182 research outputs found
Very-high-energy γ -Ray Emission from Young Massive Star Clusters in the Large Magellanic Cloud
The Tarantula Nebula in the Large Magellanic Cloud is known for its high star formation activity. At its center lies the young massive star cluster R136, providing a significant amount of the energy that makes the nebula shine so brightly at many wavelengths. Recently, young massive star clusters have been suggested to also efficiently produce very high-energy cosmic rays, potentially beyond PeV energies. Here, we report the detection of very-high-energy γ-ray emission from the direction of R136 with the High Energy Stereoscopic System, achieved through a multicomponent, likelihood-based modeling of the data. This supports the hypothesis that R136 is indeed a very powerful cosmic-ray accelerator. Moreover, from the same analysis, we provide an updated measurement of the γ-ray emission from 30 Dor C, the only superbubble detected at TeV energies presently. The γ-ray luminosity above 0.5 TeV of both sources is (2–3) × 1035 erg s−1. This exceeds by more than a factor of 2 the luminosity of HESS J1646−458, which is associated with the most massive young star cluster in the Milky Way, Westerlund 1. Furthermore, the γ-ray emission from each source is extended with a significance of >3σ and a Gaussian width of about 30 pc. For 30 Dor C, a connection between the γ-ray emission and the nonthermal X-ray emission appears likely. Different interpretations of the γ-ray signal from R136 are discussed
The Vanishing of the Primary Emission Region in PKS 1510-089
In 2021 July, PKS 1510-089 exhibited a significant flux drop in the high-energy γ-ray (by a factor 10) and optical (by a factor 5) bands and remained in this low state throughout 2022. Similarly, the optical polarization in the source vanished, resulting in the optical spectrum being fully explained through the steady flux of the accretion disk and the broad-line region. Unlike the aforementioned bands, the very-high-energy γ-ray and X-ray fluxes did not exhibit a significant flux drop from year to year. This suggests that the steady-state very-high-energy γ-ray and X-ray fluxes originate from a different emission region than the vanished parts of the high-energy γ-ray and optical jet fluxes. The latter component has disappeared through either a swing of the jet away from the line of sight or a significant drop in the photon production efficiency of the jet close to the black hole. Either change could become visible in high-resolution radio images
The Inheritance of Histone Modifications Depends upon the Location in the Chromosome in Saccharomyces cerevisiae
Histone modifications are important epigenetic features of chromatin that must be replicated faithfully. However, the molecular mechanisms required to duplicate and maintain histone modification patterns in chromatin remain to be determined. Here, we show that the introduction of histone modifications into newly deposited nucleosomes depends upon their location in the chromosome. In Saccharomyces cerevisiae, newly deposited nucleosomes consisting of newly synthesized histone H3-H4 tetramers are distributed throughout the entire chromosome. Methylation of lysine 4 on histone H3 (H3-K4), a hallmark of euchromatin, is introduced into these newly deposited nucleosomes, regardless of whether the neighboring preexisting nucleosomes harbor the K4 mutation in histone H3. Furthermore, if the heterochromatin-binding protein Sir3 is unavailable during DNA replication, histone H3-K4 methylation is introduced onto newly deposited nucleosomes in telomeric heterochromatin. Thus, a conservative distribution model most accurately explains the inheritance of histone modifications because the location of histones within euchromatin or heterochromatin determines which histone modifications are introduced
Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation
Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56
Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients
Background
Patients with acute medical illnesses are at prolonged risk for venous thrombosis. However, the appropriate duration of thromboprophylaxis remains unknown.
Methods
Patients who were hospitalized for acute medical illnesses were randomly assigned to receive subcutaneous enoxaparin (at a dose of 40 mg once daily) for 10±4 days plus oral betrixaban placebo for 35 to 42 days or subcutaneous enoxaparin placebo for 10±4 days plus oral betrixaban (at a dose of 80 mg once daily) for 35 to 42 days. We performed sequential analyses in three prespecified, progressively inclusive cohorts: patients with an elevated d-dimer level (cohort 1), patients with an elevated d-dimer level or an age of at least 75 years (cohort 2), and all the enrolled patients (overall population cohort). The statistical analysis plan specified that if the between-group difference in any analysis in this sequence was not significant, the other analyses would be considered exploratory. The primary efficacy outcome was a composite of asymptomatic proximal deep-vein thrombosis and symptomatic venous thromboembolism. The principal safety outcome was major bleeding.
Results
A total of 7513 patients underwent randomization. In cohort 1, the primary efficacy outcome occurred in 6.9% of patients receiving betrixaban and 8.5% receiving enoxaparin (relative risk in the betrixaban group, 0.81; 95% confidence interval [CI], 0.65 to 1.00; P=0.054). The rates were 5.6% and 7.1%, respectively (relative risk, 0.80; 95% CI, 0.66 to 0.98; P=0.03) in cohort 2 and 5.3% and 7.0% (relative risk, 0.76; 95% CI, 0.63 to 0.92; P=0.006) in the overall population. (The last two analyses were considered to be exploratory owing to the result in cohort 1.) In the overall population, major bleeding occurred in 0.7% of the betrixaban group and 0.6% of the enoxaparin group (relative risk, 1.19; 95% CI, 0.67 to 2.12; P=0.55).
Conclusions
Among acutely ill medical patients with an elevated d-dimer level, there was no significant difference between extended-duration betrixaban and a standard regimen of enoxaparin in the prespecified primary efficacy outcome. However, prespecified exploratory analyses provided evidence suggesting a benefit for betrixaban in the two larger cohorts. (Funded by Portola Pharmaceuticals; APEX ClinicalTrials.gov number, NCT01583218. opens in new tab.
