-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by University of Strathclyde Institutional Repository

I._‘.
Unlversltyﬂ@

Strathclyde
Glasgow

Strathprints Institutional Repository

McArthur, S.D.J. and Davidson, E.M. and Catterson, V.M. and Dimeas, A.L. and Hatziargyriou, N.D.
and Ponci, F. and Funabashi, T. (2007) Multi-agent systems for power engineering applications -
part 2 : Technologies, standards and tools for building multi-agent systems. |EEE Transactions on
Power Systems, 22 (4). pp. 1753-1759. ISSN 0885-8950

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

https://core.ac.uk/display/9022551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

McArthur, S. D. J and Davidson, E. M. and Catterson, V. M. and Dimeas, A. L. and Hatziargyriou,

N. D. and Ponci, F. and Funabashi, T. (2007) Multi-agent systems for power engineering applications -
part 2: technologies, standards and tools for building multi-agent systems. IEEE Transactions on Power
Systems, 22 (4). pp. 1753-1759. ISSN 0885-8950

http://strathprints.strath.ac.uk/26473/

Strathprints is designed to allow users to access the research output of the University of
Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. You may not engage in further
distribution of the material for any profitmaking activities or any commercial gain. You
may freely distribute both the url (http://strathprints.strath.ac.uk) and the content of this
paper for research or study, educational, or not-for-profit purposes without prior
permission or charge. You may freely distribute the url (http://strathprints.strath.ac.uk)
of the Strathprints website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://strathprints.strath.ac.uk/26473/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007

Multi-Agent Systems for Power Engineering
Applications—Part 2: Technologies, Standards, and
Tools for Building Multi-Agent Systems

S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou, F. Ponci, T. Funabashi

Abstract—This is the second part of a 2-part paper that has
arisen from the work of the IEEE Power Engineering Society’s
Multi-Agent Systems (MAS) Working Group.

Part 1 of the paper examined the potential value of MAS tech-
nology to the power industry, described fundamental concepts
and approaches within the field of multi-agent systems that are
appropriate to power engineering applications, and presented a
comprehensive review of the power engineering applications for
which MAS are being investigated. It also defined the technical
issues which must be addressed in order to accelerate and
facilitate the uptake of the technology within the power and
energy sector.

Part 2 of the paper explores the decisions inherent in engi-
neering multi-agent systems for applications in the power and
energy sector and offers guidance and recommendations on how
MAS can be designed and implemented.

Given the significant and growing interest in this field, it is
imperative that the power engineering community considers the
standards, tools, supporting technologies and design methodolo-
gies available to those wishing to implement a MAS solution for
a power engineering problem. The paper describes the various
options available and makes recommendations on best practice.

It also describes the problem of interoperability between
different multi-agent systems and proposes how this may be
tackled.

Index Terms—Multi-agent systems

I. INTRODUCTION

ART 1 of this paper examined the properties of multi-
agent systems (MAS) and discussed how MAS technol-
ogy offers the means to create flexible, extensible, and fault
tolerant systems; and also a modeling approach for creating
complex systems or market models.
This part of the paper (Part 2) is concerned with the
design and implementation of such systems. There are two
fundamental questions to be considered, namely:

o How should an autonomous intelligent agent be built for
power engineering applications?

o How should a society of agents be built for power
engineering applications?

S. D. J. McArthur, E. M. Davidson, and V. M. Catterson are with the
Institute for Energy and Environment, University of Strathlcyde, Glasgow,
UK (email: s.mcarthur@eee.strath.ac.uk).

A. L. Dimeas and N. D. Hatziargyriou are with the Power Division of the
Electrical and Computer Engineering Department of the National Technical
University of Athens, Greece.

F. Ponci is with the Electrical Systems Department, University of South
Carolina, USA.

T. Funabashi is with the Meidensha Corporation, Japan.

Agents are currently being investigated for a wide range of
applications within the community, from monitoring and diag-
nostics to network control. The justification for their use often
lies in the allegedly inherent properties of flexible autonomy,
reactivity, pro-activeness, social ability, the distributable nature
of agents, the possibility of emergent behaviour, and the fault
tolerance of agent systems. In reality, the design decisions
and specific implementation techniques used for an agent can
constrain it to the point that these properties are not displayed.
For this reason, it is essential that current best practices are
followed when developing a multi-agent system.

