and endoge-
nous genes.

Supported by the synergistic use of a mathematical model
and experiments, our findings contribute to a deeper un-
derstanding of the mechanisms of miRNA operations in
synthetic networks, which enables the resource-aware de-
sign of genetic circuits. Moreover, our results provide in-
sights into secondary effects of miRNA regulation that
might be potentially relevant also in endogenous gene
regulation.

MATERIALS AND METHODS

DNA cloning and plasmid construction

Plasmid vectors carrying gene cassettes were created using
In-Fusion HD cloning kit (Clontech), or digestion and lig-
ation. Reaction included 1:2 molar ratio of plasmid back-
bone:gene inserts starting with 100 ng of vector backbone
digested with selected restriction enzymes. All plasmids
used in this study consist of a constitutive promoter driv-
ing the gene of interest. All plasmids used in this study were
confirmed by sequencing analysis and are listed in Supple-
mentary Table 2.

Cell culture

H1299 cells were maintained in Roswell Park Memo-
rial Institute medium (RPMI, Gibco) supplemented with
10% FBS (Atlanta BIO), 1% penicillin/streptomycin/L-
glutamine (Sigma-Aldrich) and 1% non-essential amino
acids (HyClone). The cells were maintained at 37◦C and 5%
CO2.
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Figure 1. Graphical abstract of the study. (A) Graphical representation of the effect of the downregulation of a transgene (mKate-miTarget, red) by en-
dogenous miRNAs (e.g. miR-31), on a co-expressed gene (capacity monitor, green) (1). The stronger the downregulation of the miTarget, the more the
upregulation of the capacity monitor, in a miRNA target sites (TS) number- and location-fashion 5’UTR (blue) or 3’UTR (orange). (B) Modelling of gene
networks in a resource-limited context. MIRELLA replaces all reaction rates (αi ) that involve shared cellular resources with their corresponding effective
reaction rates (namely α

E f f
i ) that capture the availability of that resources according to the overall demand from competing genes (modelled via the gen-

eral function f (. . .)). (C) Effect of miRNA activity on protein expression in a finite-resource context. Control (noTS): protein expression in the absence
of miRNA regulation. TS in the 5’ or 3’UTR: the slicer activity of miRNA-RISC complex triggers mRNA degradation of the miTarget (red) causing a
queueing effect on the degradation of other mRNAs that results in capacity monitor (green) protein accumulation. TS in the 5’UTR: in addition to slicer
activity, miRNA binding inhibits translation initiation, freeing up translational resources to the benefit of other transcripts (e.g. the capacity monitor). The
resulting effect is stronger downregulation of miTarget and higher capacity monitor levels when TS are placed in the 5’UTR of the miTarget.
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Transfection

Transfections were carried out in 24-well plate format for
flow cytometry analysis, in 12-well plate format for flow
cytometry and qPCR analyses run on the same biological
replicate or in 10 cm dishes for polysome profiling. H1299
cells were transfected with Lipofectamine® 3000 (Thermo
Fisher Scientific) according to the manufacturer’s instruc-
tions and 300 ng of total DNA for each sample for a trans-
fection in 24-well plates and scaled up for larger formats.
Details on transfections are provided in Supplementary
Table 1.

Flow cytometry and data analysis

Cells were analysed using a BD FACSAria™ cell analyser
(BD Biosciences) using 488 nm and 561 nm lasers. Cells
transfected in 12-well plates were washed with DPBS, de-
tached with 100 �l of trypsin–EDTA (0.25%) phenol red
and resuspended in 600 �l of DPBS (Thermo Fisher Sci-
entific). 200 �l of cell suspension were used for flow cy-
tometry and 400 �l for RNA extraction. For each analy-
sis, 10 000+ events from each sample were recorded and
data were normalised with three compensation controls: un-
stained (wild-type cells), and single colour controls (mKate
only, EGFP only). Fluorescence intensity in arbitrary units
(AU) was used as a measure of protein expression. Popula-
tion of live cells was selected according to FCS/SSC param-
eters. Data analysis was performed with Cytoflow. For each
sample, we gated the population of live cells and then the
EGFP+mKate+ cells (Q2 quadrant in Supplementary Fig-
ure 9b). Within this population we calculated the geometric
mean (Geo-Mean) of mKate and EGFP.

Polysome profiling

Polysome profiling was performed following the protocols
described in (19,20). To obtain the cytoplasmic lysates,
cells were treated with cycloheximide (10 �g ml−1) for 3–
4 min and then lysed in 300 �l of cold hypotonic lysis
buffer (19). To remove nuclei, mitochondria and cellular
debris, the lysates were centrifuged at 4◦C for 5 min at
20 000 g. To separate ribosomal subunits, ribosomes and
polysomes from other cytoplasmic molecules, the super-
natant was loaded on a 10–40% (w/v) sucrose gradient and
centrifuged for 1 h 30 min at 260 000 g at 4◦C in a SW41 ro-
tor using a Beckman Optima LE-80 Ultracentrifuge. Twelve
1 ml fractions were collected and the absorbance at 254
nm was monitored with the UA-6 UV/VIS detector (Tele-
dyne Isco). RNA was purified fraction by fraction using the
phenol/chloroform extraction method described in (21).
The retro-transcription reaction was performed using the
same volume of RNA for all polysomal fractions. The co-
sedimentation profile of mRNAs was obtained by calculat-
ing the percentage (or fraction) of mRNAs in each fraction
by qPCR as described in (22).

