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Abstract 18 

Reforestation of landscapes is being used as a method for tackling climate change 19 

through carbon sequestration and land restoration, as well as increasing biodiversity 20 

and improving the provision of ecosystem services. The success of reforestation 21 

activities can be reduced by adverse field conditions, including those that reduce 22 

germination and survival of plants. One method for improving success is biochar 23 

addition to soil, which is not only known to improve soil carbon sequestration, but is 24 

also known to improve growth, health, germination and survival of plants. In this 25 

study, biochar was applied to soil at rates of 0, 1, 3 and 6 t ha
-1

 along with a direct-26 

seed forest species mix at three sites in western Victoria, Australia. Changes in soil 27 

chemistry, including total carbon, and germination and survival of species were 28 

measured over an 18 month period. Biochar was found to significantly increase total 29 

carbon by up to 15.6 % on soils low in carbon, as well as alter electrical conductivity, 30 

Colwell phosphorous and nitrate- and ammonium-nitrogen. Biochar also increased the 31 

number of species present, and stem counts of Eucalyptus species whilst decreasing 32 

stem counts of Acacia species. Biochar has the potential to positively benefit 33 

reforestation activities, but site specific and plant-soil-biochar responses require 34 

targeted research. 35 

 36 

Keywords: afforestation, climate change mitigation, nitrogen, phosphorus, 37 

revegetation, soil carbon, species diversity 38 
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1 Introduction 40 

Reforestation plays an important role in mitigating climate change and global 41 

biodiversity loss in agro-ecosystems (George et al., 2012; Cunningham et al., 2014). It 42 

can help reclaim unproductive land (Bartle et al., 2007), and improve conservation 43 

values (Bartle et al., 2007; Lal, 2008; Smith, 2008). Afforestation of agricultural land 44 

not only acts as a carbon sink, reducing global atmospheric CO2 concentrations 45 

(Johnson et al., 2007; Lal, 2008), it can also generate new income to land through 46 

carbon credits and offset schemes (Lal, 2008; Baumber et al., 2011; Schirmer and 47 

Bull, 2014).  48 

Worldwide, reforestation is essential to tackle the negative effects of extensive 49 

vegetation clearing for agriculture. In 2000, global deforestation was estimated at 50 

being 7.3 million ha annually and is due to a complex interplay between socio-51 

cultural, economic, political values, with the prime reason being agricultural 52 

expansion (Ghazoul, 2013). This loss of vegetation has resulted in the decline of 53 

biodiversity worldwide (Freudenberger and Brooker, 2004; Ghazoul, 2013). This is in 54 

combination with reduced and lost ecosystem services, negative impacts on climate 55 

change, and economic losses (Ghazoul, 2013). Protected vegetation reserves and 56 

preserving remnant vegetation has been used extensively to tackle vegetation loss, but 57 

this alone is not sufficient (Freudenberger and Brooker, 2004; Cunningham et al., 58 

2008). Reforestation, along with vegetation conservation methods, has been 59 

determined to be key in the conservation and recovery of biodiversity and ecosystem 60 

functions in agroecosystems (Freudenberger and Brooker, 2004; Cunningham et al., 61 

2014), with reforestation methods planned for particular cases to consider 62 

environmental and socio-economic needs (Bennett and Mac Nally, 2004).  63 
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One common method used in large-scale reforestation is direct-seeding (Schirmer and 64 

Field, 2002; Greening Australia, 2003), although the success of this method for large-65 

scale reforestation can be influenced by soil conditions. On degraded agricultural 66 

lands, salinity, lack of water-holding capacity, and lack of nutrient availability all 67 

affect the success of direct-seeding methods (Bell, 1999). Soil amendments, such as 68 

biochar, composts and others, can be used to improve physiochemical properties of 69 

soils (Quilty and Cattle, 2011; Barrow, 2012), and may help overcome these 70 

limitations for reforestation success. 71 

Biochar is effective in improving degraded soils, and is a vehicle for soil carbon 72 

sequestration (Lehmann, 2007). Biochar is produced by the pyrolysis of a traditional 73 

organic amendment, such as manure and/or wood chip, to form a high-carbon product 74 

that can be applied to soil (Lehmann and Joseph, 2009). There are overwhelming 75 

benefits of biochar application, a few of which include improved plant-available 76 

nutrients and micronutrients, increased soil carbon (C) and soil-C sequestration 77 

potential, slow release of nitrogen (N) and phosphorus (P), increased soil microbial 78 

biomass, and improved soil physical properties (Atkinson et al., 2010; Joseph et al., 79 