This paper discusses the various options and identifies
the current state-of-the-art. Consideration is given to MAS
standards and their relation to existing data standards such as
the Common Information Model (CIM) [1], and how to best
allow interoperability between agents from different designers.
Design methodologies are examined, with a brief overview of
one example approach to MAS design. Finally, agent anatomy
is identified as an area requiring further research, through a
description of several anatomies and the technologies they
employ, but a lack of comparative information.

Importantly the recommendations presented in this paper are
not recommendations for designing and implementing MAS
per se but recommendations based on consideration of the
application of MAS specifically to power engineering.

II. STANDARDS AND INTEROPERABILITY

The use of standards is important when developing multi-
agent systems for power engineering applications. Utilities are
striving for increased integration between previously separate
systems [2]. Recent standards, such as the power systems
CIM [1], which promotes open interfaces between energy
management systems from different vendors, and IEC 61850
[3], which promotes interoperability between devices within
substations, highlight this point. If the application of MAS
technology is to be widespread within power engineering,
then the adoption of standards that promote interoperability
between systems in the future would be advantageous, if not
a necessity.

In recent years the Foundation for Intelligent Physical
Agents’ (FIPA) standards have become the de facto standards
used by MAS developers in the computer science community
and beyond. In 2005, FIPA was formally accepted as a
standards committee of the IEEE Computer Society.

FIPA aims to define specifications and standards that can be
used to support interoperability between agent-based systems

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007

Agent Platform 1
AMS DF Agent A Agent B
Message Transport System
Message Transport System
AMS DF Agenm C AgentD
Agent Platform 2

Fig. 1. The FIPA Agent Management Reference model

developed by the different companies and organizations [4]-
[10]. These standards impact on not only methods for inter-
agent communication, but also on the basic architecture a
multi-agent system should implement.

A. Multi-agent system architectures

The FIPA Agent Management Reference model defines “the
normative framework within which FIPA agents exist and
operate. It establishes the logical reference model for the
creation, registration, location, communication, migration and
retirement of agents” [4]. Under the FIPA model (Figure 1),
an agent resides on a particular agent platform which provides
some sort of message transport system to allow the agents
to communicate. FIPA offers standards for the use of certain
message transport protocols such as HTTP [5] and IIOP [6].

Each agent platform includes two utility agents: the agent
management service (AMS) agent, which is compulsory, and
the directory facilitator (DF) agent, which is optional. The
AMS acts as white pages, maintaining a directory of agents
registered with the MAS platform. The DF acts as yellow
pages, maintaining a directory of agents and the services they
can offer other agents. An agent can use the DF to search for
other agents that can provide services to aid it in fulfilling its
own particular goals.

Many early multi-agent systems had closed architectures
where the specific interactions were effectively “hard wired” at
design time. The FIPA Agent Management Reference model,
on the other hand, provides an open architecture, i.e. an
architecture to which agents can easily be added and removed.
In many power engineering applications, this extensibility is
one of the key benefits of the use of agents.

B. Agent communication languages

Mechanisms for the communication between agents under-
pin their social abilities. As agent technology has matured, a
number of different methods for inter-agent communication
have been developed. Early multi-agent systems, such as AR-
CHON [11], used proprietary communication languages. Other
systems have also used blackboard system type approaches to
enable communication between agents [12].

TABLE 1
FIPA-ACL MESSAGE STRUCTURE
Message field Description
performative Type of communicative act
sender Participant in communication
receiver Participant in communication
reply-to Participant in communication
content Content of message
language Content language
encoding Encoding of content
ontology Ontology used
protocol Protocol for conversation
conversation-id ID for conversation control
reply-with Conversation control parameter
in-reply-to Conversation control parameter
reply-by Conversation control parameter
AgentA AgentD

query-ref

agree

refuse
inform %
failure

Fig. 2. Agent interaction diagram showing the protocol for the query-ref
communicative act

L -

One of the first agent communication languages (ACL) to
be used by different researchers across different fields was
the Knowledge Query and Manipulation Language (KQML)
[13], which emerged in the early 1990s through the US
government’s DARPA knowledge-sharing program. In recent
years KQML has been superseded by FIPA-ACL [7].