mRNA half-life measurement upon DRB treatment

mRNA half-life was measured by treating H1299 cells 24
h post-transfection with 5,6-dichlorobenzimidazole 1-�-D-
ribofuranoside–DRB (Sigma-Aldrich) 50 �M. Cells were

collected at different time-points (0 h, 0 h 30 min, 1 h, 1
h 30 min, 2 h, 3 h, 4 h after treatment) for RNA extraction
and qPCR analysis.

mRNA extraction and reverse transcription

RNA extraction was performed with E.Z.N.A.® Total
RNA Kit I (Omega Bio-tek). Protocol was followed accord-
ing to the manufacturer’s instructions and RNA was eluted
in 30 �l of RNase-free water to maximise the yield. RNA
samples were conserved at –80◦C. The protocol was per-
formed exclusively with RNase free water in an RNase-free
environment.

PrimeScript RT Reagent Kit with gDNA Eraser––Perfect
Real Time (Takara) was used according to manufacturer’s
instructions. The protocol was performed on ice in a
RNase-free environment to avoid RNA degradation. A neg-
ative control without PrimeScript RT Enzyme Mix I was
always prepared to be sure that samples were not contami-
nated with genomic DNA.

qPCR

Fast SYBR Green Master Mix (Thermo Fisher Scientific)
was used to perform qPCR of cDNAs obtained from 500
ng of RNA and diluted 1:5. Samples were loaded in Mi-
croAmp™ Fast Optical 96-Well Reaction Plate (0.1 ml) and
the experiment was carried out with a 7900HT™ Fast ma-
chine. Each well contained 10 �l of final volume (5 �l SYBR
Green Master Mix 2X, 2 �l ddH2O, 1 �l of each primer, 1 �l
of template). Also, a control without template (blank) was
set. Primers were designed to amplify a region of 60–200 bp
(Supplementary Table 3) and with a temperature of anneal-
ing between 50◦C and 65◦C. Data were analysed using the
Comparative Ct Method according to Applied Biosystems
Protocols.

Modelling

We constructed a deterministic ODE model to qualitatively
capture post-transcriptional events in order to identify key
processes responsible for miRNA-based resource realloca-
tion. Our ODE model is based on a previously published
resource-aware modelling framework (1). Full details of its
formulation and parameterisation can be found in Supple-
mentary Notes 1–6, Supplementary Tables 4–7, and Sup-
plementary Figures 1–2, 6–7.

Deterministic simulations of the ODE model

All the simulations of the ODE model were run using
Python 3 (v. 3.8.13). The scipy.integrate.solve ivp function
from the SciPy library (v. 1.8.0) was used to numerically
integrate the ODE model. More specifically, we used the
Radau method (stiff ODE solver) with an absolute toler-
ance of 10−9, and a relative tolerance of 10−6. To simulate
the ODE model at steady state, the time span was set to [0,
10 000] h. Hence, steady state was taken as the value for
each molecular species at the end of a numerical simulation
of 10 000 h.
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The parameter values used to simulate the ODE model
were chosen as described in Supplementary Note 6 and re-
ported in Supplementary Table 5 (for simulations of the
translational resource reallocation) and Supplementary Ta-
ble 7 (for simulations of the degradation resource realloca-
tion). All plots were generated in Python using the Mat-
plotlib library (v. 3.5.1). The code to run all the simulations
and the model is available publicly as Jupyter notebooks
(https://github.com/giansimone/MIRELLA/).

Analytical characterisation of the translational resource re-
allocation

To quantitatively characterise the reallocation of the trans-
lational resources at steady state, we derived an analytical
solution of the ODE model as reported in Supplementary
Note 1. Full details of the analytical solution derivation can
be found in Supplementary Note 4. The steady-state expres-
sion levels for both the miTarget ( p̄T) and the capacity mon-
itor ( p̄C) are as follows:

p̄T = γT

δT
· ρT + σ ρ

Q
T

1 + ρC + ρT + σ ρ
Q
T

· r Total (1a)

p̄C = γC

δC
· ρC

1 + ρT + σ ρ
Q
T + ρC

· r Total (1b)

where ρT is the resource demand coefficient for the miTar-
get, ρ

Q
T is the resource demand coefficient for the miTar-

get:miRNA complex, and ρC is the resource demand co-
efficient for the capacity monitor. The boolean parameter
σ ∈ {0, 1} captures the location of the miR-TS at either
the 5’ (σ = 0) or 3’ (σ = 1) UTRs. The analytical expres-
sions of the resource demand coefficients are as follows:

ρT = nT αT

κT

(
βT + αQ η+ β

Q
T

βQ (βQ
T +η−)

) (2a)

ρ
Q
T = nT αT

κT

(
β

Q
T + βT βQ (βQ

T +η−)
αQ η+

) (2b)

ρC = nC αC

κC βC
(2c)

where κT and κC are the effective dissociation constant for
the miTarget and capacity monitor, respectively (see Supple-
mentary Note 1 for their definitions). All other parameters
are described in Supplementary Table 5.