2010; Lehmann et al., 2011; McHenry, 2011; Quilty and Cattle, 2011; Barrow, 2012). 80 

The effects of biochar, however, are specific to soil type, soil biota, plant species and 81 

biochar type and/or feedstock specific (Joseph et al., 2010; van Zweiten et al., 2010; 82 

Lehmann et al., 2011) and have focused on changes to soil in agronomic conditions 83 

(e.g. van Zweiten et al., 2010; McHenry, 2011; Xu et al., 2012). To the author’s 84 

knowledge, biochar has not been assessed for its effectiveness in ameliorating soils 85 

for reforestation.  86 

In addition to soil responses, biochar can have a positive influence on plant 87 

productivity, growth, yield, and survival. Research on biochars has thus far focused 88 
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on biochar and crop species (e.g. van Zweiten et al., 2010; McHenry, 2011), naturally 89 

derived charcoal in plantation and natural forest soils (DeLuca et al., 2006; Atkinson 90 

et al., 2010; Stavi, 2013), and application of wood ash derived from biomass burning 91 

in power plants to plantation soils (Stavi, 2013). This includes findings of improved 92 

productivity and performance of crop plants (van Zweiten et al., 2010; McHenry, 93 

2011), and greater yields of agricultural crops and trees (DeLuca et al., 2006; 94 

Atkinson et al., 2010; McHenry, 2011). Biochar also has had a mixed effect on plant 95 

germination and survival. For example, both the rate and type of biochar can 96 

influence the germination of a range of agricultural species, including an increase or 97 

decrease dependant on the exact combination of char, species and soil type (van 98 

Zweiten et al., 2010; Solaiman et al., 2012; Buss and Masek, 2014). The survival of 99 

plant species, including Abutilon theophrasti (Chinese Lantern) and Prunella vulgaris 100 

(Self Heal), in human-induced saline soils significantly improved with 50 t ha
-1

 101 

biochar addition to the topsoil (Thomas et al., 2013). The noted benefits of biochar 102 

and natural charcoal for a wide variety of crop and plantation species give credence to 103 

the postulated benefits to direct-seeded tree species. A review into the potential use of 104 

biochar in afforestation activities supports the notion that biochar has potential to 105 

benefit reforested systems, yet also highlights the need for targeted research on 106 

biochar application in reforested environments (Stavi, 2013). To our knowledge there 107 

have been no field investigations on the role of purpose-made biochar in germination 108 

and survival of common species used in reforestation, in addition to soil 109 

improvements.  110 

Given the lack of research on biochar use in reforestation, our study examines the 111 

potential for an enriched form of biochar to have a benefit in direct-seeded plant 112 

systems, both in improving a range of soil properties, including increasing soil carbon, 113 
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whilst concomitantly improving plant germination, species diversity and survival. An 114 

enriched biochar is a biochar mixed with manures, minerals and/or clays, which is 115 

then reprocessed at a low temperature (Chia et al., 2014). Field trials were established 116 

in three different locations in Victoria, Australia, with the aims to determine if:   117 

1. Biochar improves overall total soil carbon and other key soil physiochemical 118 

properties; and 119 

2. Number of germinants, species present, and survival of direct-seeded mixed 120 

woody native Australian species were improved with biochar additions. 121 

This research will improve understanding of biochar as not only an ameliorant for 122 

improving soil carbon and nutritional properties, but also its potential to improve the 123 

germination and survival of key species important in reforestation. 124 

2 Methods and Materials 125 

2.1 Site locations 126 

Field trial sites were established at three locations across western Victoria, Australia, 127 

covering a range of soil types, rainfall gradients and vegetation communities. The 128 

field trials were located near Milltown (38.05 S. 141.75 E), Minimay (36.691 S. 129 

