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robot collection and Transport of 
Objects: a Biomimetic Process
Daniel Strömbom 1,2* and Andrew J. King 2

1 Department of Mathematics, Uppsala University, Uppsala, Sweden, 2 Department of Biosciences, Swansea University, 
Swansea, United Kingdom

Animals as diverse as ants and humans are faced with the tasks of collecting, 
transporting or herding objects. Sheepdogs do this daily when they collect, herd, 
and maneuver flocks of sheep. Here, we adapt a shepherding algorithm inspired by 
sheepdogs to collect and transport objects using a robot. Our approach produces an 
effective robot collection process that autonomously adapts to changing environmental 
conditions and is robust to noise from various sources. We suggest that this biomimetic 
process could be implemented into suitable robots to perform collection and transport 
tasks that might include – for example – cleaning up objects in the environment, 
keeping animals away from sensitive areas or collecting and herding animals to a 
specific location. Furthermore, the feedback controlled interactions between the robot 
and objects which we study can be used to interrogate and understand the local and 
global interactions of real animal groups, thus offering a novel methodology of value 
to researchers studying collective animal behavior.

Keywords: bio-inspired robotics, feedback control, collective behavior, shepherding algorithm, adaptive system

1. inTrOducTiOn

Predator attacks upon insect swarms, bird flocks, or fish schools provide a striking example of how 
one or a few agents (the predators) can influence the motion of many other agents (the prey) almost 
simultaneously (Hamilton, 1971; King et al., 2012; Handegard et al., 2012). Shepherding of sheep 
by dogs represents a caricature of this predator-prey interaction whereby the sheepdog maneuvers 
hundreds and sometimes thousands of livestock from one location to another (Strömbom et al., 
2014). Engineers have long been fascinated by the act of shepherding and the behavioral rules 
that dogs adopt when herding since such knowledge may have application to engineering tasks as 
diverse as guiding groups of exploring robots (Turgut et al., 2008) to cleaning up the environment 
(Fingas, 2016). To this end, Strömbom et al. (2014) designed a general shepherding algorithm 
inspired by empirical data collected from real-life sheepdog interactions; it was proposed that 
the algorithm could support the efficient design of robots herding autonomous agents in a variety 
of contexts.

Research with multi-robot systems have sought to bring objects (and other robots) in the 
environment together as quickly as possible, into one cluster (Melhuish et al., 2001; Gauci et al., 
2014), and such “herding” robot systems could have the potential to limit the spread of oil spills 
in the oceans (Zahugi et al., 2012; Fingas, 2016), and to collect rubbish (Bonnema, 2012), specific 
objects (Karunasena et  al., 2008), or hazardous material (Nguyen et  al., 2002) on both land 
and water. Whilst a large number of algorithms have been proposed for use in such tasks (Lien 
et al., 2004, 2005; Miki and Nakamura, 2006; Bennett and Trafankowski, 2012; Strömbom et al., 
2014) most are studied via simulation and only capable of collecting or herding relatively low 
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numbers of objects or agents, at least when only one shepherd 
is used (Bennett and Trafankowski, 2012). The use of robots 
for collection and herding objects in the real-world therefore 
remains rare, and herding free-living animals presents an 
even greater challenge, given that prey animals have evolved a 
variety of mechanisms to avoid detection and capture (Ioannou 
et  al., 2012). In fact, the only published research we know to 
successfully apply a robot for herding free-living animals is work 
by Vaughan et al. (1998) who designed and used a robot to herd  
flocks of ducks.