Model fitting

The model fitting shown in Supplementary Figure
3 was performed using Python 3 (v. 3.8.13). The
scipy.optimize.differential evolution function from the
SciPy library (v. 1.8.0) was used to find the model pa-
rameters that best fit the predicted steady-state expression
levels for both the miTarget and capacity monitor to the
experimental data reported in Figure 2B. The error dis-

tance between the predicted and the experimental data was
evaluated using the following loss function:

L (ϑ) = ||y − ŷ ||22 + λ || ϑ ||22
where y = [yControl , y1TS 3′ , y1TS 5′ , y3TS 3′ , y3TS 5′ ]T

is the vector that contains the different mean values
for the miTarget (mKate) and the capacity monitor
(EGFP) in each condition as reported in Figure 2b,
ŷ = [ŷControl , ŷ1TS 3′ , ŷ1TS 5′ , ŷ3TS 3′ , ŷ3TS 5′ ]T is the vector
that contains the predicted values in the different simulated
conditions, and ϑ is the vector that contains the model
parameters that have to be identified via the model fitting.
An L2-regularisation term was added to the loss function to
prevent an ill-conditioned parameter estimation problem.
To keep all the model parameters within the same order of
magnitude, the regularisation hyperparameter was set to
λ = 0.001.

The plot in Supplementary Fig. 3 was generated in
Python using the Matplotlib library (v. 3.5.1). The code to
perform the model fitting is available publicly as a Jupyter
notebook (https://github.com/giansimone/MIRELLA/).

RESULTS

A modelling framework explains the relation between gene
downregulation by microRNAs and cellular resources real-
location

We previously observed that miRNA-based iFFL cir-
cuit designs can be used to reduce the resource-based cou-
pling of two co-expressed genes, and that miRNA-driven
gene downregulation is associated with increased expres-
sion of co-encoded, independent genes (1). To understand
the mechanisms underlying this indirect effect on indepen-
dent genes expression, we developed MIRELLA, a deter-
ministic resource-aware model that captures the resource-
constrained co-expression of two constitutive genes when
one of them is downregulated by an endogenous miRNA
(Figure 2A). With a focus on miRNA activity as a key
player in iFFL-based burden mitigation, MIRELLA ex-
tends existing models of biochemical reactions by taking
into account the effects of shared cellular resources. This is
achieved through the use of effective reaction rates that de-
pend on cellular resources demand, like previously done in
(1), while explicitly accounting for ribosomes and RNases
resource pools (Figure 1B). In what follows, we provide a
brief overview of the model, whilst its full details can be
found in Supplementary Note 1.

Since miRNAs act post-transcriptionally, the model fo-
cuses on the processes that contribute to proteins’ expres-
sion, namely miRNA-dependent mRNA downregulation,
mRNA degradation and mRNA translation. The driving
hypothesis is that the observed increased expression of
an independent gene following the downregulation of the
miRNA target is likely due to the reallocation of shared cel-
lular resources involved in post-transcriptional processes.
The model thus consists of a set of ordinary differential
equations (ODEs) that capture the relative gene expres-
sion levels of a constitutive gene which is modulated by
an endogenous miRNA (miTarget––Figure 2A), and a sec-
ond constitutive gene, whose expression levels reflect varia-
tions in the availability of shared cellular resources (capacity
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features of translation, degradation, and interactions between genes and ribosomes. Initially, the model does not capture the interactions between genes
and RNases since the shared cellular resource pool for RNA degradation (RNases) is here considered unlimited. The competition for the shared pool of
ribosomes is captured via the effective translation rate constants γ
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miRNA regulation is modelled via the miRNA-to-miTarget-mRNA binding constant η+. (B) Fold change of miTarget and capacity monitor protein levels
compared to control (noTS) set to 1. Flow cytometry data were acquired 48 h post-transfection and plotted as mean. r.u.: relative units. N = 6 biological
replicates. Unpaired two-sided t-test. P value: ****<0.0001, **<0.005, *<0.05. Dataset taken from (1). (C) Predicted steady-state protein levels of the
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represents a different design condition that depends on the location and the number of the miRNA target sites within the UTRs of the miTarget gene, i.e. 1
or 3 TS, either in the 3’ or the 5’ UTR. The miRNA binding constant η+ is considered as an independent variable and thus is not set to a fixed value. The
values considered for η+ span a range of reasonable characteristic values. r.u.: relative units. A description of the model can be found in Supplementary
Notes 1–3. All the molecular species captured in the model are listed in Supplementary Table 4, whilst all the model parameters––including the numerical
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monitor––Figure 2A). The miTarget is a mRNA encoding
for a red fluorescent protein (mKate) that includes target
sites for miR-31 in its 5’ or 3’ UTR, whereas the capac-
ity monitor is a constitutively expressed green fluorescent
reporter (EGFP). For each of these two genes, the model
captures the essential features of transcription, translation,
degradation, and also the interactions between genes and
shared cellular resource pools as illustrated in Figure 2A.
The model assumes that the shared cellular resource pool
for translation (here comprising only ribosomes for sim-
plicity) is constant, whereas the pool for RNA degrada-
tion (e.g. RNases) is initially considered unlimited. This en-
ables us to initially neglect the demand for RNA degrada-
tion resources and to focus on how miRNA-driven regu-
lation impacts ribosomes reallocation (Figure 2A and 3A,
B). In a second step, we consider a finite pool of RNases,
which are reallocated depending on degradation demand
from the co-expressed genes (Figure 4A, B). Focusing on
post-transcriptional events, the model does not explicitly
consider shared transcriptional resource pools. This choice
does not affect the results and the conclusions since vari-
ations in transcriptional burden can be accounted by a
change in the transcription rate constants αT, αC, and αQ
as shown in Supplementary Note 2. The core elements of
the model include the effective translation rate constants
for both the miTarget (γ E f f

