197 research outputs found

    Correction to: Proteomics Data Analysis

    Get PDF
    In the original version of this book, chapter 16 was published non-open access. It has now been changed to open access under a CC BY 4.0 license, and the copyright holder has been updated to "The Author(s)." This book has been updated with these changes

    Oxidative DNA Damage in Neurons: Implication of Ku in Neuronal Homeostasis and Survival

    Get PDF
    Oxidative DNA damage is produced by reactive oxygen species (ROS) which are generated by exogenous and endogenous sources and continuously challenge the cell. One of the most severe DNA lesions is the double-strand break (DSB), which is mainly repaired by nonhomologous end joining (NHEJ) pathway in mammals. NHEJ directly joins the broken ends, without using the homologous template. Ku70/86 heterodimer, also known as Ku, is the first component of NHEJ as it directly binds DNA and recruits other NHEJ factors to promote the repair of the broken ends. Neurons are particularly metabolically active, displaying high rates of transcription and translation, which are associated with high metabolic and mitochondrial activity as well as oxygen consumption. In such a way, excessive oxygen radicals can be generated and constantly attack DNA, thereby producing several lesions. This condition, together with defective DNA repair systems, can lead to a high accumulation of DNA damage resulting in neurodegenerative processes and defects in neurodevelopment. In light of recent findings, in this paper, we will discuss the possible implication of Ku in neurodevelopment and in mediating the DNA repair dysfunction observed in certain neurodegenerations

    Autophagy and the Cell Cycle: A Complex Landscape

    Get PDF
    Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed

    Utilization of Water Resources and Sustainable Crop Production

    Get PDF
    BIM is representing a shift in the traditional process of building delivery. Its adoption in US reached 71% in 2012 rising from 17% in 2007; moreover, Europe is going to adopt BIM for public contracting as promoted by the European Union Public Procurement Directive. Meanwhile, BIM is widely diffused in UK and Northern Europe, as it includes a more accurate documentation, less rework and shorter project timelines. The use of BIM to provide data for energy performance evaluation and sustainability assessment is defined Green BIM and pioneering design organizations are adopting this approach to enable integrated design, construction and maintenance towards Net Zero Energy buildings. Green BIM includes Building Energy Modelling dealing with project energy performance to identify options optimising building energy efficiency during the life cycle. By allowing revisions during the design phase, project teams can ensure that customers' green ambitions beyond regulation compliance can be realized, together with technical and economic requirements. Thus, BIM can provide information to support the calculation of a number of credit points to define goal levels of sustainability related to rating systems. The aim of the paper is to investigate the opportunity to include the "green dimension" in BIM considering the more diffused rating systems.</p

    Fecal Proteome Profile in Dogs Suffering from Different Hepatobiliary Disorders and Comparison with Controls

    Get PDF
    In the present study, the fecal proteomes of clinically healthy dogs (HD = n. 10), of dogs showing clinical, ultrasonographic, and/or laboratory evidence of different hepatobiliary dysfunction (DHD = n. 10), and of dogs suffering from chronic hepatitis (CHD = n. 10) were investigated with an Ultimate 3000 nanoUPLC system, coupled to an Orbitrap Fusion Lumos Tribrid mass spectrometer. Fifty-two different proteins of canine origin were identified qualitatively in the three study groups, and quantitative differences were found in 55 proteins when comparing groups. Quantitatively, a total of 41 and 36 proteins were found differentially abundant in the DHD and CHD groups compared to the control HD, and 38 proteins resulted dysregulated in the CHD group as compared to the DHD group. Among the various proteins, differently abundant fecal fibronectin and haptoglobin were more present in the feces of healthy and DHD dogs than in chronic ones, leading us to hypothesize its possible diagnostic/monitoring role in canine chronic hepatitis. On the other hand, the trefoil factor 2 was increased in DHD dogs. Our results show that the analysis of the fecal proteome is a very promising field of study, and in the case of dogs suffering from different hepatobiliary disorders, it was able to highlight both qualitative and quantitative differences among the three groups included

    Fecal proteome profile in dogs suffering from different hepatobiliary disorders and comparison with controls

    Get PDF
    In the present study, the fecal proteomes of clinically healthy dogs (HD = n. 10), of dogs showing clinical, ultrasonographic, and/or laboratory evidence of different hepatobiliary dysfunction (DHD = n. 10), and of dogs suffering from chronic hepatitis (CHD = n. 10) were investigated with an Ultimate 3000 nanoUPLC system, coupled to an Orbitrap Fusion Lumos Tribrid mass spectrometer. Fifty-two different proteins of canine origin were identified qualitatively in the three study groups, and quantitative differences were found in 55 proteins when comparing groups. Quantitatively, a total of 41 and 36 proteins were found differentially abundant in the DHD and CHD groups compared to the control HD, and 38 proteins resulted dysregulated in the CHD group as compared to the DHD group. Among the various proteins, differently abundant fecal fibronectin and haptoglobin were more present in the feces of healthy and DHD dogs than in chronic ones, leading us to hypothesize its possible diagnostic/monitoring role in canine chronic hepatitis. On the other hand, the trefoil factor 2 was increased in DHD dogs. Our results show that the analysis of the fecal proteome is a very promising field of study, and in the case of dogs suffering from different hepatobiliary disorders, it was able to highlight both qualitative and quantitative differences among the three groups included. Results need to be confirmed with western blotting and in further studies