FIPA-ACL has its roots in speech act theory and incorpo-
rates many aspects of KQML. A FIPA-ACL message contains
13 fields (Table I). The first and only mandatory field in the
message is the performative field that defines the type of
communicative act or speech act. By classifying the message
using a performative, FIPA-ACL ensures that recipients will
understand the meaning of a message in the same way as the
sender, removing any ambiguity about the message’s content.

FIPA specifies 22 performatives or communicative acts that
define the type of message content and the flow of messages
expected by each agent during specific classes of communica-
tive act [8]. Figure 2 illustrates the flow of messages specified
by FIPA for a query-ref interaction. For example, agent A may
be interested in the details of distributed generators currently
connected to a local MV network. If agent D is responsible for
the management of that network, agent A could ask agent D
for details of all the cases it knows of where local generators
are currently connected, by using the query-ref communicative
act.

There are a number of different ways the characters of
FIPA-ACL messages can be encoded and sent between FIPA-

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007

compliant agents [9].

C. Content languages and ontologies

The content of a message comprises two parts: content
language and ontology. The content language defines syntax,
or grammar, of the content. The semantics or lexicon is
drawn from the ontology. The content language and ontology
employed are declared in the “content” and “ontology” fields
of a FIPA-ACL message respectively.

FIPA has proposed standards for four different content
languages: FIPA-Semantic Language (FIPA-SL); Knowledge
Interchange Format (KIF); Resource Definition Framework
(RDF) and Constraint Choice Language (CCL) [10]. In addi-
tion to the content languages above, other content languages,
such as Description Logic (DL) [14] and DARPA Agent
Markup Language (DAML) [15], which is closely related
to the OWL standards [16] developed by the semantic web
community, have found favor with some MAS developers.

The choice of content language is important, as the chosen
language will shape how a given ontology is expressed. Some
multi-agent systems [17]-[19] are reported to use the FIPA-
SL content language, simply because it is the only one of
the four FIPA content language specifications to reach a
stable standard: KIF, RFD and CCL are still experimental and
liable to change. Although the FIPA-SL standard has been in
existence since 1997, it only became a stable standard in 2002.

The ontology describes the concepts of a domain and the
relationship between those concepts in a structured manner.
For example, ontologies for use with the Java Agent Devel-
opment Framework (JADE) [20] contain a class hierarchy of
concepts, predicates, and agent actions. Concepts, as the name
suggests, model domain concepts: physical concepts such as
substations and transformers, and less tangible concepts such
as feature vectors. Predicates specify concept relationships,
and can always be evaluated as true or false. An example
predicate in a power engineering ontology would be:

onClircuit(Circuit, Fault)

This could be used to discuss whether a fault occurred on
a particular circuit. An action is a special type of concept
specifically for communicative acts such as request and call-
for-proposal, where agents discuss an event happening. An
example action is:

Delete(TransformerData)

This action could be used to allow agents to discuss the
deletion of particular facts from their local data stores. The
requirement for particular subclasses of these three will change
depending on the communication models employed in a sys-
tem.

Agents use the ontology for the passing of information,
formulating questions and requesting the execution of actions
related to their specific domain.

Recommendation: when implementing a multi-agent sys-
tem, if interoperability with other systems is desirable, then
standards for basic MAS architecture, agent communication
language and content languages should be adopted. At the
time of writing FIPA standards [4]-[10], described briefly
above, are recommended.

III. INTEROPERABILITY FOR POWER ENGINEERING
APPLICATIONS

The FIPA standards go a long way in promoting interop-
erability between multi-agent systems. If different developers
adhere to the same set of FIPA standards then the agents they
have developed should be able, at a basic level, to interoperate.
Consider agent A and agent D in Figure 2. By supporting
FIPA standards [4]-[10] agents should be able to discover
each other’s existence and then interact. However, while the
agents may be able to send each other messages using FIPA-
ACL, unless they employ a common ontology, they will not
be able to parse and understand the content of the messages
they receive.