T ) and capacity monitor (γ E f f
C )

genes (Supplementary Note 1). These rates change dynami-
cally according to the translational resource demand, which
depends on the mRNA expression levels mT and mC, and
on the effective dissociation constants κT and κC (see Sup-
plementary Note 1 for further details). The model consid-
ers two main modes of action of miRNAs on their target
genes, namely regulation of translation initiation (23,24)
and mRNA degradation (25). Since synthetic circuits com-
monly use perfectly complementary TS to maximise the
downregulation, we consider mRNA degradation the main
outcome of miRNAs activity. However, when located in
proximity of the AUG at the 5’ UTR, we additionally con-
sider a steric hindrance effect of miRISC complex that com-
petes with ribosome binding and impairs mRNA transla-
tion (26) (Figure 1C).

To capture the binding interactions between the miTar-
get mRNA and its cognate miRNA, the model considers
a further molecular binding reaction as illustrated in Fig-
ure 2A. The strength of the miRNA regulation is modelled
via the characteristic parameter associated with the bind-
ing reaction between the miTarget mRNA and its cognate
miRNA, that is the miRNA binding constant η+ (Figure
2A). η+ can be used as a proxy for capturing the effect of
different repetitions of TS in the 5’ or 3’ UTRs of the target
mRNA. Hereafter, the binding constant η+ is assumed to be
proportional to the number of TS (i.e. we do not consider
cooperation effects in miRNA-driven regulation). The ‘3’
UTR model’ (shaded orange region in Figure 2aA) consid-
ers miRNA regulation via the mRNA degradation rate β

Q
T ,

whilst the ‘5’ UTR model’ (shaded blue region in Figure 2A)
considers miRNA regulation via both the mRNA degrada-
tion rate β

Q
T and the effective translation rate γ

E f f
T, Q (Supple-

mentary Note 1). We assume first-order miRNA-mediated

degradation of the target mRNA miTarget, which results in
an increase of the mRNA degradation rate by a factor λ

Q
T

> 1, that is β
Q
T = λ

Q
T × βT. When the TS are within the 5’

UTR, the model assumes that the effective translation rate
γ

E f f
T, Q is equal to zero since, in this case, miTarget:miRNA

transcripts cannot be translated due to steric hindrance.
To check if our model correctly predicts protein expres-

sion upon miRNA regulation, we ran simulations of the
resource-aware model and compared the results with the
experimental data published in (1). Data represent the pro-
tein levels of miTarget and capacity monitor in H1299 cells,
which naturally express high levels of miR-31. miTarget and
capacity monitor are under the regulation of a bidirectional
constitutive CMV promoter (Supplementary Figure 9a).
The miTarget includes either 1 or 3 TS in the 3’ or in the
5’ UTR. The higher the number of TS, the stronger the re-
pression exerted by miR-31, and consequently, the higher
the capacity monitor levels (Figure 2B).

We simulated the presence of multiple miRNA TS in
both the 3’ UTR and 5’ UTR by considering a range of
reasonable characteristic values for the miRNA binding
constant η+ (Supplementary Table 5 and Supplementary
Note 6), and monitored at the steady-state the values of
the molecular species of the system (Materials and Meth-
ods). Simulation results confirmed that the resource-aware
model can recapitulate the steady-state protein levels of the
miTarget and the capacity monitor observed in the exper-
imental data (Figure 2C). We found that miRNA bind-
ing constant η+ is positively correlated with the steady-
state protein levels of the capacity monitor. As expected,
the simulation results showed that when miRNA TS are
located in the 5’ UTR there is stronger downregulation
of the miTarget followed by higher capacity monitor levels
(Figure 2C).

We next solved the model analytically to obtain insights
into resource demands that account for the steady-state
levels of both the miTarget and the capacity monitor pro-
teins (Eq. (1), Materials and Methods; full details in Sup-
plementary Note 4). We found that these levels depend on
the resource demand coefficients ρT (for miTarget transla-
tion, Eq. (2a)), ρC (for capacity monitor translation, Eq.
(2c)), and ρ

Q
T (for miTarget:miRNA translation, Eq. (2b)).