141.27 E) and Nhill (36.26 S. 141.56 E). The characteristics of each site are available 130 

in Table 1. The temperature and rainfall data was obtained from the Bureau of 131 

Meteorology (Hamilton and Nhill, Bureau of Meteorology). The soils present at the 132 

sites were classified using the Australian Soil Classification (Isbell, 1996), and this 133 

was used to determine the Great Soil Group. These sites fall within priority zones for 134 

landscape restoration activities, within the Habitat 141 project area 135 

(http://habitat141.org.au/; last accessed October 2014).     136 

http://habitat141.org.au/
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 137 

2.2 Site layout and preparation 138 

Each field site comprised a 1 ha area, which was fenced to prevent livestock and 139 

kangaroo access. Each of these fenced areas contained 36 plots, all of which were 100 140 

m long and 0.3 m wide. The width of the plots was determined by the furrow used to 141 

create the rip-line, as part of the standard approach to the direct-seeding method 142 

(Greening Australia, 2003), and nine plots were used for each treatment to reduce 143 

variation that may be associated with a narrow plot. The plots were arranged in a grid 144 

of 12 rows x 3 columns, with 3 m spacing between the plots. Treatments were 145 

randomised within blocks, with a total of nine blocks as divided by rows and columns, 146 

with four rows and one column making a block. Within each block, each plot row 147 

then received a treatment of either: control (no biochar), low (1 t ha
-1

), medium (3 t 148 

ha
-1

) and high (6 t ha
-1

) biochar rates, completely randomised by row and column 149 

blocks. 150 

Prior to biochar application, each plot was ripped to a depth of half a metre. This was 151 

done approximately six months prior to biochar application and direct-seeding. 152 

Ripping is performed on Australian soils to prevent fracturing of root structures when 153 

soils dry out in summer, and also allows moisture penetration to greater depth 154 

(Greening Australia, 2003). The sites were sprayed with RoundUp ® (active 155 

constituent: 360g/L present as the isopropylamine salt) approximately one month 156 

prior to spreading the biochar, and again before seeding. These chemicals were used 157 

to kill any weeds on the side, and reduce competition between weed and the direct-158 

seeded species (Greening Australia, 2003). 159 
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2.3 Biochar requirements, characteristics and application 160 

The feedstock used for the enriched biochar was a combination of Southern Blue 161 

Gum fines (Eucalyptus globulus) mixed with small amounts of chicken manure (10%), 162 

and follows the method of Chia et al. (2014). Using this blend, a low and high 163 

temperature biochar was produced, as well as a high temperature biochar made just 164 

from the Southern Blue Gum fines. This made a total of three biochars that were then 165 

used to make one blend used in this research. The low temperature biochar was 166 

produced at 350 – 400 C and the high temperature char was produced at 500 C. 167 

Phosphoric acid (10%, 1:1 solution to biochar) was added to the biochars to oxidise 168 

the surface of the biochar whilst concomitantly stabilising carbonyl groups and 169 

improve loss of H from the biochar surface (Chia et al., 2014). A final biochar blend, 170 

using the three biochars, was produced which possessed an Hydrogen to Carbon (H/C) 171 

ratio of 0.697, which is consistent with International Biochar Initiative guidelines of 172 

an H/C ratio <0.7 (International Biochar Initiative, 2013). Quantities used to make the 173 

final biochar blend used in this trial were: 90 kg of high temperature biochar with no 174 

added chicken manure, 457 kg high temperature biochar with added chicken manure, 175 

and 966 kg of low temperature biochar with added chicken manure. Biochar was 176 

chosen as an amendment due to its known value in C-sequestration (Lehmann et al., 177 

