17 research outputs found

    Cxcl12 evolution – subfunctionalization of a ligand through altered interaction with the chemokine receptor

    Get PDF
    The active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization – the specialization of two gene copies to perform complementary functions following gene duplication – which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes

    The CXCL12γ Chemokine Displays Unprecedented Structural and Functional Properties that Make It a Paradigm of Chemoattractant Proteins

    Get PDF
    The CXCL12γ chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12γ is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12γ through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12γ both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12γ strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12γ one of the higher affinity for HS (Kd = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12γ to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12α. In good agreement, mutant CXCL12γ chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12γ features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12γ the paradigm of haptotactic proteins, which regulate essential homeostatic functions by promoting directional migration and selective tissue homing of cells

    Activation of the global gene regulator PrrA (RegA) from Rhodobacter sphaeroides

    No full text
    PrrA is a global transcription regulator activated upon phosphorylation by its cognate kinase PrrB in response to low oxygen levels in Rhodobacter sphaeroides. Here we show by gel filtration, analytical ultracentrifugation, and NMR diffusion measurements that treatment of PrrA with a phosphate analogue, BeF(3)(-), results in dimerization of the protein, producing a protein that binds DNA. No dimeric species was observed in the absence of BeF(3)(-). Upon addition of BeF(3)(-), the inhibitory activity of the N-terminal domain on the C-terminal DNA-binding domain is relieved, after which PrrA becomes capable of binding DNA as a dimer. The interaction surface of the DNA-binding domain with the regulatory domain of PrrA is identified by NMR as being a well-conserved region centered on helix alpha6, which is on the face opposite from the DNA recognition helix. This suggests that there is no direct blockage of DNA binding in the inactive state but rather that PrrA dimerization promotes a correct arrangement of two adjacent DNA-binding domains that recognizes specific DNA binding sequences

    Staphylococcus aureus sacculus mediates activities of M23 hydrolases.

    No full text
    International audiencePeptidoglycan, a gigadalton polymer, functions as the scaffold for bacterial cell walls and provides cell integrity. Peptidoglycan is remodelled by a large and diverse group of peptidoglycan hydrolases, which control bacterial cell growth and division. Over the years, many studies have focused on these enzymes, but knowledge on their action within peptidoglycan mesh from a molecular basis is scarce. Here, we provide structural insights into the interaction between short peptidoglycan fragments and the entire sacculus with two evolutionarily related peptidases of the M23 family, lysostaphin and LytM. Through nuclear magnetic resonance, mass spectrometry, information-driven modelling, site-directed mutagenesis and biochemical approaches, we propose a model in which peptidoglycan cross-linking affects the activity, selectivity and specificity of these two structurally related enzymes differently

    LptB 2 FG is an ABC transporter with Adenylate Kinase activity regulated by LptC/A recruitment

    No full text
    ABSTRACT L ipo p oly s accharide (LPS) is an essential glycolipid covering the surface of gram-negative bacteria. Its transport involves a dedicated 7 protein transporter system, the Lpt machinery, that physically spans the entire cell envelope. LptB 2 FG complex is an ABC transporter that hydrolyses A denosine T ri p hosphate (ATP) to extract LPS from the inner membrane (IM). LptB 2 FG was extracted directly from IM with its original lipid environment by Styrene-Maleic acids polymers(SMA). SMA-LptB 2 FG in nanodiscs displays ATPase activity and a previously uncharacterized A denylate K inase (AK) activity. It catalyzes phosphotransfer between two ADP molecules to generate ATP and AMP. ATPase and AK activities of LptB 2 FG are both stimulated by the interaction on the periplasmic side with LptC and LptA partners and inhibited by the presence of LptC transmembrane helix. Isolated ATPase module (LptB) has weak AK activity in absence of LptF and LptG, and one mutation, that weakens affinity for ADP, has AK activity similar to that of fully assembled complex. LptB 2 FG is thus capable of producing ATP from ADP depending on the assembly of the Lpt bridge and the AK activity might be important to ensure efficient LPS transport in fully assembled Lpt system

    Expression, purification and characterisation of full-length heterologously expressed histidine protein kinase RegB from Rhodobacter sphaeroides