We noticed that the resource demand coefficient ρ
Q
T is non-

zero only when TS are present in the 3’UTR (Eq. (2b)).
We also observed that the miRNA regulation directly al-
ters the resource demand coefficients associated with mi-
Target translation, although in different ways. More specif-
ically, the coefficient ρT (Eq. (2a)) is downregulated by
both the miRNA binding constant η+ and the miRNA-
enhanced degradation rate β

Q
T . In contrast, the demand co-

efficient ρ
Q
T (Eq. (2b)) is upregulated by the miRNA binding

constant η+ and downregulated by the miRNA-enhanced
degradation rate β

Q
T . Therefore, the miRNA-driven miTar-

get degradation reduces the resource demand coefficients,
and hence the amount of miTarget mRNA that is trans-
lated into miTarget proteins. This effect leads to a redis-
tribution of the translational resources on the capacity
monitor transcripts, which in turn increases the amount
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Figure 3. Ribosomes redistribution. (A) Predicted steady-state concentration levels of the free ribosomes varying the miRNA binding constant η+ in
different design conditions. (B) Predicted steady-state ribosomal densities (Materials and Methods) for both the miTarget and capacity monitor genes
varying the miRNA binding constant η+ in different design conditions. Design conditions include different location and number of the miRNA target
sites within the UTRs of the miTarget gene. The miRNA binding constant η+ is considered as an independent variable and thus is not set to a fixed value.
Instead, the values considered for η+ span a range of reasonable characteristic values. An increase in the miRNA binding constant η+ is correlated to an
increase in the pool of free ribosomes and the ribosomal densities, and supports the hypothesis of ribosomes reallocation upon miRNA-driven regulation.
(C, D) Relative distribution of transcripts and co-sedimentation analysis in polysomes profiles in H1299 cells transfected with a bidirectional promoter
plasmid encoding for EGFP (capacity monitor) and mKate (miTarget) with miR-31 TS either at the 5’ or 3’ UTR. As control, we used the same plasmid
lacking the miR-31 target sites. We analysed both synthetic (C) and endogenous (D) genes. Polysome profiles were obtained 48 hours post transfection.
Means of the relative percentage of transcript sedimentation along the profile ± SE. SE: standard errors are shown. N = 3 biological replicates. Unpaired
two-sided t-test. P-value: * < 0.05, ** < 0.005.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad151/7076485 by Im

perial C
ollege London Library user on 23 M

arch 2023



Nucleic Acids Research, 2023 9

A

C DB

Figure 4. miRNA action increases non-target transcripts’ half-life. (A) Graphical representation of the resource-aware model used to study the reallocation
of the degradation resources (RNases). The model described in Figure 2 is extended to include a finite pool of RNases. The competition for the shared pool
of RNases is captured via the effective mRNA degradation rate constants β

E f f
T and β+

T, Q (miTarget), and β
E f f
E (endogenous gene). The miRNA-driven

decay increases the rate of binding between the miTarget transcript and the degrading resources by increasing the association constant β+
T to the new value

β+
T, Q. A description of the model can be found in Supplementary Note 5. All the molecular species captured in the model are listed in Supplementary

Table 6, whilst all the model parameters––including the numerical values used for the simulations––are summarised in Supplementary Table 7. (B) Predicted
mRNA degradation profiles of an endogenous gene upon halting of transcription for different values of the miRNA binding constant η+. Reallocation
of degrading resources alters the endogenous mRNA degradation profile and depends on the miRNA binding constant. The mRNA degradation profiles
were normalised to the initial data point. Each colour represents a different value for the miRNA binding constant η+. r.u.: relative units. (c, d) mRNA
half-life and degradation dynamics measurement of CCNA2 (C) and eIF4E (D) upon DRB treatment (50 �M). All data were acquired 24 hours post
transfection and are plotted as mean ± SE. SE: standard error. N = 4–8 biological replicates. An unpaired two-sided t-test was used to compare 3TS3’ and
3TS5’ samples to the noTS control. P-value: * < 0.05.

of capacity monitor proteins. This is the only source of
translational resource redistribution in the 3’ UTR model,
whereas the absence of the coefficient ρ

Q
T (i.e. ρ

Q
T = 0)

when TS are present in the 5’ UTR amplifies the redis-
tribution effect in line with the experimental data shown
in Figure 2B. We further validated the resource-aware
model by fitting the model parameters to the experimental
data as shown in Supplementary Figure 3 (Materials and
Methods).