Constraints on the intergalactic magnetic field using Fermi-LAT and H.E.S.S. blazar observations
Magnetic fields in galaxies and galaxy clusters are believed to be the result
of the amplification of intergalactic seed fields during the formation of
large-scale structures in the universe. However, the origin, strength, and
morphology of this intergalactic magnetic field (IGMF) remain unknown. Lower
limits on (or indirect detection of) the IGMF can be obtained from observations
of high-energy gamma rays from distant blazars. Gamma rays interact with the
extragalactic background light to produce electron-positron pairs, which can
subsequently initiate electromagnetic cascades. The -ray signature of
the cascade depends on the IGMF since it deflects the pairs. Here we report on
a new search for this cascade emission using a combined data set from the Fermi
Large Area Telescope and the High Energy Stereoscopic System. Using
state-of-the-art Monte Carlo predictions for the cascade signal, our results
place a lower limit on the IGMF of G for a coherence
length of 1 Mpc even when blazar duty cycles as short as 10 yr are assumed.
This improves on previous lower limits by a factor of 2. For longer duty cycles
of () yr, IGMF strengths below G
( G) are excluded, which rules out specific models for IGMF
generation in the early universe.Comment: 20 pages, 7 figures, 4 tables. Accepted for publication in ApJ
Letters. Auxiliary data is provided in electronic format at
https://zenodo.org/record/801431
H.E.S.S. follow-up observations of GRB221009A
GRB221009A is the brightest gamma-ray burst ever detected. To probe the
very-high-energy (VHE, \!100 GeV) emission, the High Energy Stereoscopic
System (H.E.S.S.) began observations 53 hours after the triggering event, when
the brightness of the moonlight no longer precluded observations. We derive
differential and integral upper limits using H.E.S.S. data from the third,
fourth, and ninth nights after the initial GRB detection, after applying
atmospheric corrections. The combined observations yield an integral energy
flux upper limit of above GeV. The
constraints derived from the H.E.S.S. observations complement the available
multiwavelength data. The radio to X-ray data are consistent with synchrotron
emission from a single electron population, with the peak in the SED occurring
above the X-ray band. Compared to the VHE-bright GRB190829A, the upper limits
for GRB221009A imply a smaller gamma-ray to X-ray flux ratio in the afterglow.
Even in the absence of a detection, the H.E.S.S. upper limits thus contribute
to the multiwavelength picture of GRB221009A, effectively ruling out an IC
dominated scenario.Comment: 10 pages, 4 figures. Accepted for publication in APJL. Corresponding
authors: J. Damascene Mbarubucyeye, H. Ashkar, S. J. Zhu, B. Reville, F.
Sch\"ussle
TeV flaring activity of the AGN PKS 0625-354 in November 2018
Most -ray detected active galactic nuclei are blazars with one of
their relativistic jets pointing towards the Earth. Only a few objects belong
to the class of radio galaxies or misaligned blazars. Here, we investigate the
nature of the object PKS 0625-354, its -ray flux and spectral
variability and its broad-band spectral emission with observations from
H.E.S.S., Fermi-LAT, Swift-XRT, and UVOT taken in November 2018. The H.E.S.S.
light curve above 200 GeV shows an outburst in the first night of observations
followed by a declining flux with a halving time scale of 5.9h. The
-opacity constrains the upper limit of the angle between the jet
and the line of sight to . The broad-band spectral energy
distribution shows two humps and can be well fitted with a single-zone
synchrotron self Compton emission model. We conclude that PKS 0625-354, as an
object showing clear features of both blazars and radio galaxies, can be
classified as an intermediate active galactic nuclei. Multi-wavelength studies
of such intermediate objects exhibiting features of both blazars and radio
galaxies are sparse but crucial for the understanding of the broad-band
emission of -ray detected active galactic nuclei in general.Comment: 9 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
HESS J1809193: a halo of escaped electrons around a pulsar wind nebula?
Context. HESS J1809193 is an unassociated very-high-energy -ray
source located on the Galactic plane. While it has been connected to the nebula
of the energetic pulsar PSR J18091917, supernova remnants and molecular
clouds present in the vicinity also constitute possible associations. Recently,
the detection of -ray emission up to energies of 100 TeV with the
HAWC observatory has led to renewed interest in HESS J1809193.
Aims. We aim to understand the origin of the -ray emission of HESS
J1809193.
Methods. We analysed 93.2 h of data taken on HESS J1809193 above 0.27 TeV
with the High Energy Stereoscopic System (H.E.S.S.), using a multi-component,
three-dimensional likelihood analysis. In addition, we provide a new analysis
of 12.5 yr of Fermi-LAT data above 1 GeV within the region of HESS J1809193.
The obtained results are interpreted in a time-dependent modelling framework.
Results. For the first time, we were able to resolve the emission detected
with H.E.S.S. into two components: an extended component that exhibits a
spectral cut-off at 13 TeV, and a compact component that is located close
to PSR J18091917 and shows no clear spectral cut-off. The Fermi-LAT analysis
also revealed extended -ray emission, on scales similar to that of the
extended H.E.S.S. component.
Conclusions. Our modelling indicates that based on its spectrum and spatial
extent, the extended H.E.S.S. component is likely caused by inverse Compton
emission from old electrons that form a halo around the pulsar wind nebula. The
compact component could be connected to either the pulsar wind nebula or the
supernova remnant and molecular clouds. Due to its comparatively steep
spectrum, modelling the Fermi-LAT emission together with the H.E.S.S.
components is not straightforward. (abridged)Comment: 14 pages, 10 figures. Accepted for publication in A&A. Corresponding
authors: Vikas Joshi, Lars Mohrman
Emerging evidence of a link between the polycystins and the mTOR pathways
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by the formation of renal cysts. This disease can be caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC-1) and -2 (PC-2), respectively
- …