22 research outputs found

    Using Self-Organizing Maps to Investigate Extreme Climate Events: An Application to Wintertime Precipitation in the Balkans

    Get PDF
    The International Society for Burns Injuries (ISBI) has published guidelines for the management of multiple or mass burns casualties, and recommends that 'each country has or should have a disaster planning system that addresses its own particular needs.' The need for a national burns disaster plan integrated with national and provincial disaster planning was discussed at the South African Burns Society Congress in 2009, but there was no real involvement in the disaster planning prior to the 2010 World Cup; the country would have been poorly prepared had there been a burns disaster during the event. This article identifies some of the lessons learnt and strategies derived from major burns disasters and burns disaster planning from other regions. Members of the South African Burns Society are undertaking an audit of burns care in South Africa to investigate the feasibility of a national burns disaster plan. This audit (which is still under way) also aims to identify weaknesses of burns care in South Africa and implement improvements where necessary

    Physical Geography and Climate: Overview

    Get PDF

    Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations

    Get PDF
    AbstractWe use an unprecedented ensemble of regional climate model (RCM) projections over seven regional CORDEX domains to provide, for the first time, an RCM-based global view of monsoon changes at various levels of increased greenhouse gas (GHG) forcing. All regional simulations are conducted using RegCM4 at a 25 km horizontal grid spacing using lateral and lower boundary forcing from three General Circulation Models (GCMs), which are part of the fifth phase of the Coupled Model Inter-comparison Project (CMIP5). Each simulation covers the period from 1970 through 2100 under two Representative Concentration Pathways (RCP2.6 and RCP8.5). Regional climate simulations exhibit high fidelity in capturing key characteristics of precipitation and atmospheric dynamics across monsoon regions in the historical period. In the future period, regional monsoons exhibit a spatially robust delay in the monsoon onset, an increase in seasonality, and a reduction in the rainy season length at higher levels of radiative forcing. All regions with substantial delays in the monsoon onset exhibit a decrease in pre-monsoon precipitation, indicating a strong connection between pre-monsoon drying and a shift in the monsoon onset. The weakening of latent heat driven atmospheric warming during the pre-monsoon period delays the overturning of atmospheric subsidence in the monsoon regions, which defers their transitioning into deep convective states. Monsoon changes under the RCP2.6 scenario are mostly within the baseline variability

    Projected changes in temperature and precipitation over the United States, Central America and the Caribbean in CMIP6 GCMs

    Get PDF
    The Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset is used to examine projected changes in temperature and precipitation over the United States (U.S.), Central America and the Caribbean. The changes are computed using an ensemble of 31 models for three future time slices (2021–2040, 2041–2060, and 2080–2099) relative to the reference period (1995–2014) under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP2-4.5, and SSP5-8.5). The CMIP6 ensemble reproduces the observed annual cycle and distribution of mean annual temperature and precipitation with biases between − 0.93 and 1.27 °C and − 37.90 to 58.45%, respectively, for most of the region. However, modeled precipitation is too large over the western and Midwestern U.S. during winter and spring and over the North American monsoon region in summer, while too small over southern Central America. Temperature is projected to increase over the entire domain under all three SSPs, by as much as 6 °C under SSP5-8.5, and with more pronounced increases in the northern latitudes over the regions that receive snow in the present climate. Annual precipitation projections for the end of the twenty-frst century have more uncertainty, as expected, and exhibit a meridional dipole-like pattern, with precipitation increasing by 10–30% over much of the U.S. and decreasing by 10–40% over Central America and the Caribbean, especially over the monsoon region. Seasonally, precipitation over the eastern and central subregions is projected to increase during winter and spring and decrease during summer and autumn. Over the monsoon region and Central America, precipitation is projected to decrease in all seasons except autumn. The analysis was repeated on a subset of 9 models with the best performance in the reference period; however, no signifcant diference was found, suggesting that model bias is not strongly infuencing the projections.Universidad de Costa Rica/[805-B9-454]/UCR/Costa RicaNational Science Foundation/[AGS-1849654]/NSF/Estados UnidosNational Science Foundation/[AGS-1623912]/NSF/Estados UnidosDepartment of Energy/[2316‐T849‐08]/DOE/Estados UnidosNational Oceanic and Atmospheric Administration/[2316‐T849‐08]/NOAA/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    Putting into action the REGCM4.6 regional climate model for the study of climate change, variability and modeling over Central America and Mexico

