440 research outputs found

    Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems. A simulation study

    Get PDF
    Background: Locoregional hyperthermia is applied to deep-seated tumours in the pelvic region. Two very different heating techniques are often applied: capacitive and radiative heating. In this paper, numerical simulations are applied to compare the performance of both techniques in heating of deep-seated tumours. Methods: Phantom simulations were performed for small (30 × 20 × 50 cm 3 ) and large (45 × 30 × 50 cm 3 ), homogeneous fatless and inhomogeneous fat-muscle, tissue-equivalent phantoms with a central or eccentric target region. Radiative heating was simulated with the 70 MHz AMC-4 system and capacitive heating was simulated at 13.56 MHz. Simulations were performed for small fatless, small (i.e. fat layer typically 3 cm) patients with cervix, prostate, bladder and rectum cancer. Temperature distributions were simulated using constant hyperthermic-level perfusion values with tissue constraints of 44 °C and compared for both heating techniques. Results: For the small homogeneous phantom, similar target heating was predicted with radiative and capacitive heating. For the large homogeneous phantom, most effective target heating was predicted with capacitive heating. For inhomogeneous phantoms, hot spots in the fat layer limit adequate capacitive heating, and simulated target temperatures with radiative heating were 2–4 °C higher. Patient simulations predicted therapeutic target temperatures with capacitive heating for fatless patients, but radiative heating was more robust for all tumour sites and patient sizes, yielding target temperatures 1–3 °C higher than those predicted for capacitive heating. Conclusion: Generally, radiative locoregional heating yields more favourable simulated temperature distributions for deep-seated pelvic tumours, compared with capacitive heating. Therapeutic temperatures are predicted for capacitive heating in patients with (almost) no fat

    Neurogenic switching: a hypothesis for a mechanism for shifting the site of inflammation in allergy and chemical sensitivity.

    Get PDF
    Neurogenic switching is proposed as a hypothesis for a mechanism by which a stimulus at one site can lead to inflammation at a distant site. Neurogenic inflammation occurs when substance P and other neuropeptides released from sensory neurons produce an inflammatory response, whereas immunogenic inflammation results from the binding of antigen to antibody or leukocyte receptors. There is a crossover mechanism between these two forms of inflammation. Neurogenic switching is proposed to result when a sensory impulse from a site of activation is rerouted via the central nervous system to a distant location to produce neurogenic inflammation at the second location. Neurogenic switching is a possible explanation for systemic anaphylaxis, in which inoculation of the skin or gut with antigen produces systemic symptoms involving the respiratory and circulatory systems, and an experimental model of anaphylaxis is consistent with this hypothesis. Food-allergy-iducing asthma, urticaria, arthritis, and fibromyalgia are other possible examples of neurogenic switching. Neurogenic switching provides a mechanism to explain how allergens, infectious agents, irritants, and possibly emotional stress can exacerbate conditions such as migraine, asthma, and arthritis. Because neurogenic inflammation is known to be triggered by chemical exposures, it may play a role in the sick building syndrome and the multiple chemical sensitivity syndrome. Thus neurogenic switching would explain how the respiratory irritants lead to symptoms at other sites in these disorders

    Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    Get PDF
    Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attributed to three separate groups: wild, Eastern cultivated and Western cultivated. Twenty-seven markers showing signatures for selection were identified. They showed a directional shift in frequency from the wild to the cultivated, likely reflecting diversifying selection imposed in the course of domestication. A genetic linkage map constructed using 188 F2 plants comprised 431 markers with an average distance of 1.1 cM, divided into nine linkage groups. Using previously anchored single nucleotide polymorphisms, the linkage groups were physically attributed to the nine carrot chromosomes. A cluster of markers mapping to chromosome 8 showed significant segregation distortion. Two of the 27 DArT markers with signatures for selection were segregating in the mapping population and were localized on chromosomes 2 and 6. Chromosome 2 was previously shown to carry the Vrn1 gene governing the biennial growth habit essential for cultivated carrot. The results reported here provide background for further research on the history of carrot domestication and identify genomic regions potentially important for modern carrot breeding

    Organic amendments as phosphorus fertilisers: chemical analyses, biological processes and plant P uptake

    Get PDF
    As phosphorus (P) fertilisers become increasingly expensive there is a need to find innovative ways to supply crops with P. Organic amendments (OA) can contain high concentrations of total P, although the P is present in various forms. We aimed to determine the forms of P and carbon (C) in a range of OA and the effect of these OA on soil microbial biomass, P release, arbuscular mycorrhizal (AM) colonisation, and plant P uptake. Four OA were investigated: two chicken litters (CHK-STR and CHK-SD, one with straw bedding and one with sawdust bedding), a pig litter (PIG-STR) and a municipal waste compost (COMP). An incubation experiment and a plant growth experiment were conducted in which OA and INORG-P were supplied at 15 mg P kg−1 soil and a zero P control was included. All OA had high P concentrations and did not result in an increase in the soil microbial biomass C. There were few temporal changes in available P throughout the incubation experiment suggesting that solubilisation and/or mineralisation of P occurred at a similar rate as conversion of P to unusable forms. Of the OA, PIG-STR had the largest proportion of orthophosphate P and bicarbonate extractable P, and it provided the most P to plants. While CHK-STR had a higher proportion of orthophosphate P and bicarbonate extractable P than CHK-SD, both CHK-STR and CHK-SD provided plants with similar amounts of P. This could be because CHK-SD had a higher proportion of phytate, which can be rapidly mineralised to orthophosphate, and/or because plants in the CHK-SD had higher rates of arbuscular mycorrhizal (AM) colonisation compared with CHK-STR. This study provides new insights into plant and microbial responses to OA which could help in the development of sustainable food production systems.J.E. Mackay, L.M. Macdonald, R.J. Smernik, T.R. Cavagnar