Introducing robots into animal groups to influence/study the 
behavior of the animals has been much more common (and 
successful) in the field of collective animal behavior (Krause 
et  al., 2011). Robots have been used to study the behavior of 
cockroaches (e.g. Halloy et al., 2007), fish (e.g. Faria et al., 2010; 
Swain et al., 2012; Landgraf et al., 2013, 2016; Cazenille et al., 
2017) and rats (e.g. Shi et al., 2013). In most cases the interactions 
between the animals and the robot are essentially one-way; the 
animals are influenced by the robot but the robot is not directly 
influenced by the animals. However, examples do exist where 
two-way interactions between a robot and a group of animals 
are achieved. For example, in Swain et  al. (2012) a feedback 
controlled robot-fish interacts with a school of free-moving 
fish in real time. The robot fish was programmed to chase the 
centroid of the fish school and dart towards them when their 
polarization was close to zero (milling or disordered school). 
Such examples demonstrate the potential for using robot-
animal interactions, but to fully utilize robots in the study of 
collective behavior, the robots need to be able to respond to the 
real-life individuals (and not just the collective), in real-time  
(Krause et al., 2011).

To advance the study and analysis of robot-animal interactions 
requires an integrated design process (Hamann et  al., 2016) 
that affords remotely controlled robots and 2d or 3d tracking 
of robot and object/animals. The task of fully automating the 
tracking of  multiple objects can be “surprisingly problematic 
under experimental conditions” (Krause et  al., 2011) but 
advances in image tracking technologies especially via open-
source software (e.g. Pérez-Escudero et al., 2014) is making this 
more achievable. For example, the use of a surveillance drone 
providing a shepherding robot with information in real time 
about target objects or animals would revolutionize numerous 
cleanup processes, and enable robots to respond to their targets 
even when these targets are mobile or unpredictable in some way.

Here, we present an adaptive collection robot that is part of 
a feedback-controlled image-based tracking system designed to 
target and retrieve objects. The robot algorithm is an adapted 
version of Strömbom et  al.’s (2014) bio-inspired model of 
shepherding behavior that matched empirical data collected 
with a sheepdog and sheep in the real-world when analyzed 
via computer simulations. We take the Strömbom et al. (2014) 
algorithm, modify it, and implement it in a single robot shepherd 
that collects and moves objects to a given location based on 
feedback from the image-based tracking. We demonstrate 
the collection capabilities of the robot in fixed and changing 
environments, and show that it is fully adaptive, robust to various 
sources of noise, and mimicks the sheepdog behavior on which 
it is based. We also explain why we believe that our algorithm 
is a viable candidate for implementation into suitable robots to 
collect and move living and artificial object in the real world and, 
crucially, how it can also be useful to study collective animal 
behavior via robots.

Figure 1 |  (a) Photo of the arena setup showing the white arena floor, red objects, black robot controlled magnet, overhead camera, and the computer used to 
coordinate and run all parts of the feedback control loop. Inset: e-puck robot fitted with a large red magnet used to connect to the small black magnet moving on 
the arena floor. (B) Schema illustrating the experimental setup.
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2. MaTerial and  MeThOds

2.1. Test arena
We use an arena setup (Figure 1A,B) and feedback control loop 
similar to those employed in Swain et  al. (2012) and Bonnet 
et al. (2017) to explore the capacity and behavior of an adapted 
shepherding algorithm implemented in an e-puck robot (Mondada 
et al., 2009) instructed to adaptively collect objects scattered in the 
arena to a designated collection zone. The arena floor is made out 
of acrylic and boundaries of the same material have been set up 
limiting the space available for herding to 880 × 435 mm. In our 
set-up, the robot moves under the arena floor and controls the 
movement of a black magnet (radius 5 mm) which interacts with 
red round objects (radius 15 mm) via physical contact on the arena 
floor. The robot is connected to the computer via Bluetooth and 
instructions are transmitted to it via the e-puck Matlab control 
application ePic2 (Hubert and Weibel, 2008).

