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Abstract 

 

Partial discharge (PD) is commonly used as an indicator of insulation health in high 

voltage equipment, but research has indicated that power quality, particularly 

harmonics, can strongly influence the discharge behaviour and the corresponding 

pattern observed. Unacknowledged variation in harmonics of the excitation voltage 

waveform can influence the insulation’s degradation, leading to possible 

misinterpretation of diagnostic data and erroneous estimates of the insulation’s ageing 

state, thus resulting in inappropriate asset management decisions. This paper reports on 

a suite of classifiers for identifying pertinent harmonic attributes from PD data, and 

presents results of techniques for improving their accuracy. Aspects of PD field 

monitoring are used to design a practical system for on-line monitoring of voltage 

harmonics. This system yields a report on the harmonics experienced during the 

monitoring period. 

 

1.  Introduction 
 

The lifetime of high voltage electrical equipment is often determined by the health and 

dielectric strength of the insulation system. These insulation systems may be primarily 

solid, solid and liquid, or gaseous, as in the cases of underground cables, power 

transformers, and gas-insulated switchgear, respectively
(1)

. Insulation condition 

monitoring is key for detecting potential problems, with the aim of prolonging 

equipment life. 

 

Degradation of insulation can be signalled by partial discharge (PD), a localised 

phenomenon where charge partially bridges the insulation. The changes to PD 

behaviour are traditionally used to determine the progression of insulation breakdown, 

and thus the deteriorating health of the equipment. However, it has been shown that 

power quality, particularly harmonics, can also affect the pattern of PD observed
(2)

, 

calling into question the assumption that changes to PD activity are necessarily due to 

fault progression. 
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This paper presents a suite of classifiers for identifying particular attributes of the 

harmonics that can pollute the excitation voltage waveform. Practical aspects of how 

and when PD monitoring is performed drive the design of improvements to these 

classifiers. This is a novel use of PD data, which is generally used for fault diagnosis 

and health assessment. The paper presents the design and rationale for a software 

system for on-line monitoring of power quality using PD data. 

 

2.  Related work 
 

A partial discharge occurs within electrical insulation when the dielectric strength of the 

insulation diminishes sufficiently that electrical discharges can partially bridge the 

insulation gap. PD is a sign of deteriorating insulation, but also causes further insulation 

damage. The initial defect may occur due to manufacturing error, contamination during 

commissioning, or contamination and shocks over the life of the plant item.  

 

When PD is detected, the pattern of discharge behaviour should be analysed to 

determine the appropriate course of action. Occasional bursts of PD are of far less 

concern than continuous PD activity. Deterioration of the insulation can be signalled by 

increases to the regularity and severity of PD. It is therefore advisable to monitor plant 

under suspicion to determine a baseline level of PD activity, for future comparison. 

 

Secondly, the pattern of PD occurrence relative to the voltage phase holds information 

about the source defect causing the PD activity. The phase-resolved plot shows 

significant features that differ depending on whether, say, PD activity is caused by a 

metallic protrusion from the conductor, or discharges across the surface of the 

insulation
(1)

. This knowledge has resulted in research into machine learning techniques 

for classifying the defect causing PD, using data-driven techniques such as neural 

networks
(3)

, k-means, and rule induction
(4)

; and knowledge-based expert systems
(5)

. 

 

However, all this work is predicated on the assumption that the excitation voltage is a 

pure power frequency (50 Hz or 60 Hz) sinusoidal waveform. Under this assumption, 

any changes to the PD activity can be assumed to be due to changes in the insulation: 

more frequent or larger discharges indicating increased weakening of the insulation, and 

changes to the phase distribution of discharges indicating a secondary defect.  

 

At the increased voltage levels of the transmission networks, harmonic content is of 

diminished importance, compared to the distribution networks where harmonic content 

can be relatively high. Within a distribution network, the source of harmonics can be 

traced to non-linear loads injecting current at their point of connection
(6)(7)

, such as 

switched-mode power supplies in computers, and arcing devices like fluorescent lights. 

It has been established that harmonics present in the source voltage can have an 

influence on the pattern of PD activity observed in weakened insulation
(2)

. 