Currently different developers of multi-agent systems tend
to develop their own application-specific ontologies. This leads
to different systems using different ontologies. Although the
ontologies are different, power engineering systems tend to
capture common concepts, such as “substation”, “transformer”
and “circuit-breaker”. The problem is that the way these
concepts are represented in the ontologies is different. In other
words, the agents speak the same language but do not share a
common vocabulary.

A. Using multiple ontologies

FIPA’s solution to the problem of using multiple ontologies
comes in the form of an Ontology Agent that provides a
number of ontology-related services [21]. The list of possible
services is given as:

1) Locating and accessing public ontologies;

2) Maintaining a list of public ontologies;

3) Translating expressions between ontologies;

4) Providing information about the relationship between

two terms or ontologies;

5) Identifying an ontology common to two agents.
There are a number of issues with implementing this solution,
not least of which is that the relevant FIPA standard is still
experimental. Part of the problem may be that the state-of-the-
art in ontology mapping [22] falls short of what is required to
automate services 3, 4 and 5 above.

B. An upper ontology for power engineering

In [19], Catterson et al. examined the possibility of integrat-
ing two multi-agent systems called PEDA [17] and COMMAS
[18]. In order to allow PEDA agents to communicate effec-
tively with COMMAS agents, they had to define the mappings
between the two ontologies. As [19] highlighted, this was not
a straightforward task.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007

Upper Ontology for Power Systems I

Ontology for specific

Application

Monitoring & Diagnostic

Ontology for specific
Protection
Application

Ontology for specific
Distributed Control
Application

Ontology for specific
Modeling & Simulation
Application

Fig. 3. Extending an upper ontology

If the deployment of MAS technology becomes widespread
within the power arena and utilities demand inter-operation
between systems from different vendors/developers, the cost of
the creation of multiple mappings between different ontologies
may be prohibitive.

One alternative, which Catterson et al. mooted in [19],
would be to create an upper ontology for power engineering
applications. The upper ontology would contain the basic
concepts of the domain. While not detailed enough for specific
applications, the ontology would ensure that different multi-
agent systems would employ the same basic representation
for common concepts, such as “substation”, “transformer”,
“conducting equipment” and how they are related. Agent
developers could use the upper ontology as a starting point for
developing ontologies for specific applications. The property
of inheritance would ensure that different multi-agent systems
would share the same representation for common concepts,
reducing the complexity of ontology mapping should it be
required. This is shown in Figure 3.

Currently, there is no standard upper ontology for power
systems. However, existing power engineering standards, such
as [EC 61850, CIM, and IEC 61400-25 [23] may provide data
models that can be used as a foundation for an upper ontology.

Figure 4 shows part of an upper ontology based on CIM.
CIM provides a structured class hierarchy of many of the
fundamental concepts in power engineering, especially in the
description of power system plant and topology. The upper
ontology in Figure 4 is not a simple port of the CIM data
model. In order to preserve the meaning of the inheritance
relationship some aspects of the CIM data model have been
modified. For example, in CIM all classes inherit from the
Naming class. While all plant items may have a name,
inheritance is an “is-a” relationship; a breaker, for example, is
not a name and should therefore not inherit from Naming.

Additionally, an ontology distinctly separates concepts from
predicates, whereas the CIM data model has to contain all
relationships within concept definitions. In CIM, the Protec-
tionEquipment definition contains an attribute called Oper-
ates_Breaker, which indicates which breaker can be operated
by each particular protection device. However, in an agent
messaging situation this is more correctly modeled by a
predicate called Operates, as the operation of the breaker is
not a feature of the protection device.

Despite these differences, CIM offers a considered and
detailed model of power systems concepts, and is therefore a
good starting point for an upper ontology. The plant descrip-
tions are directly appropriate for all four main areas of agent

L _
VARV

Breaker breaker

PowerSystem
Resource
Naming name

/

Equipment

Conducting
Equipment
int
baseVoltage
ProtectionEqu-
ipment
protection v\
Switch [Conductor] [Connector]
CompositeSwi-
tch switch
boolean
normalOpen
[Dlsconnector] Breaker | Line Busbar
ACLineSegm- Section
ents aclines
DCLineSegm-

ents dclines

Fig. 4. Class hierarchy of part of an upper ontology based on CIM

research in the power domain: monitoring and diagnostics,
protection systems, distributed control systems, and modeling
and simulation, allowing the interchange of information about
specific plant. Depending on what is being modeled, other
CIM packages may serve are starting points for ontologies
for those applications. For example, the energy consumer
package may help support the ontology requirements of certain
modeling and simulation applications.