2.2. Feedback control loop
We use an overhead camera (Logitech C902 HD pro USB) linked 
to a computer running Matlab R2015b. The camera takes an image, 
which is processed and the coordinates and radii of the objects 
and the robot controlled magnet are extracted using elementary 
image processing and analysis. The current (time   ) normalized 
orientation/heading of the robot  ̂Ht , radius of the objects ( ro ), 
and the radius of the robot magnet ( rr ) are also calculated.  The 
centroid coordinates and the radii of the objects and robot magnet 
are then used to calculate a new robot heading  ̂Ht+1  for the next 
time step using the shepherding algorithm which is  described 
in 2.2.2  below. The process continues until all N  objects have 
been delivered to the collection zone which is a discshaped 
region near the center of the arena with radius  4 + 0.5N2/3ro   
(Figure 1B).

2.2.1. Image Processing and Analysis
We chose to use red objects, a black robot controlled magnet, and 
a  white arena floor because this  enabled  fast, low-level image 
processing analysis methods on low resolution images (640 × 480). 
Here we describe the steps involved in the image analysis, and 
when applicable, include the Matlab command used in parenthesis 
following the description. Once an image has been imported to 
Matlab we overexpose it slightly and then segment the black and 
red objects by simple thresholding. A morphological operation is 
then applied to fill any “holes” in the segmented objects (imfill) 
and the centroids of the segmented objects are then  calculated 
(regionprops centroid). Finally, the areas of the robot magnet and 
an object in the image are estimated by counting object pixels in 
the segmented images (nnz) and from these areas the radius of 
the robot magnet  rr  and the radius  ro  of the objects are calculated. 
As the objects do not change size the radii are only calculated on 
the first time step of each trial. At the beginning of each trial the 
current heading (in arena coordinates)  ̂H0  of the robot is estimated 
by extracting the centroids of the robot magnet in two successive 
webcam photos, acquired while the robot is moving straight ahead 
in its local coordinate system.

2.2.2. The Shepherding Algorithm
The shepherding algorithm is modified from the collection part of the 
algorithm in Strömbom et al. (2014), adapting it for use with non-self-
propelled objects with contact repulsion. The algorithm is designed to 
collect the object furthest away from the collection zone first, unless 
it is already in contact with another object, in which case it delivers 
that object to the collection zone first before venturing out towards the 
furthest away object. Figure 2 illustrates how the new robot heading 
 ̂Ht+1  is calculated from known quantities once a specific object has 
been selected for collection. We use hat notation for unit vectors and 
bar notation for non-normalized vectors. T denotes the center of the 
collection zone, O the centroid of the object to be collected, and R 
the centroid of the robot. The new heading of the robot is set towards 
the point on the object boundary on the far side of the centroid of 
the object O relative to the target T. This point is represented by a red 
square in Figure 2 and we see that the new heading vector from the 
robot towards this point is given by

 
H̄t+1 =

(
Ō− T̄

)
+ ro

Ō− T̄
|Ō− T̄|

−
(
R̄− T̄

)
= Ō− R̄ + ro Ō−T̄

|Ō−T̄| .  
(1)

Once the algorithm has calculated a new heading  ̄Ht+1  for the robot, 
the signed angle ϕ  between the normalized current heading  ̂Ht  and 
the normalized new heading  ̂Ht+1  is calculated (Figure 2). If the 
magnitude of this angle is smaller than a specified threshold (0.25 
radians ≈  14 degrees), the robot controller instructs the robot to 
keep moving forward, otherwise the controller rotates the robot into 

Figure 2 |  Geometry of the collection algorithm. The green dot represents 
the center of the collection zone and is denoted by T. The red dot represents 
the centroid of the object to be collected, and we denote it by O, and the 
circle surrounding it at a distance of  ro  represents the object boundary. The 
black dot represents the centroid of the robot, denoted by R, and the circle at 
a distance of  rr  from it represents the robot magnet boundary. The red vector 

 ̂Ht  is the current heading of the robot, the green vector is the new heading 

 ̂Ht+1  the robot should move in to approach the collection point (red square) 
on the far side of the object relative to the target, and  ϕ  is the angle between 
the current and new heading.
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alignment with the new heading before moving forward. Once the 
robot has been moved the loop starts over and a new photo is taken by 
the overhead webcam. This process continues until all objects present 
on the arena floor has been delivered to a pre-assigned collection zone.