2011), its reappropriation of locally produced waste products, and its potential to 178 

stimulate germination (van Zweiten et al., 2010; Solaiman et al., 2012; Buss and 179 

Masek, 2014).  180 

Three samples of the one blended biochar were sent for full analysis as per Routine 181 

Agricultural Soil Analysis - Australian Reams/Albrecht Testing at the Environmental 182 

Analysis Laboratory, Lismore, New South Wales, Australia (Table 2). Analysis or 183 

calculations included: pH and electrical conductivity (EC) (1:5 water) (Rayment and 184 
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Higginson, 1992); exchangeable sodium (ESP) (Rayment and Higginson, 1992); 185 

cation exchange capacity (CEC) (Rayment and Higginson, 1992); ammonium- (NH4
+
-186 

N) and nitrate-N (NO3
-
 -N) (Wolf and Beegle, 2009); Colwell phosphorus (Colwell-P) 187 

(Rayment and Higginson, 1992); total carbon (% TC) and total nitrogen (% TN) on a 188 

LECO CNS Analyser; and calculated TC:TN.  189 

The biochar was applied to the field plots using a purpose-built mechanical spreader 190 

attached to a tractor that dispensed a calibrated amount of biochar in a 30 cm wide 191 

band. This band was matched with the width of the rip-line prepared for direct 192 

seeding. The biochar was then incorporated into the surface soil (top 10 cm) using a 193 

pasture harrow. Plots designated as a control were ripped and harrowed in the same 194 

manner as the biochar plots to ensure uniformity of soil disturbance. The biochar was 195 

applied to the sites under favourable calm and dry weather conditions in 196 

September/October 2012.  197 

 198 

2.4 Plant selection, seeding and monitoring 199 

Species seed mixes varied according to site, and were made up of a mixture of 200 

indigenous trees and shrubs representative of the vegetation assemblages associated 201 

with these landscapes.  The full species selection for Milltown and Minimay is listed 202 

in Table 3. Nhill has not been included, as there was no germination at the site 203 

throughout the 18 months of this research, due to localised extreme drought 204 

conditions. Following application of the biochar to the soil, a suite of indigenous 205 

species (Table 3) was direct-seeded into each plot line that had been previously ripped 206 

and received one of four biochar treatments. The equilibration period between 207 

applying the biochar and direct-seeding was 7 – 20 days. Seeding was undertaken 208 
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using a proprietary single-row seeding machine (Burford Seeder, Rod Burford, 209 

Australia), which is designed to dispense a measured amount of seeds along each 210 

plot’s existing furrow line using two seed boxes – one for larger and one for smaller 211 

seeds. The amount of seeds used (Table 3) was based on recommended application 212 

rates for this region (Greening Australia, 2003).  213 

The monitoring of germinants, species diversity and survival was undertaken using a 214 

transect method along each of the sites’ 36 plots. A transect aligned along each plot 215 

was marked at 10 m intervals. The first 10 m and last 10 m of each plot transect was 216 

omitted from survey. Three surveys were taken along each 100 m transect at 10 m, 50 217 

m and 80 m respectively from the start of the plot. The survey strategy is based on 218 

obtaining an adequate number of seedling measurements across each plot, and each 219 

site, and is determined by the expected number of germinants as a function of the rate 220 

of seed dispensed per linear kilometre of seed line (Table 3).  The number of 221 

seedlings that appear early in a direct-seeding site can be in the order of 5000 to 222 

10000 stems per hectare (Heydenrych and Ten Seldam, 2011). Germinants in each 223 

plot were divided by the length of the survey transect to standardise the number as 224 

germinants per metre (m). Milltown and Minimay were monitored every two months 225 

for the first six months, starting four weeks after seeding, then quarterly to measure 226 

germination and survival of seedlings. The number of germinants, and their 227 

classification (to genus or species level), were also recorded.  228 

 229 

2.5 Soil sampling and analysis  230 

Prior to biochar spreading, three bulk density (BD) cores (0-10 cm) were taken at all 231 

sites. The BD was 1.03, 1.18 and 0.97 g cm
-3

 at Nhill, Minimay and Milltown 232 
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respectively. Soil sampling was undertaken at time zero (T0), to provide baseline soil 233 

carbon analysis of biochar-incorporated soil and controls (no biochar) prior to seeding, 234 

followed by soil sampling undertaken at ~6 months (T6) and ~18 months (T18) into 235 

the trial. Soil was sampled from the 0-10 cm horizon. Ten samples were taken from 236 

each plot and combined into one composite sample, giving a total of 36 composite 237 

samples for each site.  238 

 239 

Samples were submitted for full analysis as per Routine Agricultural Soil Analysis - 240 