The full definition of an upper ontology will take time and
community support, which will be facilitated by publishing
the ontology openly. It will be made available on the Multi-
Agent Systems Task Force web site, for community use and
comment.

Recommendation: if interoperation with other multi-agent
systems is desirable, then the use of a common upper
ontology will ease the integration of MAS from different
developers. Developers can then extend the upper ontology
to include concepts and predicates required for their applica-
tions. An upper ontology based on CIM is proposed in this
paper and will be made available via the IEEE MAS Task
Force website.

IV. DESIGNING MULTI-AGENT SYSTEMS

Since the mid 1990s, a number of different methodologies
have emerged for the specification and design of multi-agent
systems, developing or extending traditional software engi-
neering approaches and knowledge engineering approaches.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007

METHODOLOGY STAGES OuTPUT

Requirements Specification
Requirements & Knowledge Capture \::) Activities Knowledge
Resource Knowledge

l Use Cases

Task Decomposition] ‘:") Task Hierarchy
‘Ontology Design] |::> Domain Ontology
Agent Templates

|=

|
Agent Interaction Modeling] |::>
l

Specification of Agent Behavior] |:'|>

Agent Interaction Diagrams

Interaction Functionality Spec.

[Agent Modeling
[Agent Control Functionality Spec.

Fig. 5. Agent design methodology stages and their output, used during the
design of the PEDA system [17]

MAS-CommonKADS [24], for example extends the Com-
monKADS knowledge engineering methodology [25]. DE-
SIRE [26], MaSE [27], and Gaia [28], on the other hand, owe
more to object-oriented software development methodologies.

MAS design methodologies tend to share some common
features: a conceptualization phase where the problem to be
solved is specified; an analysis phase; and a design phase that
uses the results of the analysis phase to produce agent designs
of varying detail.

A. An example methodology

Figure 5 illustrates the different stages of the design method-
ology that McArthur et al. used to specify and then design the
PEDA system. Details of the methodology can be found in
full in [29]. Each stage of the methodology produces material
that is used in the subsequent stages of the design process.

The methodology begins with a structured knowledge engi-
neering stage, specifying the system requirements and captur-
ing the knowledge needed to fulfill those requirements. During
the task decomposition stage the requirements specification
and knowledge captured in the previous stage are transformed
into a hierarchy of tasks and subtasks. These tasks may include
the functions performed by legacy systems. In the case of
PEDA, legacy intelligent systems were used to provide data
analysis functions. After task decomposition the ontology can
be designed.

The agent modeling stage uses the task hierarchy and
ontology design to identify a group of autonomous agents
with the abilities to perform the tasks in the task hierarchy.
An agent can encapsulate one or more tasks and each of the
tasks in the hierarchy must be attributed to at least one agent.
The outcome is a set of agent models that specify the tasks
the agents should be able to perform. The methodology also
identifies the tasks which can be attributed to legacy systems
and for which new code needs to be generated.

Once the agents have been identified, the interactions the
agents must support have to be defined. These interactions are
specified in interaction diagrams similar to Figure 2.

The final stage of the process is the specification of the
interaction functionality of the agent and the control function-
ality of the agent. This amounts to the specification of the
behavior an agent should display.

B. Alternative design approaches

The MAS design methodologies referenced above all share
one common feature: they begin with a particular problem to
solve and specify, to varying degrees, a MAS that will solve
that specific problem. In such an approach the behavior of the
multi-agent system is design-directed rather that emergent, i.e.
the MAS designer has built in all the interactions required for
agents to fulfill their own goals and, in doing so, meet the
design intention of the system as a whole.

What if, on the other hand, other agents are to be added in
the future? How do design methodologies support the reuse of
existing agents? If multi-agent systems are to be truly open,
then interactions of an agent with other future agents should
also be considered.

An alternative approach may be to consider agents in
isolation. What can an agent know/believe? What actions can
an agent take? How do these relate to the ontology the agent
supports?