2.2.3. Experiments
We conducted a series of experiments to investigate the collection 
capacity and behavior of the robot. We examined situations with a 
fixed number of objects to be collected (phase one) and situations 
where the number of objects changed over time (phase two). In phase 
one, we ran four trials each with 2, 4, 8 and 16 objects. Objects were 
distributed in the arena so that no object was in the collection zone 
or touching an arena boundary initially. In phase two, three trials 
were conducted, and in each case the number of objects for collection 
increased within the trial. Phase two trials started with two objects, 
and then we added two more, then four more, and finally eight more. 
Objects were added to the arena once the robot was driving the final 
object in the arena (i.e., the 2nd, 4th, and 8th object) towards the 
collection zone. Trials where objects tossed into the arena ended up 
in the collection zone were excluded. Across all trials (both phases) 
the robot always started near the center of the arena and each trial 
terminated when all objects had been delivered to the collection zone. 
We collected the coordinates of the robot and the objects throughout 
the trials and the time to completion of each trial was recorded.

2.2.4. Measures
To evaluate the collection capacity of the robot and characterize 
the collection process we constructed time series with (i) the mean 
object-target distances, and (ii) the area occupied (convex hull) by 
objects. To evaluate the behavioral mechanisms by which the robot 
herded and collected objects we also recorded (iii) where the robot 
was located relative to the position of the object being herded and 
final target destination. To this end, we expressed the coordinates 

of the robot centroid in a coordinate system that is centered on the 
centroid of the closest object and in which the direction towards 
the target is the positive x-axis. More specifically, on each time step 
we determine if the robot is within a distance of  2ro  (our definition 
of close) from any object and if so proceed with steps 1–3 below.

1. First specify that the centroid of the object O  is the origin of the 
new coordinate system and then translate the robot centroid R  
and target coordinate T  accordingly. That is,  R′ = R− O  and 
 T′ = T− O .

2. Calculate the (signed) angle θ  of the origin to target vector.
3. Rotate the translated robot vector R′  and the translated target 

vector T′  by θ .

3. resulTs

3.1. robot Performance in Task
Examples of the robot collection process are provided in Video 
S1 which shows one collection trial each for 2, 4, 8 and 16 objects, 
and one trial with an increasing number of objects. All objects 
and zones shown in Video S1 have been   superimposed on the 
webcam image: Target (blue asterisk), Collection zone (green 
ring), Object centroids (red asterisks), Object boundaries (red 
ring), Robot controlled magnet centroid (black asterisk), Robot 
controlled magnet boundary (black ring), Current heading (red 
rod), New (ideal) heading (green rod). The mean average distance 
of objects to the collection zone (Figure 3), and the dispersion of 
the objects as described by a convex hull (Figure 3C,D) during 
trials illustrate the performance of the robot for fixed and variable 
number of object trials.

Figure 3A We found the completion times across trials for 
a fixed number of objects were similar (Figure 3A) and mean 

Figure 3 |  (a–B) Mean object-collection zone distance over time. Thin lines show the mean distance through time in each individual trial and thick lines the mean 
over all trials with that numberof objects. (a) With fixed number of 2 (red), 4 (green), 8 (blue) and 16 (black) objects. (B) With increasing number of objects. (c–d) 
Area of convex hull of object positions over time (for N = 2  distance is used). Thin lines show the area of the convex hull through time in each individual trial and 
thick lines the mean over all trials with that number of objects. When calculating the mean over all trials the area of the convex hull of a trial that has finished is set to 
0. (c) With fixed number of 2 (red), 4 (green), 8 (blue) and 16 (black) objects. (d) With increasing number of objects.