    Bistable Clustering in Driven Granular Mixtures

    Full text link
    The behavior of a bidisperse inelastic gas vertically shaken in a compartmentalized container is investigated using two different approaches: the first is a mean-field dynamical model, which treats the number of particles in the two compartments and the associated kinetic temperatures in a self-consistent fashion; the second is an event-driven numerical simulation. Both approaches reveal a non-stationary regime, which has no counterpart in the case of monodisperse granular gases. Specifically, when the mass difference between the two species exceeds a certain threshold the populations display a bistable behavior, with particles of each species switching back and forth between compartments. The reason for such an unexpected behavior is attributed to the interplay of kinetic energy non-equipartition due to inelasticity with the energy redistribution induced by collisions. The mean-field model and numerical simulation are found to agree qualitatively.Comment: 23 pages, 12 figure

    VNS in drug resistant epilepsy: preliminary report on a small group of patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 1997 Vagus Nerve Stimulation (VNS) received approval from the US Food and Drug Administration (FDA) as an adjunctive therapy in the treatment of medically intractable partial epilepsy in people aged 12 years and older who are ineligible for resective epilepsy surgery. Although the exact mechanisms of action are unknown, the use of VNS with children has increased, including those younger than 12 years of age, or those with generalized epilepsy.</p> <p>Methods</p> <p>We describe the outcome for the first group of nine patients, aged 8-28 years, who had pharmaco-resistant epilepsy and were treated with VNS. During the follow up, we gradually and slowly increased the parameters of the stimulation in order to assess the efficacy of VNS even at parameters which would usually be considered "non-therapeutic", along with possible side effects and changes in quality of life.</p> <p>Results</p> <p>At the last follow, up 1 patient was "seizures free", 3 were "very good responders", 3 were "good responders" and 2 were "non responders". We obtained an initial seizure reduction with low stimulation parameters, the highest current reached being 2.00 mA. This observation supports the possibility that, for younger patients, lower stimulation intensities than those commonly used in clinical practice for adults can be therapeutic. We also wanted to underline the reduction in seizure frequency (~91,7%) and the reduction in seizure duration (> 50%) in the patients affected by drug-resistant absence epilepsy. Adverse effects were mild, tolerable and, in most of cases, easily resolved by adjusting the stimulation parameters. Hoarseness of voice was the most frequent side effect. The improvements in the quality of life are relevant and seem to be independent of the VNS effect in controlling seizures.</p> <p>Conclusions</p> <p>Our small experience seems to confirm the efficacy and safety of VNS in drug resistant partial and generalized epilepsy in developing age groups.</p

    New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration

    Get PDF
    The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy

    Plant Signals Anticipate the Induction of the Type III Secretion System in Pseudomonas syringae pv. actinidiae, Facilitating Efficient Temperature-Dependent Effector Translocation

    Get PDF
    Disease resistance in plants depends on a molecular dialogue with microbes that involves many known chemical effectors, but the time course of the interaction and the influence of the environment are largely unknown. The outcome of host-pathogen interactions is thought to reflect the offensive and defensive capabilities of both players. When plants interact with Pseudomonas syringae, several well-characterized virulence factors contribute to early bacterial pathogenicity, including the type III secretion system (T3SS), which must be activated by signals from the plant and environment to allow the secretion of virulence effectors. The manner in which these signals regulate T3SS activity is still unclear. Here, we strengthen the paradigm of the plant-pathogen molecular dialogue by addressing overlooked details concerning the timing of interactions, specifically the role of plant signals and temperature on the regulation of bacterial virulence during the first few hours of the interaction. Whole-genome expression profiling after 1 h revealed that the perception of plant signals from kiwifruit or tomato extracts anticipated T3SS expression in P. syringae pv. actinidiae compared to apoplast-like conditions, facilitating more efficient effector transport in planta, as revealed by the induction of a temperature-dependent hypersensitive response in the nonhost plant Arabidopsis thaliana Columbia-0 (Col-0). Our results show that in the arms race between plants and bacteria, the temperature-dependent timing of bacterial virulence versus the induction of plant defenses is probably one of the fundamental parameters governing the outcome of the interaction. IMPORTANCE Plant diseases-their occurrence and severity-result from the impact of three factors: the host, the pathogen, and the environmental conditions, interconnected in the disease triangle. Time was further included as a fourth factor accounting for plant disease, leading to a more realistic three-dimensional disease pyramid to represent the evolution of disease over time. However, this representation still considers time only as a parameter determining when and to what extent a disease will occur, at a scale from days to months. Here, we show that time is a factor regulating the arms race between plants and pathogens, at a scale from minutes to hours, and strictly depends on environmental factors. Thus, besides the arms possessed by pathogens and plants per se, the opportunity and the timing of arms mobilization make the difference in determining the outcome of an interaction and thus the occurrence of plant disease
    corecore