    Get PDF
    What: International experts and attendees from several countries of Central America, Mexico, the Caribbean (CAM), and South America (SA) met to discuss regional issues on climate variability and climate change to learn the use of the non-hydrostatic version of the International Center for Theoretical Physics (ICTP) RegCM4.6 model, and to establish a regional modeling scientific community for understanding the physics of climate processes and the generation of regional climate change scenarios. When: 14-18 November 2016. Where: Center for Geophysical Research (CIGEFI in Spanish) and School of Physics, University of Costa Rica (UCR), San José, Costa Rica.Ministerio de Ciencia, Tecnología y Telecomunicaciones/[FI-0015-16]/MICITT/Costa RicaUniversidad de Costa Rica/[805-B0-065]/UCR/Costa RicaUniversidad de Costa Rica/[805-A8-606]/UCR/Costa RicaUniversidad de Costa Rica/[805-B0-130]/UCR/Costa RicaUniversidad de Costa Rica/[805-A9-224]/UCR/Costa RicaUniversidad de Costa Rica/[805-A7-002]/UCR/Costa RicaUniversidad de Costa Rica/[805-B0-402]/UCR/Costa RicaUniversidad de Costa Rica/[805-B3-600]/UCR/Costa RicaUniversidad de Costa Rica/[805-B4-227]/UCR/Costa RicaUniversidad de Costa Rica/[805-B5-296]/UCR/Costa RicaUniversidad de Costa Rica/[808-A9-180]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI

    Global exposure of population and land‐use to meteorological droughts under different warming levels and SSPs: a CORDEX‐based study

    Get PDF
    Global warming is likely to cause a progressive drought increase in some regions, but how population and natural resources will be affected is still underexplored. This study focuses on global population, forests, croplands and pastures exposure to meteorological drought hazard in the 21st century, expressed as frequency and severity of drought events. As input, we use a large ensemble of climate simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), population projections from the NASA-SEDAC dataset and land-use projections from the Land-Use Harmonization 2 project for 1981–2100. The exposure to drought hazard is presented for five Shared Socioeconomic Pathways (SSP1-SSP5) at four Global Warming Levels (GWLs: 1.5°C to 4°C). Results show that considering only Standardized Precipitation Index (SPI; based on precipitation), the SSP3 at GWL4 projects the largest fraction of the global population (14%) to experience an increase in drought frequency and severity (versus 1981–2010), with this value increasing to 60% if temperature is considered (indirectly included in the Standardized Precipitation-Evapotranspiration Index, SPEI). With SPEI, considering the highest GWL for each SSP, 8 (for SSP2, SSP4, SSP5) and 11 (SSP3) billion people, that is, more than 90%, will be affected by at least one unprecedented drought. For SSP5 at GWL4, approximately 2 × 106^{6} km2^{2} of forests and croplands (respectively, 6% and 11%) and 1.5 × 106^{6} km2^{2} of pastures (19%) will be exposed to increased drought frequency and severity according to SPI, but for SPEI this extent will rise to 17 × 106^{6} km2^{2} of forests (49%), 6 × 106^{6} km2^{2} of pastures (78%) and 12 × 106^{6} km2^{2} of croplands (67%), being mid-latitudes the most affected. The projected likely increase of drought frequency and severity significantly increases population and land-use exposure to drought, even at low GWLs, thus extensive mitigation and adaptation efforts are needed to avoid the most severe impacts of climate change

    The influence of the southern oscillation on the winter climate of Nuevo Leon state, Mexico

