896 research outputs found
Multipass automata and group word problems
We introduce the notion of multipass automata as a generalization of pushdown
automata and study the classes of languages accepted by such machines. The
class of languages accepted by deterministic multipass automata is exactly the
Boolean closure of the class of deterministic context-free languages while the
class of languages accepted by nondeterministic multipass automata is exactly
the class of poly-context-free languages, that is, languages which are the
intersection of finitely many context-free languages. We illustrate the use of
these automata by studying groups whose word problems are in the above classes
Technical Note: Continuity of MIPAS-ENVISAT ozone data quality from full- to reduced-spectral-resolution operation mode
International audienceMIPAS (Michelson Interferometer for Passive Atmospheric Sounding) is operating on the ENVIronmental SATellite (ENVISAT) since March 2002. After two years of nearly continuous limb scanning measurements, at the end of March 2004, the instrument was stopped due to problems with the mirror drive of the interferometer. Operations with reduced maximum path difference, corresponding to both a reduced-spectral-resolution and a shorter measurement time, were resumed on January 2005. In order to exploit the reduction in measurement time, the measurement scenario was changed adopting a finer vertical limb scanning. The change of spectral resolution and of measurement scenario entailed an update of the data processing strategy. The aim of this paper is the assessment of the differences in the quality of the MIPAS ozone data acquired before and after the stop of the operations. Two sets of MIPAS ozone profiles acquired in 2003?2004 (full-resolution measurements) and in 2005?2006 (reduced-resolution measurements) are compared with collocated ozone profiles obtained by GOMOS (Global Ozone Monitoring by Occultation of Stars), itself also onboard ENVISAT. The continuity of the GOMOS data quality allows to assess a possible discontinuity of the MIPAS performances. The relative bias and precision of MIPAS ozone profiles with respect to the GOMOS ones have been compared for the measurements acquired before and after the stop of the MIPAS operations. The results of the comparison show that, in general, the quality of the MIPAS ozone profiles retrieved from reduced-resolution measurements is comparable or better than that obtained from the full-resolution dataset. The only significant change in MIPAS performances is observed at pressures around 2 hPa, where the relative bias of the instruments increases by a factor of 2 from the 2003?2004 to 2005?2006 measurements
Harmonic generation by atoms in circularly polarized two-color laser fields with coplanar polarizations and commensurate frequencies
The generation of harmonics by atoms or ions in a two-color, coplanar field
configuration with commensurate frequencies is investigated through both, an
analytical calculation based on the Lewenstein model and the numerical ab
initio solution of the time-dependent Schroedinger equation of a
two-dimensional model ion. Through the analytical model, selection rules for
the harmonic orders in this field configuration, a generalized cut-off for the
harmonic spectra, and an integral expression for the harmonic dipole strength
is provided. The numerical results are employed to test the predictions of the
analytical model. The scaling of the cut-off as a function of both, one of the
laser intensities and frequency ratio , as well as entire spectra for
different and laser intensities are presented and analyzed. The
theoretical cut-off is found to be an upper limit for the numerical results.
Other discrepancies between analytical model and numerical results are
clarified by taking into account the probabilities of the absorption processes
involved.Comment: 8 figure
Charged State of a Spherical Plasma in Vacuum
The stationary state of a spherically symmetric plasma configuration is
investigated in the limit of immobile ions and weak collisions. Configurations
with small radii are positively charged as a significant fraction of the
electron population evaporates during the equilibration process, leaving behind
an electron distribution function with an energy cutoff. Such charged plasma
configurations are of interest for the study of Coulomb explosions and ion
acceleration from small clusters irradiated by ultraintense laser pulses and
for the investigation of ion bunches propagation in a plasma
Shift-Symmetric Configurations in Two-Dimensional Cellular Automata: Irreversibility, Insolvability, and Enumeration
The search for symmetry as an unusual yet profoundly appealing phenomenon,
and the origin of regular, repeating configuration patterns have long been a
central focus of complexity science and physics. To better grasp and understand
symmetry of configurations in decentralized toroidal architectures, we employ
group-theoretic methods, which allow us to identify and enumerate these inputs,
and argue about irreversible system behaviors with undesired effects on many
computational problems. The concept of so-called configuration shift-symmetry
is applied to two-dimensional cellular automata as an ideal model of
computation. Regardless of the transition function, the results show the
universal insolvability of crucial distributed tasks, such as leader election,
pattern recognition, hashing, and encryption. By using compact enumeration
formulas and bounding the number of shift-symmetric configurations for a given
lattice size, we efficiently calculate the probability of a configuration being
shift-symmetric for a uniform or density-uniform distribution. Further, we
devise an algorithm detecting the presence of shift-symmetry in a
configuration.