Australian Reams/Albrecht Testing at the Environmental Analysis Laboratory, 241 

Lismore, NSW, Australia, as per the above methods. The TC was also standardised as 242 

g-C m
-3

 using the TC (%), BD (as above), and a depth of 10cm. This same formula 243 

was also used to: a) predict the contribution of TC with biochar addition, b) predict 244 

the TC of soil with biochar addition, as the control soil TC plus predicted contribution 245 

from biochar (a), c) the predicted increase in TC relative to the control (%), d) the 246 

actual increase in TC with biochar addition (using TC in Table 4), and e) the actual 247 

increase in TC compared to the control (%).  248 

 249 

2.6 Data analysis 250 

Due to the sites having different soil and climatic characteristics, all three of the sites 251 

were analysed separately. A Repeated Measures Restricted Maximum Likelihood 252 

(RM REML) were used to understand: a) if biochar application affected total 253 

germination density (germinants per m), number of species present, or germinant 254 

density per m of an individual species for Milltown and Minimay, and b) if biochar 255 

application affected key soil physiochemical properties (pH, EC, ESP, ECEC, NH4
+
-256 
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N, NO3
-
 -N, Colwell-P, %TC, %TN, and TC:TN) of all three sites. All replicates (36 257 

on each farm) were given unique identifying numbers and these were used as the 258 

subjects, with repeated measures undertaken using time as a covariate. For soil 259 

analysis, Minimay and Nhill have only two time points, 0 and 18 months. Milltown 260 

has three time points, 0, 6 and 18 months. Milltown and Minimay were the only two 261 

sites with germination, with seven sampling times for Milltown and six for Minimay 262 

recorded. Nhill was not analysed for germination, as none occurred. For the model, 263 

the fixed factors were rates of biochar (0, 1, 3, and 6 t ha
-1

) and random factors were 264 

designated as the interaction between row and column location of the samples. Where 265 

P-values were significant, F-values were checked against the appropriate orthogonal 266 

contrast, and main effects pairwise comparisons using Least Significant Difference 267 

(LSD), and confidence intervals of 95%.  268 

Survival was not recorded on individual trees at each time point. Instead, percentage 269 

loss of germinants was calculated. This was calculated as: the final survey of 270 

germinants (stems per m) - the first survey of germinants (stems per m) divided by the 271 

first survey of germinants (stems per m) and multiplied by 100 as % stem loss. To 272 

determine if there was a decrease in % stem loss with biochar, the loss was analysed 273 

via Analysis of Variance (ANOVA) with fixed factors being biochar rate, and random 274 

factors being the interaction between the block design (row by column). Where P-275 

values were significant, F-values were checked against the appropriate orthogonal 276 

contrast, and main effects pairwise comparisons LSDs, and confidence intervals of 277 

95%. All data analysis was undertaken using SPSS Version 21 (IBM, USA). 278 

 279 
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3 Results  280 

3.1 Soil characteristics 281 

3.1.1 Nhill 282 

Plant available (Colwell) P, TC and TN increased significantly (P < 0.05) with 283 

biochar addition (Table 4). In contract, the soil pH, EC, ESP, ECEC, NO3
-
 -N, NH4