Another point worth considering is the fact that all the
methodologies above are standards-agnostic: the choice of
standards is not explicitly considered during the analysis and
design process. Yet the decision to adhere to a particular set of
standards constrains design choices. An agent’s communica-
tive abilities, i.e. the communicative acts and interactions it
supports, could be determined by knowledge it has and the
ability of the ontology to express that knowledge.

The greatest problem with all the methodologies above is
the lack of experience in their use. Few of the methodolo-
gies have been applied to more than a handful of example
applications. Despite this, the methodology shown in Figure 5
contains all the stages required to design an agent system for
any specific task, and is therefore a suitable process to follow.

However, such a top-down approach can lead to a rigid
agent structure, where agents are less socially able and flexibly
autonomous than may be desired. Some consideration should
be given to which types of communication are possible for
each agent to engage in, rather than specifically what commu-
nication is required for the task at hand.

Recommendation: design methodologies provide a struc-
tured analytical approach to the design of multi-agent sys-
tems. Hence the use of a methodology, such as the one above,
is recommended. However, MAS developers should be aware
the current methodologies do not guarantee fully flexible and
extensible solutions. Careful consideration should be given
to the types of communication each agent can engage in, as
this is key when promoting flexibility and extensibility.

V. IMPLEMENTING AUTONOMOUS INTELLIGENT AGENTS

The property of autonomy is often key in the decision to
bring agent technology to bear on a particular power engineer-

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007

— ACL Message ACL M =
_\lJ |— lessage

Message Handling Layer

Behavioral Layer

1
—_E ol

Functional Layer

Agent

Fig. 6. Layered architecture employed by JADE agents

ing problem. None of the design methodologies referenced in
the previous section offer criteria for the selection of a specific
style of agent implementation so that they display the correct
levels of reactivity, pro-activeness and social ability. In some
respects one of the benefits of taking an agent approach is that
the way the agents achieve their characteristics is immaterial:
an agent can be conceptualized as a black box which sends
and receives messages and interacts with its environment in an
autonomous manner. However, the practicalities of engineering
multi-agent systems means that developers need a working
knowledge of the different agent design options or agent
anatomies, and the characteristics of the agents with those
anatomies.

A. Agent anatomies

Numerous approaches to building individual autonomous in-
telligent agents can be found in the literature: Belief Desire and
Intention (BDI) agents; reactive agents; agents with layered
architectures [30]; and agents implemented using model-based
programming [31], to name but a few.

The BDI approach to building agents is based on mental
models of an agent’s beliefs, desires and intentions. There are
many different implementations of the BDI approach.

Reactive agents are normally associated with the subsump-
tion model of intelligence. The core property of reactive agents
is that they do not perform reasoning through symbolic ma-
nipulation; instead they react to inputs from their environment
and messages from other agents. Ease of implementation is
an advantage of this approach but the pro-activeness of the
agents it produces is arguable.

Several layered agent anatomies are discussed in [30]. As
an example, agents developed for the JADE platform tend
to consist of three basic layers: a message handling layer; a
behavioral layer; and functional layer (Figure 6).

The functional layer embodies the core functional attributes
of the agent, i.e. the actions the agent can perform. The
behavioral layer provides control of when an agent will
carry out specific tasks. Should the functional layer produce
new data, for example, the behavioral layer will instruct the
message handling layer to inform interested agents of the new
data. Similarly, the action taken by an agent in response to the
receipt of a new message is decided in the behavioral layer.

The message handling layer is responsible for the sending
and receiving of messages from other agents, implementing the
relevant ACL and ontology parsers, as well as the functionality
for the control of conversations with other agents.

Research by NASA into autonomous spacecraft has also
produced some interesting techniques for implementing re-
mote agents, with the aim of displaying a greater degree of
autonomy [31]. These agents couple a reactive planner with
a model-based reasoning (MBR) engine. The agent has an
explicit set of goals and a model of itself. Based on the state
of the model, the agent uses its planner to decide the actions it
needs to carry out in order to achieve its goal. Should the agent
lose its ability to carry out some action, due to a hardware
failure or its environment changing in some way, the MBR
engine detects this and updates the agent’s model. The planner
can then use the updated model to create a new plan of action
of how to fulfill its goals.

