1,270 research outputs found

    Effect of treating Schistosoma haematobium infection on Plasmodium falciparum-specific antibody responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The overlapping geographical and socio-economic distribution of malaria and helminth infection has led to several studies investigating the immunological and pathological interactions of these parasites. This study focuses on the effect of treating schistosome infections on natural human immune responses directed against plasmodia merozoite surface proteins MSP-1 (DPKMWR, MSP1<sub>19</sub>), and MSP-2 (CH150 and Dd2) which are potential vaccine candidates as well as crude malaria (schizont) and schistosome (whole worm homogenate) proteins.</p> <p>Methods</p> <p>IgG1 and IgG3 antibody responses directed against <it>Schistosoma haematobium </it>crude adult worm antigen (WWH) and <it>Plasmodium falciparum </it>antigens (merozoite surface proteins 1/2 and schizont extract), were measured by enzyme linked immunosorbent assay (ELISA) in 117 Zimbabweans (6–18 years old) exposed to <it>S. haematobium </it>and <it>P. falciparum </it>infection. These responses were measured before and after anti-helminth treatment with praziquantel to determine the effects of treatment on anti-plasmodial/schistosome responses.</p> <p>Results</p> <p>There were no significant associations between antibody responses (IgG1/IgG3) directed against <it>P. falciparum </it>and schistosomes before treatment. Six weeks after schistosome treatment there were significant changes in levels of IgG1 directed against schistosome crude antigens, plasmodia crude antigens, MSP-1<sub>19</sub>, MSP-2 (Dd2), and in IgG3 directed against MSP-1<sub>19</sub>. However, only changes in anti-schistosome IgG1 were attributable to the anti-helminth treatment.</p> <p>Conclusion</p> <p>There was no association between anti-<it>P. falciparum </it>and <it>S. haematobium antibody </it>responses in this population and <it>a</it>nti-helminth treatment affected only anti-schistosome responses and not responses against plasmodia crude antigens or MSP-1 and -2 vaccine candidates.</p

    HARP/ACSIS: A submillimetre spectral imaging system on the James Clerk Maxwell Telescope

    Full text link
    This paper describes a new Heterodyne Array Receiver Programme (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope (JCMT). The 16-element focal-plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are ∟\sim120 K across the whole band and system temperatures of ∟\sim300K are reached routinely under good weather conditions. The system includes a single-sideband filter so these are SSB figures. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully-sampled maps of size 1 square degree can be observed in under 1 hour. The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide-field continuum studies, and produce the essential preparatory work for submillimetre interferometers such as the SMA and ALMA.Comment: MNRAS Accepted 2009 July 2. 18 pages, 25 figures and 6 table

    What has finite element analysis taught us about diabetic foot disease and its management?:a systematic review

    Get PDF
    Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk.Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues.While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making

    Mineralogy and Genesis of the Windjana Sandstone, Kimberley Area, Gale Crater, Mars

    Get PDF
    MSL Curiosity investigated the Windjana sandstone outcrop, in the Kimberley area of Gale Crater, and obtained mineralogical analyses with the CheMin XRD instrument. Windjana is remarkable in containing an abundance of potassium feldspar (and thus K in its bulk chemistry) combined with a low abundance of plagioclase (and low Na/K in its chemistry). The source of this enrichment in K is not clear, but has significant implications for the geology of Gale Crater and of Mars. The high K could be intrinsic to the sediment and imply that the sediment source area (Gale Crater rim) includes K-rich basalts and possibly more evolved rocks derived from alkaline magmas. Alternatively, the high K could be diagenetic and imply that the Gale Crater sediments were altered by K-rich aqueous fluids after deposition

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    Mindfulness-based interventions for people diagnosed with a current episode of an anxiety or depressive disorder: a meta-analysis of randomised controlled trials

    Get PDF
    Objective Mindfulness-based interventions (MBIs) can reduce risk of depressive relapse for people with a history of recurrent depression who are currently well. However, the cognitive, affective and motivational features of depression and anxiety might render MBIs ineffective for people experiencing current symptoms. This paper presents a meta-analysis of randomised controlled trials (RCTs) of MBIs where participants met diagnostic criteria for a current episode of an anxiety or depressive disorder. Method Post-intervention between-group Hedges g effect sizes were calculated using a random effects model. Moderator analyses of primary diagnosis, intervention type and control condition were conducted and publication bias was assessed. Results Twelve studies met inclusion criteria (n = 578). There were significant post-intervention between-group benefits of MBIs relative to control conditions on primary symptom severity (Hedges g = −0.59, 95% CI = −0.12 to −1.06). Effects were demonstrated for depressive symptom severity (Hedges g = −0.73, 95% CI = −0.09 to −1.36), but not for anxiety symptom severity (Hedges g = −0.55, 95% CI = 0.09 to −1.18), for RCTs with an inactive control (Hedges g = −1.03, 95% CI = −0.40 to −1.66), but not where there was an active control (Hedges g = 0.03, 95% CI = 0.54 to −0.48) and effects were found for MBCT (Hedges g = −0.39, 95% CI = −0.15 to −0.63) but not for MBSR (Hedges g = −0.75, 95% CI = 0.31 to −1.81). Conclusions This is the first meta-analysis of RCTs of MBIs where all studies included only participants who were diagnosed with a current episode of a depressive or anxiety disorder. Effects of MBIs on primary symptom severity were found for people with a current depressive disorder and it is recommended that MBIs might be considered as an intervention for this population

    Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars

    Get PDF
    The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments

    An initial event in insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein

    Get PDF
    In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the NMR solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~ 6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone 15N-1H groups of the protein, suggesting the formation of a large complex. Analytical ultra centrifugation (AUC) studies of formation of N-βGRP:laminarin complex show that ligand-binding induces sel-fassociation of the protein:carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~ 102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to sub-micromolar concentrations. The structural model thus derived from the present studies for N-βGRP:laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple helical form of laminarin on the basis of an X-ray crystallographic structure of N-βGRP:laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements carried out with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of N-βGRP:laminarin macro complex and that a decreased stability is accompanied by a reduced activation of the proPO pathway. Increased β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of βGRP:β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway
    • …
    corecore