    Validation of Acute Myocardial Infarction (AMI) in the FDA’s Mini-Sentinel Distributed Database

    Get PDF
    The Food and Drug Administration’s (FDA) Mini-Sentinel is a pilot program that aims to conduct active surveillance to detect and refine safety signals that emerge for marketed medical products. The purpose of this Mini-Sentinel AMI Validation project was to: (a) develop and design an abstraction and adjudication process to use when full text medical record review is required to confirm a coded diagnosis; and (b) to test this approach by validating a code algorithm for acute myocardial infarction (AMI)

    A concise review on multi-omics data integration for terroir analysis in Vitis vinifera

    Get PDF
    Mini reviewVitis vinifera (grapevine) is one of the most important fruit crops, both for fresh consumption and wine and spirit production. The term terroir is frequently used in viticulture and the wine industry to relate wine sensory attributes to its geographic origin. Although, it can be cultivated in a wide range of environments, differences in growing conditions have a significant impact on fruit traits that ultimately affect wine quality. Understanding how fruit quality and yield are controlled at a molecular level in grapevine in response to environmental cues has been a major driver of research. Advances in the area of genomics, epigenomics, transcriptomics, proteomics and metabolomics, have significantly increased our knowledge on the abiotic regulation of yield and quality in many crop species, including V. vinifera. The integrated analysis of multiple ‘omics’ can give us the opportunity to better understand how plants modulate their response to different environments. However, ‘omics’ technologies provide a large amount of biological data and its interpretation is not always straightforward, especially when different ‘omic’ results are combined. Here we examine the current strategies used to integrate multi-omics, and how these have been used in V. vinifera. In addition, we also discuss the importance of including epigenomics data when integrating omics data as epigenetic mechanisms could play a major role as an intermediary between the environment and the genome.Pastor Jullian Fabres, Cassandra Collins, Timothy R. Cavagnaro and Carlos M. Rodríguez Lópe

    Biochar application during reforestation alters species present and soil chemistry

    Get PDF
    Reforestation of landscapes is being used as a method for tackling climate change through carbon sequestration and land restoration, as well as increasing biodiversity and improving the provision of ecosystem services. The success of reforestation activities can be reduced by adverse field conditions, including those that reduce germination and survival of plants. One method for improving success is biochar addition to soil, which is not only known to improve soil carbon sequestration, but is also known to improve growth, health, germination and survival of plants. In this study, biochar was applied to soil at rates of 0, 1, 3 and 6tha(-1) along with a direct-seed forest species mix at three sites in western Victoria, Australia. Changes in soil chemistry, including total carbon, and germination and survival of species were measured over an 18month period. Biochar was found to significantly increase total carbon by up to 15.6% on soils low in carbon, as well as alter electrical conductivity, Colwell phosphorous and nitrate- and ammonium-nitrogen. Biochar also increased the number of species present, and stem counts of Eucalyptus species whilst decreasing stem counts of Acacia species. Biochar has the potential to positively benefit reforestation activities, but site specific and plant-soil-biochar responses require targeted research.J.A. Drake, A. Carrucan, W.R. Jackson, T.R. Cavagnaro, A.F. Patt

    Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in <i>Medicago truncatula</i>

    Get PDF
    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated dis - tal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33 P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se . Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation- induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non- mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM coloniza - tion in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake.Stephanie J. Watts-Williams, Iver Jakobsen, Timothy R. Cavagnaro, and Mette GrĂžnlun

    Robust Online Hamiltonian Learning

    Get PDF
    In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance.Comment: 24 pages, 12 figures; to appear in New Journal of Physic

    Broadband Electromagnetic Sensing for Food Quality Control: A Preliminary Experimental Study

    Get PDF
    Quality control is of great importance in food industry, both for the evaluation of product characteristics and to avoid the occurrence of foreign bodies contamination in packaged items. With respect to the inspections against possible contaminants inside the product, different technologies are currently adopted along production chain lines. However, the number of accidents involving low density objects remains very large. To overcome this limitation, the use of electromagnetic technologies has been recently proposed. In this work, the synergic use of terahertz and microwaves technologies is proposed, so to provide high resolution images and in-depth inspections of different scenarios, including low density materials. A focus study on sugar samples is considered, reporting both its broadband characterization at microwaves and preliminary terahertz imaging to evaluate the integrity of the packaging. Ongoing research is devoted to the development and validation of a microwave device for monitoring food products along the production line
    • 

    corecore