 

As a result, changes to the PD patterns observed from plant may be due in part to 

changes to the harmonic content of the source voltage, and not solely due to progression 

of insulation deterioration. As such, any interpretation of PD data, whether by human 

experts or intelligent systems, should take into account the harmonic content of the 

excitation voltage wave, in order to avoid overestimating insulation ageing. 
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3.  Classifier training 
 

While a link has been established between harmonic content of the excitation voltage 

waveform and PD behaviour, the specific effects of different harmonic attributes have 

not been identified. Previous work began investigating the link by training classifiers to 

identify specific harmonic attributes from PD data, and in particular, the harmonics 

present in the voltage waveform
(8)

, and the level of harmonic pollution as identified by 

the total harmonic distortion
(9)

. 

 

This section summarises this previous work, indicating the key decisions taken, and the 

open questions that remained in the area.  

 

3.1 Harmonics present 

 

Harmonic content interacting with the fundamental can result in a composite waveform 

with a peak voltage that is larger than the fundamental only
(10)

. This makes PD 

inception more likely, which will damage insulation further. Of particular concern to 

distribution networks are the prevalent 5
th

 and 7
th

 harmonic orders. 

 

As a result, three classification tasks were investigated: identification of the presence of 

the 5
th

 harmonic, identification of the presence of the 7
th

 harmonic, and classification of 

the set of harmonic orders present. 

 

3.1.1 Data collection 

 

Point-plane epoxy resin samples were used to create electrical trees, a particularly 

damaging type of defect that affects polymeric insulation (see Figure 1). Eleven such 

samples progressed to the point of tree initiation under a pure 50 Hz voltage waveform. 

These samples were subjected to sequential application of the seven composite 

waveforms listed in Table 1, while the resulting PD data was captured
(11)

.  

 

The acquisition hardware records discharge amplitude and phase position of each PD 

within an 80 ms acquisition window. This gives phase-resolved data about the variable 

number of PDs within the window, and hence, a phase-resolved pattern of the burst of 

PD activity (Figure 1). The total dataset comprises 7091 such PD patterns. 

 

3.1.2 Parameter selection 

 

The research discussed in Section 2 has applied machine learning to PD data analysis, 

and of necessity feature vectors have been proposed and discussed, but there has been 

little comparison of features or assessment of appropriate features for the task. The 

features proposed fall into three main categories: 

 

1. Statistical features based on the distribution of discharges across the positive and 

negative voltage half-cycles. This includes mean pulse height, pulse count, and 

number of peaks in pulse amplitude
(3,5)

. 
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Table 1: Seven composite waveforms applied to defect samples. 

 

Wave ID Harmonic Orders THD (%) 

A 1, 3 40.00 

B 1 (fundamental only) 0.00 

C 1, 5 5.00 

D 1, 7 5.00 

E 1, 7 17.80 

F 1, 5, 7, 11, 13, 23, 25 7.85 

G 1, 5, 7, 11, 13, 23, 25 5.00 

 

Figure 1: On the left is an electrical tree at two distinct chronological stages of 
growth; on the right is the corresponding phase-resolved partial discharge 

pattern (red), with voltage phase on the x-axis and discharge amplitude on the y-
axis. The reference composite excitation voltage waveform is shown in blue. 
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2. Statistical features of discharges in smaller phase windows. Brown et al. propose 

six equal-width phase windows: three for the positive half-cycle and three for 

the negative half-cycle
(12)

; while Hao et al. suggest 100 phase windows
(13)

. For 

these windows, mean, standard deviation, and kurtosis are suggested. 

3. Pattern descriptors, based on an expert’s approach to PD data interpretation
(14)

. 

These are frequently labelled parameters, rather than continuously valued 

parameters, and describe the pattern in terms such as phase position (which 

could be ‘on the zero-crossing points’ or ‘on the peaks’) and shape (with values 

such as ‘chopped sine’ or ‘knife-blade’). These descriptors are applied to the 

positive and negative half-cycles (or in the case of the discharges occurring 

across the zero crossings, to the two distinct areas of PD activity
(14)

), then the 

half-cycles compared for symmetry, giving a total of three features for every 

descriptor (e.g. positive shape, negative shape, and shape symmetry). 

 

For the task of identifying harmonic components from PD data, a set of 47 features was 

created, using features of all three types identified above (Table 2). Features were 

selected for inclusion in the feature vector by the following procedure. For each 

classification task, the 47 features were ranked in importance using the Information 

Gain Ratio: 

 

                                         IGR(c, f) = [H(c) – H(c|f)] / H(f) ........................................... (1) 

 

Where c is the classification, f is the feature, and H is entropy. The best subset of 

features was selected from this ranked list, by training C4.5 decision trees using 

different sets from the top of the list, and taking the most accurate as being the best 

feature vector. This had the effect of selecting the features that give most information 

gain about the classification task, while limiting the “curse of dimensionality”
(15)

 by 

keeping the vector limited in size. 

