18 research outputs found
Using evidence combination for transformer defect diagnosis
This paper describes a number of methods of evidence combination, and their applicability to the domain of transformer defect diagnosis. It explains how evidence combination fits into an on-line and implemented agent-based condition monitoring system, and the benefits of giving selected agents reflective abilities. Reflection has not previously been deployed in an industrial setting, and theoretical work has been in domains other than power engineering. This paper presents the results of implementing five different methods of evidence combination, showing that reflective techniques give greater accuracy than non-reflective
Integrating an agent-based wireless sensor network within an existing multi-agent condition monitoring system
The use of wireless sensor networks for condition monitoring is gaining ground across all sectors of industry, and while their use for power engineering applications has yet been limited, they represent a viable platform for next-generation substation condition monitoring systems. For engineers to fully benefit from this new approach to condition monitoring, new sensor data must be incorporated into a single integrated system. This paper proposes the integration of an agent-based wireless sensor network with an existing agent-based condition monitoring system. It demonstrates that multi-agent systems can be extended down to the sensor level while considering the reduced energy availability of low-power embedded devices. A novel agent-based approach to data translation is presented, which is demonstrated through two case studies: a lab-based temperature and vibration monitoring system, and a proposal to integrate a wireless sensor network to an existing technology demonstrator deployed in a substation in the UK
Issues in integrating existing multi-agent systems for power engineering applications
Multi-agent systems (MAS) have proven to be an effective platform for diagnostic and condition monitoring applications in the power industry. For example, a multi-agent system architecture, entitled condition monitoring multi-agent system (COMMAS) (McArthur et al., 2004), has been applied to the ultra high frequency (UHF) monitoring of partial discharge activity inside transformers. Additionally, a multi-agent system, entitled protection engineering diagnostic agents (PEDA) (Hossack et al., 2003), has demonstrated the use of MAS technology for automated and enhanced post-fault analysis of power systems disturbances based on SCADA and digital fault recorder (DFR) data. In this paper, the authors propose the integration of COMMAS and PEDA as a means of offering enhanced decision support to engineers tasked with managing transformer assets. By providing automatically interpreted data related to condition monitoring and power system disturbances, the proposed integrated system offer engineers a more comprehensive picture of the health of a given transformer. Defects and deterioration in performance can be correlated with the operating conditions it experiences. The integration of COMMAS and PEDA has highlighted the issues inherent to the inter-operation of existing multi-agent systems and, in particular, the issues surrounding the use of differing ontologies. The authors believe that these issues need to be addressed if there is to be widespread deployment of MAS technology within the power industry. This paper presents research undertaken to integrate the two MAS and to deal with ontology issues
On-line transformer condition monitoring through diagnostics and anomaly detection
This paper describes the end-to-end components of an on-line system for diagnostics and anomaly detection. The system provides condition monitoring capabilities for two in- service transmission transformers in the UK. These transformers are nearing the end of their design life, and it is hoped that intensive monitoring will enable them to stay in service for longer. The paper discusses the requirements on a system for interpreting data from the sensors installed on site, as well as describing the operation of specific diagnostic and anomaly detection techniques employed. The system is deployed on a substation computer, collecting and interpreting site data on-line
Interpretation of partial discharge activity in the presence of harmonics
Recent work has identified that circumstances of equipment operation can radically change condition monitoring data. This contribution investigates the significance of considering circumstance monitoring on the diagnostic interpretation of such condition monitoring data. Electrical treeing partial discharge data have been subjected to a data mining investigation, providing a platform for classification of harmonic influenced partial discharge patterns. The Total Harmonic Distortion (THD) index was varied to a maximum of 40%. The results show progressive development for interpretation of condition monitoring data, improving the asset manager's holistic view of an asset's health
The role of circumstance monitoring on the diagnostic interpretation of condition monitoring data
Circumstance monitoring, a recently coined termed defines the collection of data reflecting the real network working environment of in-service equipment. This ideally complete data set should reflect the elements of the electrical, mechanical, thermal, chemical and environmental stress factors present on the network. This must be distinguished from condition monitoring, which is the collection of data reflecting the status of in-service equipment. This contribution investigates the significance of considering circumstance monitoring on diagnostic interpretation of condition monitoring data. Electrical treeing partial discharge activity from various harmonic polluted waveforms have been recorded and subjected to a series of machine learning techniques. The outcome provides a platform for improved interpretation of the harmonic influenced partial discharge patterns. The main conclusion of this exercise suggests that any diagnostic interpretation is dependent on the immunity of condition monitoring measurements to the stress factors influencing the operational conditions. This enables the asset manager to have an improved holistic view of an asset's health
Assessing the effects of power quality on partial discharge behaviour through machine learning
Partial discharge (PD) is commonly used as an indicator of insulation health in high voltage equipment, but research has indicated that power quality, particularly harmonics, can strongly influence the discharge behaviour and the corresponding pattern observed. Unacknowledged variation in harmonics of the excitation voltage waveform can influence the insulation's degradation, leading to possible misinterpretation of diagnostic data and erroneous estimates of the insulation's ageing state, thus resulting in inappropriate asset management decisions. This paper reports on a suite of classifiers for identifying pertinent harmonic attributes from PD data, and presents results of techniques for improving their accuracy. Aspects of PD field monitoring are used to design a practical system for on-line monitoring of voltage harmonics. This system yields a report on the harmonics experienced during the monitoring period
Agents for active network management and condition monitoring in the smart grid
Recent interest in the smart grid or intelligent grid concept focuses on the desired capabilities of future energy networks, without much consideration of how to transition from current networks to the smart grid of tomorrow. This paper explores the required functionality and capability of an intelligent network management system, and shows how agent technology can address these needs. Agents can provide the platform for staged deployment of smart grid functionality, allowing the integration of current equipment and systems while remaining extensible for future developments. This paper describes how agent technology can be used to achieve this goal
Learning models of plant behavior for anomaly detection and condition monitoring
Providing engineers and asset managers with a too] which can diagnose faults within transformers can greatly assist decision making on such issues as maintenance, performance and safety. However, the onus has always been on personnel to accurately decide how serious a problem is and how urgently maintenance is required. In dealing with the large volumes of data involved, it is possible that faults may not be noticed until serious damage has occurred. This paper proposes the integration of a newly developed anomaly detection technique with an existing diagnosis system. By learning a Hidden Markov Model of healthy transformer behavior, unexpected operation, such as when a fault develops, can be flagged for attention. Faults can then be diagnosed using the existing system and maintenance scheduled as required, all at a much earlier stage than would previously have been possible
Multi-agent systems for power engineering applications - part 2 : Technologies, standards and tools for building multi-agent systems
This is the second part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. The paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled