122 research outputs found

    Effects of Physiological Doses of Resveratrol and Quercetin on Glucose Metabolism in Primary Myotubes

    Get PDF
    henolic compounds have emerged in recent years as an option to face insulin resistance and diabetes. The central aim of this study was: (1) to demonstrate that physiological doses of resveratrol (RSV) or quercetin (Q) can influence glucose metabolism in human myotubes, (2) to establish whether AMP-activated protein kinase (AMPK) and protein kinase B –PKB- (Akt) pathways are involved in this effect. In addition, the effects of these polyphenols on mitochondrial biogenesis and fatty acid oxidation were analysed. Myotubes from healthy donors were cultured for 24 h with either 0.1 μM of RSV or with 10 μM of Q. Glucose metabolism, such as glycogen synthesis, glucose oxidation, and lactate production, were measured with D[U-14C]glucose. β-oxidation using [1–14C]palmitate as well as the expression of key metabolic genes and proteins by Real Time PCR and Western blot were also assessed. Although RSV and Q increased pgc1α expression, they did not significantly change either glucose oxidation or β-oxidation. Q increased AMPK, insulin receptor substrate 1 (IRS-1), and AS160 phosphorylation in basal conditions and glycogen synthase kinase 3 (GSK3β) in insulin-stimulated conditions. RSV tended to increase the phosphorylation rates of AMPK and GSK3β. Both of the polyphenols increased insulin-stimulated glycogen synthesis and reduced lactate production in human myotubes. Thus, physiological doses of RSV or Q may exhibit anti-diabetic actions in human myotubes.This research has been supported by Instituto de Salud Carlos III (CIBERObn) under Grant CB12/03/30007 (01/2013) and by the University of the Basque Country under Grant GIU18-173 (07/2018)

    Atrial Natriuretic Peptide Induces Postprandial Lipid Oxidation in Humans

    Get PDF
    OBJECTIVE—Atrial natriuretic peptide (ANP) regulates arterial blood pressure. In addition, ANP has recently been shown to promote human adipose tissue lipolysis through cGMP-mediated hormone-sensitive lipase activation. We hypothesized that ANP increases postprandial free fatty acid (FFA) availability and energy expenditure while decreasing arterial blood pressure

    Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse

    Get PDF
    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(˙-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(˙-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(˙-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging

    Recreational Physical Activity as an Independent Predictor of Multivariable Cardiovascular Disease Risk

    Get PDF
    The role of physical activity in preventing CVD has been highlighted by Professor Jerry Morris in the 1950’s. We report outcome of a 15-year prospective study with the aim to identify whether physical activity showed cardiovascular benefit independent of common risk factors and of central obesity. Baseline data of 8662 subjects, with no previous history of heart disease, diabetes or stroke, were obtained from an age- and gender- stratified sample of adults in Australian capital cities and were linked with the National Death Index to determine the causes of death of 610 subjects who had died to 31 December 2004. The study consisted of 4175 males (age 42.3±13.1 years) and 4487 females (age 42.8±13.2 years). Fasting serum lipid levels, systolic and diastolic blood pressure and smoking habits at baseline were recorded. The Framingham Risk Scores of 15-year mortality due to CHD and CVD were calculated using established equations. Subjects were also asked if they engaged in vigorous exercise, less vigorous exercise or walk for recreation and exercise in the past 2 weeks. Subjects in the high recreational physical activity category were 0.16 (0.06–0.43; p<0.001) and 0.12 (0.03–0.48; p = 0.003) times as likely as subjects in the low category for CVD and CHD mortality respectively. After adjusting for both the Framingham Risk Score and central obesity (Waist circumference to Hip circumference Ratio), those in the high recreational physical activity group were 0.35 (0.13–0.98) times less likely compared to the low category for CVD mortality. Recreational physical activity independently predicted reduced cardiovascular mortality over fifteen years. A public health focus on increased physical activity and preventing obesity is required to reduce the risk of CVD and CHD

    Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models:a mechanistic insight

    Get PDF
    International audienceCeramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt), a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC) isoforms, and the second dependent on protein phosphatase-2A (PP2A). The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM) present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies

    Regulation of skeletal muscle oxidative capacity and insulin signaling by the Mitochondrial Rhomboid Protease PARL

    Get PDF
    Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1&alpha; protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.<br /

    Remodeling Lipid Metabolism and Improving Insulin Responsiveness in Human Primary Myotubes

    Get PDF
    OBJECTIVE: Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D). We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness. METHODS: Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI) during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control). Mitochondrial content, (14)C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured. RESULTS: PFI increased oxidation of oleate and palmitate to CO(2) (p<0.001), isoproterenol-stimulated lipolysis (p = 0.01), triacylglycerol (TAG) storage (p<0.05) and mitochondrial DNA copy number (p = 0.01) and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001). CONCLUSIONS: Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes

    Minimalist C/case

    Get PDF
    This article discusses A-licensing and case from a minimalist perspective, pursuing the idea that argument NPs cyclically enter a number of A-relations, rather than just a single one, resulting in event-licensing, case-licensing and phi-licensing. While argument case commonly reflects Voice/v-relations, canonical A-movement is driven by higher elements, either in the C-T system or in a superordinate v-system (in ECM constructions). In addition, there is a distinction to be drawn between the triggering of A-movement, by for example C, and the licensing of the landing site, by for instance T, C-probing leading to tucking-in into Spec-T. Much of the evidence presented comes from quirky case constructions in Icelandic and from ECM and raising constructions in Icelandic and English. It is argued that T in ECM constructions inherits phi-licensing from the matrix v, regardless of the case properties of v
    corecore