Strömbom and King

5 May  2018 | Volume 5 | Article 48Frontiers in Robotics and AI | www. frontiersin. org

An Object-Herding Robot System

completion and standard deviation (time steps)  for 2 objects 
=   68.3± 7.3 , 4 objects  =  130.0± 5.6 , 8 objects = 273.8± 20.2
 , and 16 objects =   670.5± 108.0 .   Figure  3A,C  also confirms 
that the initial configurations of objects were different in each 
trial as the initial average object to collection zone distances 
and convex hulls are different. The relatively low variation in 
completion times and the fact that initial configurations were 
different suggests that the process is robust with respect to the 
initial configurations of objects.

By comparing Figure 3A,B (and Figure 3C,D) we see that the 
mean completion time for the case of fixed N = 16  and the case 
with an increasing number of objects are similar. In addition, by 
comparing the time evolution of the process we see that the process 
with an increasing number of objects reaches the milestones 2, 4 
and 8 objects around the same time that the corresponding fixed 
number of object trials finishes. This suggests that the process is 
adaptive with respect to changes in the number of objects, and that 
potential time and/or efficiency losses associated with its operation 
in the case of an increasing number of objects versus a fixed number 
of objects are small.

3.2. robot Behavior
Robot-object interactions are dominated by appropriate collection 
maneuvers by the robot. When close to an object (within  2ro ) the 
robot spends a majority of the time directly behind it relative 
to the target as presented in Figure 4A where the a majority of 
the robot centroids (blue dots) are on the far side of the object 
relative to the target. In particular, there is a dense cluster of 
robot centroids with x-coordinates ranging from about  −13  to 
 −15  (Figure 4A), which  appears to be the ideal position from 
which to drive the object to the target (Figure 4B). Indeed, the 
peak at  +13  to  +15  in Figure  4B shows that when the robot 
is on the same side of the object as the target it often pushes 
the object directly away from the target while attempting to get 
around it. This is also reflected in the short increases before 
linear decreases in the measures provided in Figure 4A,B. This 
phenomenon is a consequence of the fact that when the robot 
is initially approaching an object it often comes directly from 
the collection zone having just delivered another object. Note 
that there are some blue dots closer to the object than the object 
and robot radii should allow, and in some cases even apparently 
inside the object. These are the result of rare occasions when the 
robot magnet partially of fully slip up on top of the object. These 
situations typically sort themselves out quickly and the robot 
magnet gets off and continues to push the object within a few 
time steps. However, if the process is supervised inducing a small 
perturbation to the object or robot can help resolve it even faster.

4. discussiOn

We have shown that our biomimetic collection algorithm works 
when implemented into a simple robot and that the resulting robot 
collection process exhibits several potentially useful properties.

The collection process is robust with respect to the initial 
configurations of objects, in the sense that differences in initial 

configuration of objects does not lead to large differences in 
completion time (Figure 3A,C). This result therefore indicates that 
this process may be a good candidate for reliable collection of objects 
in novel and noisy environments. In addition, the process is adaptive 
with respect to changes in the number of objects (Figure 3A,C). So 
it may operate in a changing environment as well as fixed. Finally, 
there are no obvious time and/or efficiency losses associated with 
its operation in a changing environment as compared to a fixed 
environment (comparing Figure 3A,B, and Figure 3C,D)  which 
would suggest that the cost of operation in a changing environment 
is effectively the same as in a fixed environment.