Given the resource constraints, the enumeration and probability formulas can
directly help to lower the minimal expected error and provide recommendations
for system's size and initialization. Besides cellular automata, the
shift-symmetry analysis can be used to study the non-linear behavior in various
synchronous rule-based systems that include inference engines, Boolean
networks, neural networks, and systolic arrays.Comment: 22 pages, 9 figures, 2 appendice
C in intense femtosecond laser pulses: nonlinear dipole response and ionization
We study the interaction of strong femtosecond laser pulses with the C
molecule employing time-dependent density functional theory with the ionic
background treated in a jellium approximation. The laser intensities considered
are below the threshold of strong fragmentation but too high for perturbative
treatments such as linear response. The nonlinear response of the model to
excitations by short pulses of frequencies up to 45eV is presented and analyzed
with the help of Kohn-Sham orbital resolved dipole spectra. In femtosecond
laser pulses of 800nm wavelength ionization is found to occur multiphoton-like
rather than via excitation of a ``giant'' resonance.Comment: 14 pages, including 1 table, 5 figure
Electron correlation vs. stabilization: A two-electron model atom in an intense laser pulse
We study numerically stabilization against ionization of a fully correlated
two-electron model atom in an intense laser pulse. We concentrate on two
frequency regimes: very high frequency, where the photon energy exceeds both,
the ionization potential of the outer {\em and} the inner electron, and an
intermediate frequency where, from a ``single active electron''-point of view
the outer electron is expected to stabilize but the inner one is not. Our
results reveal that correlation reduces stabilization when compared to results
from single active electron-calculations. However, despite this destabilizing
effect of electron correlation we still observe a decreasing ionization
probability within a certain intensity domain in the high-frequency case. We
compare our results from the fully correlated simulations with those from
simpler, approximate models. This is useful for future work on ``real''
more-than-one electron atoms, not yet accessible to numerical {\em ab initio}
methods.Comment: 8 pages, 8 figures in an extra ps-file, submitted to Phys. Rev. A,
updated references and shortened introductio
Local Causal States and Discrete Coherent Structures
Coherent structures form spontaneously in nonlinear spatiotemporal systems
and are found at all spatial scales in natural phenomena from laboratory
hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary
climate dynamics. Phenomenologically, they appear as key components that
organize the macroscopic behaviors in such systems. Despite a century of
effort, they have eluded rigorous analysis and empirical prediction, with
progress being made only recently. As a step in this, we present a formal
theory of coherent structures in fully-discrete dynamical field theories. It
builds on the notion of structure introduced by computational mechanics,
generalizing it to a local spatiotemporal setting. The analysis' main tool
employs the \localstates, which are used to uncover a system's hidden
spatiotemporal symmetries and which identify coherent structures as
spatially-localized deviations from those symmetries. The approach is
behavior-driven in the sense that it does not rely on directly analyzing
spatiotemporal equations of motion, rather it considers only the spatiotemporal
fields a system generates. As such, it offers an unsupervised approach to
discover and describe coherent structures. We illustrate the approach by
analyzing coherent structures generated by elementary cellular automata,
comparing the results with an earlier, dynamic-invariant-set approach that
decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht
Plasma kinetics issues in an ESA study for a plasma laboratory in space
A study supported by the European Space Agency (ESA), in the context of its General Studies Programme, performed an investigation of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally
covered by ‘space plasma physics’. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on a
spatial scale (101–104 m) intermediate between what is achievable on the ground and the usual solar system plasma observations. Detailed feasibility studies have been performed for three experiments: active magnetic experiments, largescale discharges and long tether–plasma interactions. The perspectives opened by these experiments are discussed for magnetic reconnection, instabilities,
MHD turbulence, atomic excited states kinetics, weakly ionized plasmas,plasma diagnostics, artificial auroras and atmospheric studies. The discussion is also supported by results of numerical simulations and estimates
Notions of Infinity in Quantum Physics
In this article we will review some notions of infiniteness that appear in
Hilbert space operators and operator algebras. These include proper
infiniteness, Murray von Neumann's classification into type I and type III
factors and the class of F{/o} lner C*-algebras that capture some aspects of
amenability. We will also mention how these notions reappear in the description
of certain mathematical aspects of quantum mechanics, quantum field theory and
the theory of superselection sectors. We also show that the algebra of the
canonical anti-commutation relations (CAR-algebra) is in the class of F{/o}
lner C*-algebras.Comment: 11 page
- …