Regulation by miRNA binding to the 5’UTR results in ribo-
somes reallocation and modified translational profiles

To explore the effect of miRNA-driven reallocation of
translational resources we first used our resource-aware
model to predict the amount of free and translating ribo-
somes at steady state. Based on the results of the simu-
lation reported in Figure 2C, the pool of free ribosomes
positively correlates with the miRNA binding constant η+
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(Figure 3A), and with the location of miRNA-TS. Further-
more, the ribosomal density defined here as the number of
translating ribosomes per total number of transcripts, posi-
tively correlates with the miRNA binding constant η+ for
both the miTarget and the capacity monitor (Figure 3B).
This suggests that the miRNA-driven downregulation of
the miTarget frees up translational resources, which can be
deployed to the translation of other transcripts, including
co-expressed ones such as the capacity monitor. We inves-
tigated what may cause the ribosomes reallocation by ana-
lytically solving the model at the steady state (Supplemen-
tary Note 4). We derived the steady-state level for the pool
of free ribosomes (r̄ ) and found that it is inversely propor-
tional to the sum of the resource demand coefficients, that
is r̄ ∼ 1

ρT+ρ
Q
T +ρC

(Supplementary Note 4). Since miRNA

regulation does not affect the capacity monitor resource de-
mand coefficient, a reduction in the total miTarget resource
demand (i.e. ρT + ρ

Q
T ) corresponds to an increase in the

amount of free ribosomes (Supplementary Note 4). We then
analytically calculated the steady-state ribosomal densities
for the capacity monitor transcripts and found that these
correlate with the amount of free ribosomes (Supplemen-
tary Note 4). Of note, our simulations and the analytical
solution show an increased number of ribosomes per tran-
script also for the miTarget mRNA when the miR-TS are
located at the 5’ UTR (Figure 3B, Supplementary Note
4). Even if counterintuitive, this suggests that the increased
amount of available ribosomes is to the benefit of miTarget
transcripts that did not undergo miRNA-mediated down-
regulation.

Next, we experimentally validated the model predictions.
We performed polysome profiling in H1299 cells trans-
fected with miTarget and capacity monitor to observe the
changes in co-sedimentation of the reporter mRNAs with
polysomes (19,20) following miRNA modulation. We con-
sidered several conditions, including no miRNA regula-
tion and TS inserted in the 5’ or 3’ UTR (Figure 3C, D).
After sucrose gradient separation of cytoplasmic lysates,
it is possible to follow the sedimentation of transcripts
with free cytosolic light components (ribonucleoproteins,
RNPs), ribosomal subunits (40S and 60S) and monosomes
(80S) - all associated with non-translating particles - and
with polysomes comprising translating transcripts bound
by multiple ribosomes (Figure 3C, D). In line with model
predictions, both the capacity monitor (EGFP, Figure 3C,
bottom) and the miTarget (mKate, Figure 3C, top) exhibit
modified co-sedimentation profiles upon miR-31 modula-
tion as compared to the control (no miRNA regulation,
grey line). In addition, we monitored the co-sedimentation
profiles of endogenous transcripts, i.e. eIF4E, CCNA2 and
GAPDH, that we previously observed to be impacted by
resource competition. Following miRNA regulation of mi-
Target, we found that they also benefit from ribosome re-
allocation (Figure 3D). Our data indicate that for all anal-
ysed genes, there is a shift towards the polysomal fractions
(peaks 9–10) that is more pronounced when the miR-31 TS
are placed at the 5’ UTR (Figure 3C, D, left) as compared
to the 3’ UTR (Figure 3C, D, right) of the miTarget. These
results are consistent with our hypothesis stating that, due
to the physical proximity of the TS to the AUG, the miRISC

complex interferes with the binding of ribosomes to the tar-
get mRNA, resulting in their re-allocation on other tran-
scripts.

microRNA activity induces a queuing effect on mRNA degra-
dation

Along with ribosome redistribution, we used MIRELLA to
investigate the impact of miRNA-driven regulation on the
RNA degradation machinery. To this end, we modified our
model to include a finite pool of RNases (Supplementary
Note 5), recapitulating the essential features of transcrip-
tion, degradation, and interactions between transcripts and
the degrading resource pool (RNases) as illustrated in Fig-
ure 4A. We then simulated the degradation of an endoge-
nous transcript upon halting of transcription (i.e. all tran-
scription rate constants were set to zero after the system
reached its steady state) for different reasonable values of
the miRNA binding constant η+ (Supplementary Table 7
and Supplementary Note 6).

The competition for the shared pool of RNases is cap-
tured via the effective mRNA degradation rates derived for
the miTarget (βE f f

T ) and the endogenous (βE f f
E ) gene (Fig-

ure 4A and Supplementary Note 5). The effective degrada-
tion rates approximate the degradation reactions shown in
Supplementary Fig. 2 with simpler first-order decay reac-
tions (Figure 4A and Supplementary Note 5). These rates
change dynamically and depend both on the expression lev-
els of the degrading mRNA:RNase complexes (sT and sE,
Supplementary Fig. 2) and the association and dissociation
constants between the RNase and the mRNA strands (Sup-
plementary Note 5 for further details). We assume that the
miRNA-driven decay increases the rate of binding between
the miTarget transcript and the molecular species of the
degradation machinery by increasing the association con-
stant β+