 

The results of this process showed some difference in the number and type of features 

most tailored for each of the three classification tasks. A summary of each of the three 

vectors is given in Table 2 (with the fourth vector for total harmonic distortion 

discussed later). 

 

3.1.3 Technique selection 

 

Identification of the presence of the 5
th

 harmonic and identification of the presence of 

the 7
th

 harmonic are both binary classification tasks, while identification of the 

harmonic grouping has five classes. In all three cases C4.5 decision trees were trained, 

giving accuracies of 83.8%, 90.9%, and 77.5% respectively.  

 

For comparative purposes, a Support Vector Machine (SVM) using the Radial Basis 

Function (RBF) kernel was trained to identify the presence of the 7
th

 harmonic, yielding 

a classification accuracy of 91.2%. An SVM was similarly trained to identify the 

harmonic grouping, which improved accuracy from 77.5% to 81.1%. These results, and 

further details of the technique parameterisation, are given in 
(8)

. 
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Table 2: 47 features, and the vectors they appear in. The classifiers are the 
presence of the 5th harmonic (‘5th’), the presence of the 7th harmonic (‘7th’), the set 
of harmonic orders (‘set’) and the total harmonic distortion (‘thd’). 
 

Feature name 5
th

 7
th

 set thd Feature name 5
th

 7
th

 set thd 

Phase 0–60° mean X  X X Positive half mean X X X X 

Phase 0–60° std. deviation X   X Positive half std. dev. X X X X 

Phase 0–60° kurtosis     Positive half kurtosis     

Phase 60°–120° mean X X X  Negative half mean X X X  

Phase 60°–120° std. dev. X X X  Negative half std. dev.   X X 

Phase 60°–120° kurtosis X  X  Negative half kurtosis     

Phase 120°–180° mean X X X  Positive half inception phase X X X X 

Phase 120°–180° std. dev. X X X  Positive half extinction phase X X X  

Phase 120°–180° kurtosis X X X  Negative half inception X X X  

Phase 180°–240° mean   X X Negative half extinction X X X X 

Phase 180°–240° std. dev. X X  X Positive half distribution X X X X 

Phase 180°–240° kurtosis     Negative half distribution X X X X 

Phase 240°–300° mean X X X  Positive half phase position X X X X 

Phase 240°–300° std. dev. X X X  Negative half phase position X X X  

Phase 240°–300° kurtosis X  X  Positive half shape     

Phase 300°–360° mean X  X  Negative half shape X  X  

Phase 300°–360° std. dev.   X  Positive half range X  X  

Phase 300°–360° kurtosis X  X  Negative half range X  X  

Total PDs in burst X X X X Positive half density X X X  

Density ratio of half cycles X  X  Negative half density X X X X 

Positive half amplitude peaks X X X  Positive half bias   X  

Negative half amp. peaks X  X  Negative half bias X X X  

Range symmetry     Shape symmetry     

Density symmetry X X X       

      

3.2 Level of harmonics 

 

In addition to particular harmonic orders, the level of harmonic distortion on the voltage 

waveform may also influence PD behaviour. A second set of experiments investigated 

classification of the level of harmonic distortion present from PD data
(9)

. 

 

3.1.1 Data collection 

 

The same experimental technique
(11)

 as described above was taken for creating electrical 

trees in point-plane epoxy resin samples. After tree initiation the composite waveforms 

were applied in sequence, but this time the seven composite waveforms contained 
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varying levels of total harmonic distortion. One sample experienced the fundamental 

and 5
th

 harmonic only, a second experienced the fundamental and 7
th

 harmonic only, 

while a third experienced the fundamental, 5
th

, and 7
th

 harmonics in combination. For all 

three samples, the seven waveforms comprised their assigned harmonic orders at 0%, 

3%, 5%, 8%, 10%, 15%, and 18% total harmonic distortion (THD), where THD is the 

ratio of the power in the non-fundamental orders to the power in the fundamental 

component. 

 

Data was acquired using the same hardware as above, and in total 2148 PD patterns 

were collected. 

 

3.1.2 Parameter selection 

 

Selection of parameters for inclusion in a feature vector proceeded as described above, 

with the calculation of IGR to rank features and the use of C4.5 to select a subset. A 

summary of the best vector is given in Table 2. Interestingly, while there are similarities 

in the most highly ranked features for the three harmonic order classification tasks, the 

top ranking features for identifying THD are rather different. Harmonic order 

classification draws on features from the voltage peak and trough, while THD 

identification focuses on the phase segment following a zero-crossing point. Also, the 

best feature vector for THD identification is much smaller than the harmonic order 

vectors. 

