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Abstract—Recent work has identified that circumstances of 
equipment operation can radically change condition monitoring 
data. This contribution investigates the significance of 
considering circumstance monitoring on the diagnostic 
interpretation of such condition monitoring data. Electrical 
treeing partial discharge data have been subjected to a data 
mining investigation, providing a platform for classification of 
harmonic influenced partial discharge patterns. The Total 
Harmonic Distortion (THD) index was varied to a maximum of 
40%. The results show progressive development for 
interpretation of condition monitoring data, improving the asset 
manager’s holistic view of an asset’s health. 

Keywords- partial discharges, harmonic analysis, artficial 
intelligence.  

I.  INTRODUCTION  
Models have previously been published [1, 2] identifying 

the need to understand the circumstances of electrical plant 
operation before asset managers can exploit their 
understanding of ageing mechanisms. Circumstance 
monitoring originated from the need for improved plant and 
network diagnostics [1, 3], and defines the collection of data 
reflecting the real network working environment of in-service 
equipment. This includes electrical, mechanical, thermal, 
chemical and environmental stresses. This is distinguished 
from condition monitoring, which is the collection of data 
reflecting equipment status. 

The evolution of power systems continues to increase 
nonlinear loads, leading to locations of high harmonic content 
and reduction of power quality not experienced previously. 
Short-term polymeric insulation tests have revealed changes in 
the power quality of the excitation voltage driving electrical 
tree growth does not radically affect the visual amenity of the 
tree [4], but does change the pattern of partial discharges 
observed in the associated phase-resolved partial discharge 
plot [5].  

This paper evaluates the current research approach 
employed to improve diagnostic interpretation of the influence 
of harmonics on partial discharge data using artificial 
intelligence techniques. First a brief review of the methodology 
and the latest developments are provided. 

II. PROGRESS REVIEW 

A. Experimental 
The experimental approach employed here has previously 

been described in [3]. Electrical trees were developed using 
point-plane LY/HY5052 epoxy resin samples with 3 µm 
radius conditioned hypodermic needles. Samples had a 2 mm 
insulation gap. Previously, a set of seven composite 
waveforms, defined in Table I, containing (including the 50 
Hz fundamental) various controlled magnitudes of harmonic 
components [3] were applied. The peak signal voltage was 
held constant in each test between 10.8 kV and 14.4 kV peak. 
THD was varied between tests up to a value of 40%. 

 
Table I. Waveforms employed in previous experiments [3-5]  

 

Harmonic Composition + 50 Hz 
Waveform 

ID # Harmonic Order % Magnitude 
per Harmonic  

Phase 
ϕ  

THD 
% 

1 3 40.0 0 40.0 
7 1 100 0 0.00 
8 5 5.00 0 5.00 
9 7 5.00 0 5.00 

11 7 17.8 0 17.8 
12 5,7,11,13,23,25 3.20 0 7.85 
13 5,7,11,13,23,25 2.00 0 5.00 

 

B. Classification Technique and Outcome 
This exercise started with the aim to train accurate 

classifiers for identifying certain waveform attributes. The 
accuracy of each classifier can be used to draw conclusions 
about the effects of particular attributes, such as the relative 
importance of particular harmonic orders.  

The initial feature selection of the composite waveform 
features employed in [3] highlighted each feature is problem-
specific and there is no single representative feature vector. As 
a result, a hybrid technique was developed to find the optimal 
feature vector for a given problem. This utilized the 
Information Gain Ratio to rank features, selecting a subset 
based on the accuracy of C4.5 decision trees [6] trained on 
various subsets. The electrical treeing partial discharge data 
set was produced using the harmonic influenced excitation 
waveforms of Table I. This yielded classification of attributes 



for specific harmonic combination sets, including the 5th and 
7th harmonic orders. Accuracies of 83.8% and 90.9% were 
reported with the C4.5 method for identification of the 5th and 
7th harmonic respectively. Application of a Support Vector 
Machine (SVM) provided marginally increased accuracy of  
91.2% identifying the 7th harmonic [3].  