T to the new value β+
T, Q (Supplementary Fig. 2). This

effect produces an increase in the effective mRNA degrada-
tion rate β

E f f
T to the new value β

E f f
T, Q (Figure 4a). The model

predicted an altered degradation profile depending on the
miRNA binding constant η+ (Figure 4B, extended data pre-
sented in Supplementary Fig. 4) and showed that the en-
dogenous degradation dynamics are slower when compared
to the control (η+ = 0). Moreover, the endogenous degra-
dation profile presents two different decay phases when
the miRNA binding constant η+ is greater than ∼2 nM−1

h−1 (Figure 4B and Supplementary Figure 4b). Specifically,
the endogenous mRNA levels remain almost stable during
the first decay phase, whereas they degrade quicker dur-
ing the second phase. We hypothesise that the increased
degradation of the target by miR-31 (Supplementary Fig-
ure 4a) sequesters a significant portion of the degradation
machinery (Supplementary Fig. 4c, d), which is thus not
available for the degradation of non-target mRNAs (Fig-
ure 4A and Supplementary Figure 4b, e). We also observed
that the decay dynamics of the non-targeted transcripts be-
come faster once the majority of miTarget transcripts are
degraded (Supplementary Figures 4 and 5), probably due
to the reallocation of degrading resources from the mi-
Target mRNAs to the non-target mRNAs (Supplementary
Figure 4d, e).
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To experimentally validate the model predictions, we
treated cells with 5,6-dichloro-1-beta-D-ribobenzimidazole
(DRB), a transcription inhibitor (27) and measured the
mRNA half-life of the endogenous genes CCNA2 and
eIF4E, whose half-life are reported within the range 2–4
h (28) (Figure 4C, D). We selected these genes since their
mRNA half-life is much shorter than that of the capacity
monitor EGFP, which is roughly >8 h (29) and thus does
not permit to capture faster decay dynamics.

We transfected H1299 cells with mKate encoding plasmid
with noTS or 3 miR-31 TS at either the 3’ or the 5’UTR
along with a constitutively expressed EGFP. Over a time-
frame of 4 h, CCNA2 and eIF4E mRNAs exhibit a longer
decay time when mKate is flanked by miR-31 TS as com-
pared to the control (no miR-31 TS) (Figure 4C, D). More
specifically, the two mRNA species decrease immediately
after treatment only in the control, while in the case of 3TS
at the 3’ and 5’ UTRs, they remain almost stable for 1 h
30 min after treatment, undergoing a significant decrease
after 2–3 h. The qualitative trend of the 3TS 3’ and 3TS
5’ samples are very similar and in agreement with our hy-
pothesis that miRNAs enhance target degradation at the
same rate when they bind to 3’- or 5’-UTR TS. Finally,
the experimental measurements show that the two mRNA
species reach a plateau 4 h post-DRB treatment, in agree-
ment with the model predictions. Although the predicted
and experimental decays exhibit the same dynamics, we find
that the endogenous mRNAs are not completely degraded
upon treatment with DRB, which we argue is a limitation
of the mRNA half-life assay. In fact, we measured CCNA2
and eIF4E mRNAs up to 6 h post-DRB treatment in wild-
type cells and observed that it reaches about 50% of the ini-
tial concentration for both genes (Supplementary Figure 8).
Overall, our results confirm the model predictions and are
in agreement with our hypothesis of a prominent queuing
effect on the mRNA degradation pathway as a consequence
of the increased degradation of the miTarget by miR-31.

DISCUSSION

miRNAs are fundamental building blocks of post-
transcriptional control of gene expression and help to
finely control genetic circuits and precisely regulate en-
dogenous pathways. We observed that when a synthetic
transcript is downregulated by an endogenous miRNA, a
synthetic co-expressed mRNA is indirectly upregulated.
Here, we combined mathematical modelling and exper-
imental analysis to understand important mechanisms
underlying the effect of miRNAs on resource allocation
in mammalian cells, when their regulation is embedded
in synthetic circuits. This understanding is instrumental
to generate more detailed guidelines for an informed and
rational design of gene circuits, and may also provide
insights into endogenous gene regulation.

We had previously observed that exogenous genes deliv-
ered in mammalian cells compete for intracellular resources.
This effect was observed, albeit to a different extent, regard-
less of genes amount and cell types (1).

Since miRNAs function at post-transcriptional level, we
developed a mathematical model, MIRELLA, that con-
siders effective reaction rates of biological processes to

account for the availability of post-transcriptional shared
resources. Specifically, the model considers one pool of
mRNA translation resources and one pool of mRNA
degradation resources, for simplicity represented by ribo-
somes and RNases, respectively (Figures 2A and 4A). Al-
though the aforementioned biological processes are reg-
ulated by many molecular species, the key cause of re-
source competition in mammalian cells still remains an
open question. Here we focused on ribosomes and RNases
for their relevance in these processes and––relatively to
ribosomes––for the possibility to experimentally measure
them. This allows us to keep the model as simple as possible
to study the role of two prime contributors––that is ribo-
somes and RNases––in gene expression burden. We antici-
pate that other molecular species could contribute to shap-
ing gene expression as a result of resource competition, such
as tRNAs for rare codons in mRNA translation. In this
respect, our resource-aware modelling framework can be
extended to capture more complex scenarios, for example,
by including the resource competition for shared tRNAs
in the model’s equations. Moreover, our context-aware the-
ory paves the way towards a holistic understanding of cell
biology (30) instrumental to engineer more sophisticated
biomolecular circuits that can maximise the global system’s
output (e.g. a protein or a compound of interest) by operat-
ing synergistically with the cell physiology (31)

The experimental setting is based on two fluorescent re-
porters driven by constitutive promoters, one regulated by
an endogenous miRNA (miTarget) and the other lacking
regulation, as a proxy for resources availability (capacity
monitor). This design is simple and is meant to quickly ap-
preciate differences in protein expression levels. The mod-
elling framework suggested that miRNA regulation has two
major consequences on resource allocation. One is a queue-
ing effect on the RNA degradation pathway as the result of
the strong miRNA-mediated slicing of miTarget transcripts.
The other is an increased amount of ribosomes becoming
available for translating other transcripts.