It may be that as more intelligent, flexibly autonomous agent
anatomies are explored, the limitations of the AI techniques
which give an agent its underlying intelligence become the
barrier in building agents which display the required levels
of reactivity, pro-activeness and social ability. An empirical
evaluation of different agent anatomies would certainly help
inform the design choice of those developing MAS applica-
tions in power engineering.

Recommendation: currently, there is insufficient informa-
tion to support a recommendation of any specific agent
anatomy. Further research and comparative data is required.

B. Tools for the implementation of agents and multi-agent
systems

In recent years both commercial and open source agent
development tools have become available [32]. When imple-
menting a multi-agent system, judicious selection of MAS
development tools is required. Firstly the toolset has to comply
with the standards to which the developers wish to adhere.
Secondly, agents implemented using the chosen toolset must
display a level of robustness required for the application at
hand.

The Java Agent Development Framework (JADE) [20] has
become a firm favorite with researchers in power engineering
in recent years. While JADE’s support of FIPA standards
and the robustness of the agents that can be implemented
make it attractive, JADE also promotes a certain style of
agent implementation which may not be optimal for exploiting
autonomy.

Regardless of the underlying agent anatomies, there is the
opportunity to re-use agent designs and functionality for the
benefit of the whole community. Therefore, there is a role
for toolkits that allow the re-use of existing agent functions,
behaviors and capabilities tuned for applications to power
engineering problems. The publication of ontologies may also
help reduce the development costs of multi-agent systems and
promote interoperability between them.

VI. CONCLUSIONS

Part 1 of this paper considered fundamental terms and
definitions relating to multi-agent systems technology, and

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007

discussed why it is being investigated for a number of power
engineering applications. This second part followed on to
examine how such a system should be designed and imple-
mented.

Engineering multi-agent systems is complicated by a num-
ber of factors: competing standards; difficulties associated
with interoperability and ontologies; the choice of a range of
design methodologies; and the choice of a number of different
agent anatomies and implementation strategies. However, the
lack of experience in producing industrial strength multi-agent
systems is probably the stumbling block for the technology.
With that experience should come better understanding of the
effectiveness of different standards, design methodologies, and
agent anatomies. This paper provides guidance and informa-
tion on the state-of-the-art in these technical areas, to aid the
uptake of this technology within the power industry.

This paper is based on the successful research and imple-
mentation of multi-agent systems by the authors. In addition,
it draws upon the experience of the members of the Multi-
Agent Systems Working Group, within the Intelligent Systems
Subcommittee of the IEEE PES PSACE committee.

ACKNOWLEDGMENT

The authors would like to acknowledge the input, discus-
sions and efforts of the Multi-Agent Systems Working Group
members. The discussions at meetings and panel sessions
helped in the creation of this paper.

REFERENCES

[1] IEC, “Energy Management System Application Program Interface
(EMS-API) - Part 301: Common Information Model (CIM) base,” 2005,
document IEC 61970-301.

A. F. Vojdani, “Tools for real-time business integration and collabora-
tion,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 555-562, May 2003.
IEC, “Communications Networks and Systems in Substations,” 2005,

document IEC 61850.

[2]
[3]

[4] Foundation for Intelligent Physical Agents
(FIPA), “Agent Management Specification,” 2002,
http://www.fipa.org/specs/fipa00023/SC00023J.html.

[5] , “FIPA Agent Message Transport Protocol for HTTP Specifica-
tion,” 2002, http://www.fipa.org/specs/fipa00084/SCO0084F.html.

[6] ——, “FIPA Agent Message Transport Protocol for IIOP Specification,”
2002, http://www.fipa.org/specs/fipa00075/SC00075G.html.

[71 ——, “FIPA ACL Message Structure Specification,” 2002,
http://www.fipa.org/specs/fipa00061/SC00061G.html.

[8] ——, “FIPA Communicative Act Library Specification,” 2002,
http://www.fipa.org/specs/fipa00037/SC00037J.html.

[9] ——, “FIPA Agent Communication Language Representation Specifi-

cation,” 2002, http://www.fipa.org/specs/aclreps.tar.gz.