 

3.1.3 Technique selection 

 

After experimentation with regression and classification techniques, the most 

appropriate approach to THD identification was found to be classification of THD level 

(results in Table 3). The composite waveforms were given labels, with 0% and 3% THD 

being “low”, 5% and 8% being “moderate”, 10% and 15% being “high”, and 18% being 

“very high”. A C4.5 tree was trained to recognise the THD label, giving an accuracy of 

67.7%. More detailed assessment of the results is interesting, showing an accuracy of 

100% when identifying the fundamental frequency (i.e. 0% THD) as “low”, and 

accuracies between 61.5% and 63.4% when identifying the patterns captured in the 

presence of the 5
th

, 7
th

, and 5
th

 and 7
th

 harmonic orders. 

 
Table 3: THD level classifier accuracy. 

 

THD Label Fundamental 5
th

 
harmonic 

7
th 

harmonic 
5

th
 and 7

th 

harmonics 
Label 
Total 

Low (0, 3%) 100% 69.5% 64.8% 43.1% 81.3% 

Moderate (5%, 8%) n/a 63.7% 66.8% 68.3% 66.2% 

High (10%, 15%) n/a 59.2% 56.3% 68.2% 61.6% 

Very High (18%) n/a 54.8% 69.1% 56.1% 59.4% 

Wave Total 100% 61.5% 63.4% 62.9% 67.7% 
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3.3 Discussion 

 

This previous work showed promise, identifying various attributes of the harmonic 

content of the voltage waveform from PD patterns. Through a detailed feature selection 

process and the testing of various classification techniques, it appeared that these 

accuracies are as good as can be achieved for the training datasets described. 

 

However, these classifiers all operate on a single PD pattern representing 80 ms of data. 

When performing PD monitoring on an item of plant in the field, data will be collected 

over an extended period of time, ranging from a few minutes at least to hours or days in 

total. The use of multiple patterns has the potential to improve performance, while more 

closely matching the diagnostic task presented by on-line field monitoring. 

 

The remainder of this paper presents the approach to combining classifications of 

multiple PD patterns, along with the improvements achieved for the classifiers reported 

previously. Given the benefit of this approach, the design of a software system for 

automated harmonic analysis from PD is presented. This system can be used to assess 

the harmonic orders and level of harmonic distortion polluting the excitation voltage 

waveform, based on PD data captured from an item of plant. 

 

4. Classifying multiple patterns 
 

There are two potential routes for identifying harmonic attributes on the basis of 

multiple PD patterns that were discounted immediately, due to practical concerns. The 

first potential approach is to increase the size of the feature vector by repeating features 

for each pattern. This would mean, for example, that the 16-feature vector for 

identifying THD from one pattern would become 32 features for two patterns, and 48 

features for three patterns. This has the distinct disadvantage of significantly increasing 

the dimensionality of the problem, leading to increased training times and the potential 

for overfitting on spurious relationships
(15)

. It also means that the new classifiers would 

require a certain number of PD bursts before any classification could be made, which 

may not present a problem under conditions of severe insulation deterioration, but could 

take some minutes in more moderate situations. 

 

Secondly, the same number of features could be calculated from the complete record of 

PD data captured, or from a rolling window of time such as 15 minutes. This removes 

the dimensionality problem, and mitigates the problem of waiting for data, but practical 

network operation suggests it may not always be appropriate. Since the harmonic 

content on the voltage waveform is caused by the connection and disconnection of 

certain loads and equipment elsewhere on the network
(6)

, there is no guarantee that the 

harmonic content will remain constant over a moving window of time. By calculating 

features from an aggregate of different PD bursts, data could be presented for 

classification that was generated by two or more different polluted waveforms, thus 

increasing the classifier’s confusion and reducing the potential accuracy.  

 

As a third approach, the single burst classifiers previously reported could be reused, 

with a secondary level of analysis to identify dominant classifications. This gives a 
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hybrid system of classification and aggregation, allowing the certainty of harmonic 

attribute identification to increase with the number of patterns classified.  