    Get PDF
    El propósito de este trabajo es estudiar la influencia de la Oscilación del Sur sabre el clima invernal (noviembre/abril) del Estado de Nuevo León, México. El estudio se fundamenta a través de un análisis de correlacion de temperatura media, precipitación, datos de radio-sondeo y un ídice de Ia Oscilación del Sur, definido como bajo cuando la presion a nivel del mares anormalmente baja/alta en Tahiti/Darwin. Los resultados muestran un aumento significativo de precipitacion y una tendencia hacia temperaruras menores en casi todo el estado, especialmente a barlovento de la Sierra Madre Oriental durante el invierno de los eventos de El Niño o fase baja de la Oscilación del Sur. Asimismo, se obtuvieron anomalías negativas de alturas geopotenciales a 850mb en el Golfo de México durante la misma fase. Estos resultados se asocian con una influencia conjugada de los Nortes sabre la región costera del golfo norte y de los fuertes vientos del oeste que acompafian a Ia corriente de chorro subtropical durante tales eventos. Los resultados del estudio indican que la Oscilacion del Sur tiene un impacto sobre el clima invernal de Nuevo León con influencias modulantes de caracter regional como son los Nones y Ia Sierra Madre Oriental. doi: https://doi.org/10.22201/igeof.00167169p.1994.33.2.47

    Variability of extreme precipitation in coastal river basins of the southern mexican Pacific region

    Get PDF
    Extreme wet and dry years (± 1 standard deviation, respectively), as well as the top 95 percentile (P95) of daily precipitation events, derived from tropical cyclone (TC) and nontropical cyclone (NTC) rainfall, were analyzed in coastal river basins in Southern Oaxaca, Mexico (Río Verde, Río Tehuantepec, and the Southern Coast). The study is based on daily precipitation records from 47 quality-controlled stations for the 1961 to 1990 period and TC data for the Eastern Tropical Pacific (EPAC). The aim of this study was to evaluate extreme (dry and wet) trends in the annual contribution of daily P95 precipitation events and to determine the relationship of summer precipitation with El Niño Southern Oscillation (PDO). A regionalization based on a rotated principal component analysis (PCA) was used to produce four precipitation regions in the coastal river basins. A significant negative correlation (significance at the 95% level) was only found with ONI in rainfall Region 3, nearest to the Gulf of Tehuantepec. Wet years, mainly linked to TC-derived P95 precipitation events, were associated with SST anomalies (≥ −0.6°C) similar to weak La Niña and Neutral cool conditions, while dry years were associated with SST positive anomalies similar to Neutral warm conditions (≤ −0.5°C) . The largest contribution of extreme P95 precipitation derived from TCs to the annual precipitation was observed in Region 3. A significant upward trend in the contribution of TC-derived precipitation to the annual precipitation was found only in Region 1, low Río Verde

    Impacts of Climate Change in Baja California Winegrape Yield

    No full text
    We analyzed climate change scenarios and their possible impacts on winegrape yield in Baja California, the leading wine producer in Mexico. Linear regression models were used to predict the current yield based on climate and economic variables. Using future projections of the climate variables from two regional climate models (RegCM and RCA4), we evaluated the possible changes in yield for the Near Future (NF: 2021−2040) and Intermediate Future (IF: 2041−2060) periods under low (RCP2.6) and high (RCP8.5) greenhouse gas emissions scenarios. One regression model includes maximum and minimum temperatures (Tx and Tn) of the winegrape growing season and accumulated winter precipitation (Pre), and the other model also includes the real minimum wage and winegrape price to evaluate the operating cost paid by producers. The results show that the linear regression model with the climatic and economic variables explains 28% of the winegrape yield, and Tx and Tn had the greatest influence. The climate change scenarios show that during the winegrape growing season, these variables could increase more than 1 °C in the NF and more than 2 °C in the IF under the RCP8.5 scenario. These latter temperature changes could reduce the yield between 18% and 35% relative to the reference observed climate dataset (Livneh). However, winegrape yield is sensitive to economic factors, as the yield reduction increases at least 3% in all cases. Thus, adaptation strategies need to be implemented in the viticulture sector to reduce future impacts
    corecore