(10]

(11]

[12]

[13]
[14]

[15]
[16]
(17]

[18]

[19]

[20]
[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

E— “FIPA Content ~ Language 2003,
http://www.fipa.org/repository/cls.php3.

T. Wittig, N. R. Jennings, and E. M. Mandan, “ARCHON — A
framework for intelligent co-operations,” IEE-BCS Journal of Intelligent
Systems Engineering, vol. 3, no. 3, pp. 168179, 1994.

S. Talukdar, “Asynchronous teams: Cooperation schemes for au-
tonomous agents,” Journal of Heuristics, vol. 4, no. 4, pp. 295-321,
1998.

T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent communication
language,” in Software Agents, J. Bradshaw, Ed. The MIT Press, 1997.
A. Borgida, “Description Logics in data management,” IEEE Trans.
Knowl. Data Eng., vol. 7, pp. 671-682, 1995.

“DARPA Agent Markup Language (DAML),” http://www.daml.org/.
“OWL Web Ontology Language,” http://www.w3.org/TR/owl-features/.
E. M. Davidson, S. D. J. McArthur, J. R. McDonald, T. Cumming, and
1. Watt, “Applying multi-agent system technology in practice: Automated
management and analysis of SCADA and digital fault recorder data,”
IEEE Trans. Power Syst., vol. 21, no. 2, pp. 559-567, May 2006.

S. D. J. McArthur, S. M. Strachan, and G. Jahn, “The design of a multi-
agent transformer condition monitoring system,” IEEE Trans. Power
Syst., vol. 19, no. 4, pp. 1845-1852, Nov. 2004.

V. M. Catterson, E. M. Davidson, and S. D. J. McArthur, “Issues in
integrating existing multi-agent systems for power engineering appli-
cations,” in Proc. 13th International Conference on Intelligent Systems
Application to Power Systems, 2005.

“Java Agent Development Framework (JADE),” http://jade.cselt.it/.
Foundation for Intelligent Physical Agents (FIPA), “FIPA Ontology
Service,” 2001, http://www.fipa.org/specs/fipa00086/X00086D.html.

A. Kalfoglou and M. Schorlemmer, “Ontology mapping: the state of the
art,” The Knowledge Engineering Review, vol. 18, no. 1, pp. 1-31, 2003.
IEC, “Communications for Monitoring and Control of Wind Power
Plants,” 2006, document IEC 61400-25-2.

C. A. Inglesia, M. Garijo, J. C. Gonzalez, and J. R. Velasco, “Anal-
ysis and design of multi-agent systems using MAS-CommonKADS,”
Intelligent Agents IV: Agent Theories, Architectures and Languages, pp.
313-326, 1998.

G. Schrieber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt,
W. van der Velde, and B. Wielinga, Knowledge Engineering and
Management: The CommonKADS Methodology. The MIT Press, 1999.
F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur,
“DESIRE: Modelling multi-agent systems in a compositional formal
framework,” Int. Journal of Cooperative Information Systems, vol. 6,
no. 1, pp. 67-94, 1997.

M. F. Wood and S. A. Deloach, “An overview of the multi-agent
systems engineering methodology,” in Proc. 1st International Workshop
on Agent-oriented Software Engineering, Jun. 2000, pp. 207-221.

M. Wooldridge, N. R. Jennings, and D. Kinney, “The Gaia methodology
for agent-oriented analysis and design,” Journal of Autonomous Agents
and Multi-agent Systems, vol. 3, no. 3, pp. 285-312, 2000.

S. D. J. McArthur, J. R. McDonald, and J. A. Hossack, “A multi-
agent approach to power system disturbance diagnosis,” in Autonomous
Systems and Intelligent Agents in Power System Control and Operation
(Power Systems), C. Rehtanz, Ed. Springer-Verlag, Jul. 2003, pp. 75—
99.

M. Wooldridge, “Intelligent Agents,” in Multi-agent Systems, G. Weiss,
Ed. The MIT Press, Apr. 1999, pp. 3-51.

B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott, “Model-
based programming of intelligent embedded systems and robotic space
explorers,” Proc. IEEE, vol. 91, no. 1, pp. 212-237, Jan. 2003.

E. E. Mangina, “Review of software products for multi-agent systems,”
available from http://www.agentlink.org/.

Specifications,”