+
-284 

N and C:N did not change in response to biochar addition (P>0.05) (Table 4). 285 

Specifically, where 6 t ha
-1

 of biochar were added to the soil, there was higher 286 

Colwell-P compared to 0 t ha
-1

. With pairwise comparisons, there were significant 287 

increases in TC and TN with 6 t ha
-1

 of biochar relative to those with 0 and 1 t ha
-1

. 288 

Further, the predicted increase in TC relative to the control (Table 5), and the actual 289 

increases with each rate of biochar addition are all very similar. The exception is 6 t 290 

ha
-1

 of biochar, where the actual increase was slightly lower at 15.6% compared to the 291 

predicted of 18% increase in TC.  292 

 293 

3.1.2 Minimay 294 

There was a significant difference (P < 0.05) associated with biochar application for 295 

NH4
+
-N, EC and NO3

-
 -N (Table 4). In contrast, here was no difference in soil pH, 296 

ESP, ECEC, Colwell-P, TC, TN and C:N associated with biochar addition (Table 4). 297 

Specifically, with pairwise comparisons, EC was higher in plots with 6t ha
-1

 of 298 

biochar relative to those with 0 and 1 t ha
-1

, and higher NO3
-
-N with 6 t ha

-1
 biochar 299 

compared to 0, 1 and 3 t ha
-1

. There was a decreasing trend in NH4
+
-N with greater 300 

use of biochar, with 3 and 6 t ha
-1

 having similar values of NH4
+
-N compared to each 301 

other, and less with 0 and 1t ha
-1

 (Table 4). The comparisons of predicted and actual 302 

increases in TC with biochar addition (Table 5) were inconsistent. The 1 t ha
-1

 303 
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application rate actually showed a decrease of -4.9 % in TC relative to the control 304 

when there should have been a 1.6 % increase. The 3 and 6 t ha
-1 

application rates did 305 

result in actual increases in TC, close to the predicted values (Table 5).  306 

 307 

3.1.3 Milltown 308 

With biochar addition, there was a significant difference (P < 0.05) in EC and 309 

Colwell-P (Table 4). However, there was no difference in soil pH, ESP, ECEC, NO3
-
 -310 

N, NH4
+
-N, TC, TN and C:N associated with biochar addition (Table 4). In particular, 311 

there was higher EC and Colwell-P in plots with 3 and 6 t ha
-1

 of biochar compared to 312 

those with no biochar. The predicted and actual increase in TC with biochar addition 313 

(Table 5) was also inconsistent across biochar application rates. Both 1 and 3 t ha
-1 

314 

had actual increases in TC that surpassed the predicted increase, but 6 t ha
-1 

had a 315 

lower increase of 4.3 % relative to the predicted value of 5.8 %.  316 

 317 

3.2 Number of germinants, diversity and survival 318 

There were significant differences (P < 0.05) between biochar application rates for the 319 

number of species present, and the number of germinants per metre of Acacia 320 

melanoxylon, A. paradoxa, Eucalyptus viminalis and E. ovata at Milltown (Table 6), 321 

and Dodonea viscosa at Minimay (Table 7). With 6 t ha
-1

 of biochar, the number of 322 

species present was higher, relative to all other rates of biochar. There were fewer 323 

germinants per m of A. paradoxa with 3 t ha
-1

 of biochar compared to the control, and 324 

fewer germinants per meter of A. melanoxylon with 3 and 6 t ha
-1

 compared to no 325 

biochar treatment. Eucalyptus viminalis, however, had significantly greater number of 326 
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germinants per m with 3 t ha
-1

 compared to 0 and 6 t ha
-1

, and E. ovata had more 327 

germinants per m with 6 t ha
-1

 than all other treatments. At Minimay, for D. viscosa, 328 

the model revealed a significant difference between germination for particular rates of 329 

biochar application. This, however, is most likely a Type I error, due to high skew in 330 

the data from absence of germinants in some transects, and so should be treated with 331 

due caution. Biochar had no effect on decreasing the percentage loss of germinants at 332 

either site (Table 8).   333 

 334 

4 Discussion 335 

4.1 Soil carbon and chemical properties 336 

The significant increase in TC and TN with increasing application rate of biochar at 337 