We have established that the robot-object interactions are 
dominated by appropriate collection maneuvers by the robot 
(Figure 4), and that the resulting robot behavior is consistent with 
the behavior exhibited by sheepdogs and simulated shepherds 
herding sheep/agents (cf. Figure 5ab, Strömbom et al., 2014). In 
particular, comparing Figure 5ab from Strömbom et al., 2014 
with Figure  4B presented in our results,  shows that the real 
dog (Figure 5a, Strömbom et al., 2014), the simulated shepherd 
(Figure 5b, Strömbom et al., 2014), and the robot (Figure 4B) 
all exhibit distance from the center of flock/object distributions 
that are skewed with one dominant peak. That the robot-object 
interactions are dominated by appropriate collection maneuvers 
by the robot shows that the underlying algorithm and the 

Figure 4 |  (a) Position of robot when near an object relative to the 
direction of the target (here the positive x-axis). On top of the scatter plot of 
robot centroid coordinates (blue points) we have inserted a larger red circle 
representing the object ( ro = 9.25  pixels) and a smaller black circle 
representing the robot magnet ( rr = 4  pixels). (B) Relative frequency 
histogram of robot x-coordinates when near an object.
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implementation into the robot are robust with respect to noise. 
We know that there are several sources of noise/error in our 
experimental trials, which are, in order of estimated impact: (i) 
the robot controlled magnet is not fixed exactly at the center of 
the robot but has some flexibility, (ii) fluctuations in the time it 
takes to send instructions to the robot from Matlab via Bluetooth, 
(iii) image acquisition (any variation in lighting conditions) 
and centroid calculation error, and (iv) noise in the electrical 
components (in particular the robot itself). Moreover, whilst our 
robot does not “behave optimally” (e.g., the robot sometimes 
pushes gathered objects outside of the collection zone when on 
route to collect others) its operation is robust and it does, on 
average, perform well. For our purposes, this is a positive result 
because it reflects a reality of biological systems, and we did not 
set out to minimise a cost function (Pérez-Escudero et al., 2009).

Due to the above listed properties of the collection process and 
its implementation into this simple e-puck robot, in particular 
its robustness and adaptability, we believe that the algorithm 
presented here could potentially be used to reliably and effectively 
collect objects from the environment both on land and on the 
surface of water if implemented into an appropriate robot. To 
directly use the implementation presented here, including the 
feedback control loop, the robot could work as part of a pair, 
with a surveillance drone that provides the collection robot 
with overhead images. Considering how accessible advanced 
drone technology is today this should not present an obstacle. 
Such a pair consisting of one collection/guiding robot and one 
surveillance drone could potentially solve a number of problems 
that are impossible, dangerous, and/or costly for humans to deal 
with directly. For example, moving animals from sensitive areas 
(DeVault et al., 2011), removing or limiting the spread of oil on 
water (Zahugi et al., 2012; Fingas, 2016), collecting hazardous 
materials (Nguyen et al., 2002), guiding people to safety in areas/
rooms with low visibility (Isobe et  al., 2004), and potentially 
even for evacuation and rescue from disaster sites (Patterson 
et al., 2013).

Finally, we expect that integrating our approach of emphasizing 
two-way robot-individual interactions into advanced frameworks 
for animal-robot interactions (e.g. Swain et al. 2012; Bonnet et al. 
2017), will afford a greater integration of function and mechanism 
in the study of collective animal behavior. In particular, it would 
allow the use of robots to investigate phenomena thought to 
be intimately linked with specific identifiable individuals, e.g., 
influential leaders (Jiang et al., 2017). For example, using a robot 

with two-way interaction would allow for a precise and dynamic 
manipulation of leadership traits (played out by a robot) enabling 
a more standardized, repeatable experimental design and causal 
analysis of leader-follower dynamics (Nakayama et  al., 2012) 
and their consequences for group-level patterns of behaviour 
(Cazenille et al., 2017).
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VideO s1  | Shows one collection trial each for 2, 4, 8 and 16 objects and one 
trial with an increasing number of objects. All relevant calculated quantities have 
been superimposed on the overexposed webcam image used as input to the 
image analysis part. These quantities are: Target (blue asterisk), Collection zone 
(green ring), Object centroids (red asterisks), Object boundaries (red ring), Robot 
controlled magnet centroid (black asterisk), Robot controlled magnet boundary 
(black ring), Current heading (red rod), New (ideal) heading (green rod). 
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