31 research outputs found

    Comparing reliability of grid-based Quality-Diversity algorithms using artificial landscapes

    Full text link
    Quality-Diversity (QD) algorithms are a recent type of optimisation methods that search for a collection of both diverse and high performing solutions. They can be used to effectively explore a target problem according to features defined by the user. However, the field of QD still does not possess extensive methodologies and reference benchmarks to compare these algorithms. We propose a simple benchmark to compare the reliability of QD algorithms by optimising the Rastrigin function, an artificial landscape function often used to test global optimisation methods.Comment: 3 pages, 2 figure

    Investor-patent networks as mutualistic networks

    Full text link
    Venture capital investments in startups have come to represent an important driver of technological innovation, in parallel to corporate- and government-directed efforts. Part of the future of artificial intelligence, medicine and quantum computing now depends upon a large number of venture investment decisions whose robustness against increasingly frequent crises has therefore become crucial. To shed light on this issue, and by combining large-scale financial, startup and patent datasets, we analyze the interactions between venture capitalists and technologies as an explicit bipartite patent-investor network. Our results reveal that this network is topologically mutualistic because of the prevalence of links between generalist investors, whose portfolios are technologically diversified, and general-purpose technologies, characterized by a broad spectrum of use. As a consequence, the robustness of venture-funded technological innovation against different types of crises is affected by the high nestedness and low modularity, with high connectance, associated with mutualistic networks.Comment: 16 pages with appendix, 4 figures, 2 table

    Automatic Calibration of Artificial Neural Networks for Zebrafish Collective Behaviours using a Quality Diversity Algorithm

    Full text link
    During the last two decades, various models have been proposed for fish collective motion. These models are mainly developed to decipher the biological mechanisms of social interaction between animals. They consider very simple homogeneous unbounded environments and it is not clear that they can simulate accurately the collective trajectories. Moreover when the models are more accurate, the question of their scalability to either larger groups or more elaborate environments remains open. This study deals with learning how to simulate realistic collective motion of collective of zebrafish, using real-world tracking data. The objective is to devise an agent-based model that can be implemented on an artificial robotic fish that can blend into a collective of real fish. We present a novel approach that uses Quality Diversity algorithms, a class of algorithms that emphasise exploration over pure optimisation. In particular, we use CVT-MAP-Elites, a variant of the state-of-the-art MAP-Elites algorithm for high dimensional search space. Results show that Quality Diversity algorithms not only outperform classic evolutionary reinforcement learning methods at the macroscopic level (i.e. group behaviour), but are also able to generate more realistic biomimetic behaviours at the microscopic level (i.e. individual behaviour).Comment: 8 pages, 4 figures, 1 tabl

    Robot Collection and Transport of Objects: A Biomimetic Process

    Get PDF
    Animals as diverse as ants and humans are faced with the tasks of collecting, transporting or herding objects. Sheepdogs do this daily when they collect, herd, and maneuver flocks of sheep. Here, we adapt a shepherding algorithm inspired by sheepdogs to collect and transport objects using a robot. Our approach produces an effective robot collection process that autonomously adapts to changing environmental conditions and is robust to noise from various sources. We suggest that this biomimetic process could be implemented into suitable robots to perform collection and transport tasks that might include – for example – cleaning up objects in the environment, keeping animals away from sensitive areas or collecting and herding animals to a specific location. Furthermore, the feedback controlled interactions between the robot and objects which we study can be used to interrogate and understand the local and global interactions of real animal groups, thus offering a novel methodology of value to researchers studying collective animal behavior

    Evolutionary optimisation of neural network models for fish collective behaviours in mixed groups of robots and zebrafish

    Full text link
    Animal and robot social interactions are interesting both for ethological studies and robotics. On the one hand, the robots can be tools and models to analyse animal collective behaviours, on the other hand, the robots and their artificial intelligence are directly confronted and compared to the natural animal collective intelligence. The first step is to design robots and their behavioural controllers that are capable of socially interact with animals. Designing such behavioural bio-mimetic controllers remains an important challenge as they have to reproduce the animal behaviours and have to be calibrated on experimental data. Most animal collective behavioural models are designed by modellers based on experimental data. This process is long and costly because it is difficult to identify the relevant behavioural features that are then used as a priori knowledge in model building. Here, we want to model the fish individual and collective behaviours in order to develop robot controllers. We explore the use of optimised black-box models based on artificial neural networks (ANN) to model fish behaviours. While the ANN may not be biomimetic but rather bio-inspired, they can be used to link perception to motor responses. These models are designed to be implementable as robot controllers to form mixed-groups of fish and robots, using few a priori knowledge of the fish behaviours. We present a methodology with multilayer perceptron or echo state networks that are optimised through evolutionary algorithms to model accurately the fish individual and collective behaviours in a bounded rectangular arena. We assess the biomimetism of the generated models and compare them to the fish experimental behaviours.Comment: 10 pages, 4 figure
    corecore