Nhill, may be related to the low initial TC and TN content of the soil. Biochar is well 338 

known to increase soil TC and TN (e.g. Chan et al., 2008; Barrow, 2012), with 339 

increasing rates of application concomitantly increasing soil TC (Chan et al., 2008). 340 

Carbonised or pyrolised chicken manure and poultry litter wastes present in the 341 

biochar are known to increase soil TN (Chan et al., 2008; Tagoe et al., 2008). At Nhill, 342 

the largest increase in TC was 15.6% with 6 t ha
-1

 of biochar, which was just under 343 

the predicted increase of 18 % (Table 5). Due to the higher TC content of the soils at 344 

Minimay and Milltown, the predicted and actual increases in TC with biochar were 345 

lower.  346 

It is interesting that there was no detected significant increase in TC at Milltown and 347 

Minimay, despite an expected contribution of 29.1 and 35.4 g-C m
-3

, similar to the 348 

30.9 g-C m
-3

 at Nhill. The differences in TC increases between sites may have been 349 
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related to differences in plant growth and biological activity within sites (Joseph et al., 350 

2010; Lehmann et al., 2011), such as positive microbial priming, where the degree 351 

and nature of priming is soil-char specific, and this may vary the C-loss as CO2 within 352 

the sites (Schulz and Glaser, 2012). Considering measurements of microbial 353 

respiration and dissolved organic carbon in future biochar studies will help determine 354 

C balance in these environments. Other variation in TC may be due to erosive loss of 355 

biochar, over or underestimate due to application and sampling methods, or 356 

differences in TC that are within analytical error range.  357 

Furthermore, application rates of biochar for Minimay and Milltown were possibly 358 

too low to see a significant increase outside of natural variation, as the predicted rates 359 

were only 9 and 6 %. To measure a significant increase in TC, an application rate of 360 

biochar that increases the soil TC by a predicted amount of 18 % or more is likely 361 

required for the Minimay and Milltown sites, as demonstrated at Nhill. Therefore, 362 

application rates of 12.1 t ha
-1

 and 18.6 t ha
-1

 would be necessary to produce a 363 

statistically significant 18 % increase.  364 

Plant available (Colwell) P and EC was altered with biochar application, but this 365 

change was site dependent. The biochar had a very high Colwell-P and a moderate EC, 366 

which is likely to be due to the chicken manure added into the feedstock, and 367 

phosphoric acid used in the charring process to produce an enriched biochar (Chia et 368 

al., 2014). Chicken manure is known to have a high P content, and a high EC 369 

depending on feed given to the chickens (Cameron et al., 1997). Poultry litter biochar 370 

is known to have a high available P content, and is known to increase available P and 371 

EC in soil (Chan et al., 2008). The relative differences in Colwell-P between the sites 372 

and by rate of biochar may be due a range of different conditions, including P 373 

sorption properties of the soil (McDowell and Condron, 2001); binding potential of 374 
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the biochar (Barrow, 2012); and enhanced soil biological processes with biochar 375 

application (Steiner et al., 2008a). Similar to Chan et al. (2008), our research also 376 

found increasing Colwell-P with increasing rates of biochar applied. Although the EC 377 

increased, it was no more than 0.02 dS m
-1

, and unlikely to have a negative biological 378 

impact.  379 

Interestingly, NO3
-
-N and NH4

+
-N at Minimay was influenced by biochar addition, 380 

and may be the result of several different mechanisms. Poultry and chicken manure 381 

char known to increase soil N (Chan et al., 2008; Tagoe et al., 2008), and this biochar 382 

had a very high NO3
-
-N content and low NH4

+
-N. Therefore, it is unsurprising that 383 

NO3
-
-N increased relative to the control. This effect, however, only occurred at one 384 

site out of the three. At Minimay, the increase in NO3
-
-N also came with a decrease in 385 

NH4
+
-N in the presence of biochar. This indicates a potential site-specific biological 386 

interaction between soil and biochar, and a greater net conversion of NO3
- 
-N with the 387 

biochar addition at a rate of 6 t ha
-1

. Improved N cycling efficiency and N fixation has 388 

also been found to occur in other biochar studies (DeLuca et al., 2006; Steiner et al., 389 