 

To test the benefit of this approach, PD data was grouped into batches of three 

sequential patterns, five sequential patterns, and seven sequential patterns. These 

batches were run through the C4.5 classifier trees described above, and simple majority 

voting was used to determine the most likely diagnosis. For example, if three PD 

patterns captured under Wave A conditions were classified as {no 5
th

 harmonic, no 5
th

 

harmonic, 5
th

 harmonic present}, the majority opinion is that the 5
th

 harmonic is not 

present, and this is the final diagnosis of the aggregation stage. 

 

The results for each of the classifiers indicate that accuracy increases with the number 

of patterns included in the voting. In the case of identifying the 5
th

 harmonic, accuracy 

increases from 83.8% when considering individual patterns to 93.9% for groups of 

seven (Figure 2, top left). For the presence of the 7
th

 harmonic, accuracy started high at 

90.9% for individual patterns, and increases to 98.2% for seven in a row (Figure 2, top 

right). Identification of the set of harmonic orders goes from 77.5% for individual 

patterns to 86.7% for groups of seven (Figure 2, bottom left). Classification of the 

correct THD level increases more moderately, from 67.7% for individual patterns to 

76.8% for groups of seven (Figure 2, bottom right). 

 

These results show that the accuracy of each classifier can be increased by considering 

multiple PD patterns. Simple majority voting can be used to aggregate the results of 

sequential classifications, with more patterns in the group leading to more accurate 

diagnoses. In an on-line monitoring situation, the reason for discrepancy between 

pattern classifications could be due to changing harmonic content of the voltage 

waveform, therefore it is inappropriate to simply discount the minority votes as 

inaccurate. The following section describes how these classifiers and aggregators can be 

combined into an on-line system for harmonic analysis. 

 

5. System design 
 

Once PD monitoring equipment has been installed on an item of plant such as a cable, it 

is likely to remain there for some period of time to capture a representative set of PD 

patterns. This time may range from an hour to a few days or even longer, but the aim is 

to determine whether PD behaviour changes with time of day, load profile, or other 

factors, which can help identify the source and plan for corrective maintenance.  

 

This coincidentally suits the needs of PD monitoring for harmonic content analysis. The 

harmonic content of the network voltage is unlikely to remain constant through the 

monitoring period, as it is driven by connection and disconnection of particular loads 

elsewhere on the network. As a result, an on-line system should seek to analyse PD 

patterns throughout the monitoring period, with the aim of producing a report or 

summary of the dominant harmonic features present during that time.  

 

From the investigation of classifying groups of patterns, it can be seen that majority 

voting on seven patterns in a row gives over 90% accuracy for identifying the 5
th

 and 7
th

 

harmonics, and over 75% accuracy for identifying the THD level, when all patterns  
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were recorded under the same harmonic conditions. (The identification of harmonic 

order grouping is less relevant in on-line situations, as a robust training data set would 

have to contain many more combinations of harmonics than the five groups employed.) 

This strikes an appropriate engineering balance between increased certainty in the 

classifications versus the likelihood that the harmonic content changed multiple times 

during the seven consecutive periods of data capture.  

 

As a result, an on-line harmonic assessment system has four distinct layers or stages 

(Figure 3). The first is to calculate appropriate features from the raw PD patterns, which 

are forwarded to the classifiers of the second stage. The third stage aggregates groups of 

up to seven patterns in a row, and uses majority voting to determine the most likely 

conclusions. These are forwarded to a fourth stage of processing, which aggregates data 

over the whole monitoring period to produce a summary report on harmonic behaviour.  

 

This system provides a tool to use in parallel to other PD analysis techniques. In 

addition to diagnosing the type and location of defects causing PD, classification of 

harmonic content gives another type of analysis for PD data, which can influence the 

conclusions drawn about the current health and rate of deterioration of insulation. 

 

Figure 2: The accuracy of the four C4.5 classifiers when analysing PD patterns 
individually, and when using majority voting on groups of three, five, and seven 

patterns. 
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6. Conclusions 
 

Since recent research shows the influence of harmonic content in the voltage waveform 

on PD activity within electrical insulation, this paper presents a suite of classifiers that 

can identify certain harmonic orders and the THD from PD data. Results show that the 

accuracy of these classifiers can be improved by analysing multiple PD patterns, and 

using simple majority voting to determine the most likely diagnosis. This paper also 

presents the design of an on-line software system for harmonic content analysis, using a 

suite of classifiers and majority voting to produce a report on dominant harmonic 

attributes during the monitoring period. This system balances the increased accuracy of 

using multiple patterns against the practical issues of highly changeable harmonic 

pollution, due to other loads on the network. 
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