    No full text
    The global redox switch between aerobic and anaerobic growth in Rhodobacter sphaeroides is controlled by the RegA/RegB two-component system, in which RegB is the integral membrane histidine protein kinase, and RegA is the cytosolic response regulator. Despite the global regulatory importance of this system and its many homologues, there have been no reported examples to date of heterologous expression of full-length RegB or any histidine protein kinases. Here, we report the amplified expression of full-length functional His-tagged RegB in Escherichia coli, its purification, and characterisation of its properties. Both the membrane-bound and purified solubilised RegB protein demonstrate autophosphorylation activity, and the purified protein autophosphorylates at the same rate under both aerobic and anaerobic conditions confirming that an additional regulator is required to control/inhibit autophosphorylation. The intact protein has similar activity to previously characterised soluble forms, but is dephosphorylated more rapidly than the soluble form (halflife ca 30 minutes) demonstrating that the transmembrane segment present in the full-length RegB may be an important regulator of RegB activity. Phosphotransfer from RegB to RegA (overexpressed and purified from E. coli ) by RegB is very rapid, as has been reported for the soluble domain. Dephosphorylation of active RegA by full-length RegB has a rate similar to that observed previously for soluble RegB

    Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly

    Get PDF
    Abstract Transport of lipopolysaccharides (LPS) to the surface of the outer membrane is essential for viability of Gram-negative bacteria. Periplasmic LptC and LptA proteins of the LPS transport system (Lpt) are responsible for LPS transfer between the Lpt inner and outer membrane complexes. Here, using a monomeric E. coli LptA mutant, we first show in vivo that a stable LptA oligomeric form is not strictly essential for bacteria. The LptC-LptA complex was characterized by a combination of SAXS and NMR methods and a low resolution model of the complex was determined. We were then able to observe interaction of LPS with LptC, the monomeric LptA mutant as well as with the LptC-LptA complex. A LptC-LPS complex was built based on NMR data in which the lipid moiety of the LPS is buried at the interface of the two β-jellyrolls of the LptC dimer. The selectivity of LPS for this intermolecular surface and the observation of such cavities at homo- or heteromolecular interfaces in LptC and LptA suggests that intermolecular sites are essential for binding LPS during its transport

    Suppressor Mutations in LptF Bypass Essentiality of LptC by Forming a Six-Protein Transenvelope Bridge That Efficiently Transports Lipopolysaccharide

    No full text
    International audienceThe presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli , by seven essential proteins

    HSulf sulfatases catalyze processive and oriented 6-O-desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity

    No full text
    Seffouh A, Milz F, Przybylski C, et al. HSulf sulfatases catalyze processive and oriented 6-O-desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity. The Faseb Journal. 2013;27(6):2431-2439.Sulfs are extracellular sulfatases that have emerged recently as critical regulators of heparan sulfate (HS) activities through their ability to catalyze specific 6-O-desulfation of the polysaccharide. Consequently, Sulfs have been involved in many physiological and pathological processes, and notably for Sulf-2, in the development of cancers with poor prognosis. Despite growing interest, little is known about the structure and activity of these enzymes and the way they induce dynamic remodeling of HS 6-O-sulfation status. Here, we have combined an array of analytical approaches, including mass spectrometry, NMR, HS oligosaccharide sequencing, and FACS, to dissect HSulf-2 sulfatase activity, either on a purified octasaccharide used as a mimic of HS functional domains, or on intact cell-surface HS chains. In parallel, we have studied the functional consequences of HSulf-2 activity on fibroblast growth factor (FGF)-induced mitogenesis and found that the enzyme could differentially regulate FGF1 and FGF2 activities. Notably, these data supported the existence of precise 6-O-sulfation patterns for FGF activation and provided new insights into the saccharide structures involved. Altogether, our data bring to light an original processive enzymatic mechanism, by which HSulfs catalyze oriented alteration of HS 6-O-desulfation patterns and direct fine and differential regulation of HS functions.-Seffouh, A., Milz, F., Przybylski, C., Laguri, C., Oosterhof, A., Bourcier, S., Sadir, R., Dutkowski, E., Daniel, R., van Kuppevelt, T. H., Dierks, T., Lortat-Jacob, H., Vives, R. R. HSulf sulfatases catalyze processive and oriented 6-O-desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity

    Suppressor Mutations in LptF Bypass Essentiality of LptC by Forming a Six-Protein Transenvelope Bridge That Efficiently Transports Lipopolysaccharide

    No full text
    International audienceThe presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli , by seven essential proteins
    corecore