2008b) and in this case the contribution and influence of N cycling and N fixation 390 

may be related to a site-specific biochar-biological interaction. These interactions 391 

have been noted as inconsistent across sites and biochar types (Berglund et al., 2004). 392 

The biological fixation of N and cycling of N in soil with biochar addition is an area 393 

that is widely regarded as requiring further research (Berglund et al., 2004; Atkinson 394 

et al., 2010) and this work further supports that more research is needed.  395 

 396 
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4.2 Plant germination, survival and species present 397 

Although there was germination at Minimay and Milltown sites, there was also a 398 

decline in survival over time. The loss of germinants was due to unusually dry 399 

climatic conditions during establishment in the summers (December – March) of 400 

2012-2013 and 2013-2014, with a rainfall of 56.5 mm and 88.6 mm compared to a 401 

normal average of 137.7mm (Hamilton Airport, Bureau of Meteorology). Despite 402 

these adverse conditions, the findings in this research highlight the positive influence 403 

of the addition of biochar on direct-seeded species.  404 

The changes in the number of species present and their individual density at Milltown 405 

may be the result of competition between species with increased available nutrients. 406 

There was a greater number of species present with the highest biochar rate (6 t ha
-1

). 407 

When comparisons were made for individual species, some exhibited significant 408 

different increases and decreases in density dependant on the rate of biochar 409 

application. Unique plant-soil responses with biochar additions are not uncommon 410 

and many authors have demonstrated distinct and different trends for different 411 

biochars across a range of sites and plant species (e.g. Chan et al., 2008; van Zweiten 412 

et al., 2010; McHenry, 2011). The increased availability Colwell-P at Milltown, 413 

however, likely increased E. ovata and E. viminalis density, as P fertilisation is known 414 

to improve Eucalyptus growth in several species (Hunter, 2001; Graciano et al., 2006). 415 

In mixed species plots, the water and nutrient availability is known to alter 416 

competitiveness of individual species (Forrester et al., 2005), and the higher Colwell-417 

P with biochar addition may have altered the competiveness of E. ovata and E. 418 

viminalis relative to the Acacia species.  419 
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As the effect of biochar is rate and species-specific, biochar is likely to be creating 420 

conditions where particular species have optimum growth and survival parameters as 421 

matched with biochar application. Therefore, understanding the requirements of each 422 

individual species in the seed mix and their response to biochar, as well as 423 

competitive interactions, is essential in the prediction of changes to the number of 424 

species present with biochar addition on a site-by-site basis. Despite this, if the 425 

biochar is being added to the site at a rate of 1 - 6 t ha
-1

 as to increase C-sequestration, 426 

it is unlikely to have a negative effect on overall seedling survival. This application 427 

rate may positively influence the number of species present, reducing density of some 428 

species and increasing others. 429 

5 Conclusion 430 

This is the first study to find that biochar, as an enriched form, positively influences 431 

success of direct seeded reforestation. This includes an increase in the number of 432 

species present as germinants from a direct-seeded mix, as well as soil carbon, 433 

available nitrogen and phosphorus, and EC. Responses to biochar were site and 434 

species-specific. The apparent influence of biochar application rate on the number of 435 

species present may have a flow on effect to final site biodiversity and ultimately 436 

upon the overall C-sequestration of agroforestry plots. Biochar addition to sites 437 

should always consider the soil chemistry of the site, especially the TC content, and 438 

the required rate of biochar needed to significantly increase soil C and other nutrients. 439 

Furthermore, targeted research on common reforestation seed mixes and N cycling 440 

with biochar application is required to understand precise influences of biochar on 441 

plant diversity and nutrient availability in direct-seeded plots. The outcome of this 442 

study shows that biochar does have a positive benefit in enhancing outcomes for 443 
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reforestation, and can help to improve both biodiversity and soil carbon sequestration 444 

targets.   445 
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