Synthetic networks that embed miRNA regulation typi-
cally employ perfectly complementary TS to maximise the
fold change expression of the target gene (18), and it has
been generally observed that the abundance of miRNAs
with respect to their target affects genetic circuits func-
tionality (32). It was previously proposed that a significant
mRNA degradation by miRNA may lead to a ‘queueing ef-
fect’ for the degradation of other mRNAs, decreasing the
effective mRNA decay rate (33). We validated this hypoth-
esis by quantifying the mRNA decay of two endogenous
genes, CCNA2 and eIF4E, which were previously shown to
be impacted by the burden imposed by the expression of
synthetic circuits (1). We observed that upon transcription-
inhibition treatment with DRB, CCNA2 and eIF4E are de-
graded at a slower pace in the samples expressing miTarget
as compared to the control lacking the TS. These results
suggest that an accumulation of other mRNAs contributes
to increased cognate protein levels. This finding may be use-
ful for circuit design considerations, particularly when such
systems are devised to study endogenous processes or path-
ways.

Our experimental findings suggest that ribosomes reallo-
cate upon miRNA regulation and that this effect is more
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pronounced when miRNA-TS are located in the 5’UTR
of the target gene. We speculate that the proximity of TS
to the AUG may prevent ribosomes from binding due to
steric hindrance, effectively reducing the translation of the
transcript. It was previously observed that miRNA-RISC
may decrease the rate of translation initiation (25). One
mechanism reported that Argonaute proteins, along with
miRNA and cognate targets accumulate in P-bodies in
a miRNA-dependent manner (23,24,34,35), increasing the
amount of ribosome-free mRNA and free ribosomes. Our
model also suggested that the downregulation of the mi-
Target would result in more free ribosomes. Therefore, we
performed polysome profiling to observe changes in the
co-sedimentation profiles of transcripts with ribosomes in
polysomes. Of note, a modified co-sedimentation profile of
the capacity monitor, with a shift towards heavier gradi-
ent fractions (9–10, Figure 3C) in the 5’UTR-TS condi-
tion was expected. In contrast, the altered profile of the
miTarget was surprising. In contrast, a previous study re-
ported that translation repression by Let-7 miRNA in mam-
malian cells resulted in a shift of the mRNA target to lighter
fractions in polysome gradients (24). We speculate that our
system differs in TS location (5’ versus 3’UTR) and com-
plementarity (perfect vs non-perfect) from the abovemen-
tioned study. Therefore, since there is a major effect of mi-
Target degradation due to the endonuclease activity of the
miRISC complex, there is an enrichment of the remaining
transcripts with the available ribosomes, including the mi-
Target transcripts escaping the miRNA activity. This spec-
ulation was supported also by our MIRELLA model. Re-
gardless of where ribosomes reallocate, it is important to
consider this secondary effect of miRNA regulation. The
primary function of miRNAs is the downregulation of the
target genes, and recently other properties of miRNA were
demonstrated, such as buffering gene expression against
noise or external inducer concentration (10–12). Our results
indicate further hidden secondary effects that could play a
role in the general homeostasis of protein expression. How-
ever, proving this idea in an endogenous system is challeng-
ing since miRNAs are embedded in intricate networks that
do not allow to untangle single effects of miRNA regulation
easily. In future studies, it could be interesting to analyse
the impact of miRNAs on resource allocation as related to
the number of ribosomes sequestered by the miTarget. This
could be achieved by placing internal ribosome entry sites
(IRES) in the target transcript and observing the effect on
the capacity monitor once the miRNA activity is impaired
(e.g. by miRNA-specific inhibitors).

Resource competition can dramatically affect circuits be-
haviour and cellular physiology. Conversely, burden miti-
gation can speed up the cumbersome design-build-test cy-
cle and open up avenues for the predictive design and en-
gineering of more reliable gene constructs in mammalian
cells. In this respect, our study provides the scientific
community with a necessary understanding for robustly
and effectively building genetic devices and biomolecu-
lar controllers––for example, iFFL architectures based on
miRNAs (1,36)––that rely on precise quantitative assess-
ment of molecular species. Our study also highlights that
the use of appropriate experimental controls for a desired
genetic circuit architecture, along with appropriate com-

putational tools may be key to avoid results misinterpre-
tation and to correctly predict the overall outcome of the
synthetic device. Moreover, our results contribute to com-
pelling insights into primary and secondary regulatory ef-
fects of miRNA action with implications for basic science
and for industrial and medical biotechnology.
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