Acceptable classifier accuracies were achieved with C4.5 
and SVM techniques for identifying harmonic attributes from 
harmonic influenced electrical treeing partial discharge 
patterns. This prompted the investigation of THD assessment 
using specific harmonic combinations. However, the 
waveforms described in Table I possessed too much 
variability in harmonic orders for suitability as a training set 
for a THD identification technique. For example, waveform 1 
is the only wave with 40% THD and the 3rd harmonic present, 
making it impossible to verify whether a classifier is training 
on features due to the THD (as desired) or on features due to 
the harmonic order. As a result, this paper focuses on two key 
harmonic orders, the 5th and the 7th, and investigates finer 
granularity in THD variation.  

 

III. METHOD 
In this series of experiments, composite waveforms using 

the 5th and 7th (individually and combined) were employed at a 
constant peak voltage of 10.8 kV peak. An extensively grown 
electrical tree traversing the insulation gap was developed 
through excitation by the 50 Hz fundamental only. A sequence 
of seven composite waveforms (including the fundamental) 
was then introduced. The harmonic content was increased 
every 120 s in a step-wise fashion from the pure fundamental 
excitation waveform to the following THD (%) levels: 3, 5, 8, 
10, 15 and 18. Figure 1 illustrates the waveforms for the 
combined 5th and 7th harmonic orders. 

In these experiments the peak value of voltage was 
maintained constant. 

 

 
Figure 1. Illustration of the seven applied waveforms using varied yet 

equivalent magnitudes of both 5th and 7th harmonic orders. 
 

This sequence was applied for four complete cycles without 
power supply de-energization, lasting a total of 56 minutes as 
shown in Figure 2. During this exercise, the partial discharge 
activity of the electrical tree in the epoxy resin sample was 
captured [3]. Waveforms of the same THD levels were 
utilized for the 5th and 7th harmonic orders separately. 

 

 
Figure 2. Schematic of testing sequence for application of the composite 

waveforms. 
 

A. Feature Selection 
The feature selection procedure introduced in [3] was re-

applied for identification of the THD level. A large set of 
prospective features of the phase-resolved partial discharge 
pattern were calculated, including statistics of pulse 
distribution across the positive and negative voltage half-
cycles (e.g. mean discharge amplitude, discharge count [7, 8]); 
statistics calculated from six equal-width phase windows [9]; 
mean discharge amplitude calculated from 100 equal-width 
phase windows [10]; and pattern descriptors (e.g. shape can be 
“chopped sine”, “knife blade”, “podium”, etc.) that a human 
expert would use to describe the phase-resolved pattern [11].  

These 147 features were ranked by calculating the 
Information Gain Ratio of each for predicting THD. Subsets 
of the top features were used to train C4.5 decision trees for 
THD identification, with the most accurate subset deemed the 
best feature vector. Further description and rationale for this 
procedure can be found in [3]. 

Interestingly, many of the features that were ranked highly 
for identifying the presence of the 5th and 7th harmonics [3], 
were far less important for identifying THD. For example, 
Brown et al’s statistics calculated from six phase windows [9] 
were distributed throughout the ranking when identifying 
harmonic orders, with negative and positive peak segments at 



the top, and the positive rising segment, i.e. the 0º–60º 
window, close to the bottom. However, when identifying 
THD, most of these phase window statistics have an 
Information Gain Ratio of zero, meaning they give no 
information about THD at all. The positive rising segment and 
the negative falling segment (180º–240º) were the exceptions, 
coming at the top of the ranking. This result confirms that 
different features of the partial discharge pattern are related to 
THD and the harmonic orders present. This strengthens 
support for the hypothesis that THD can be identified from the 
phase-resolved partial discharge patterns. 

B. THD Identification 
This ongoing study sought to develop and assess an 

intelligent system technique, trained to recognize THD levels 
from phase-resolved partial discharge patterns. Since THD is a 
continuous-valued variable, the first approach involved 
training a regression technique to identify the function linking 
partial discharge features to THD values. The potential benefit 
of a regression approach is that the function should be able to 
interpolate between training values. The training set contained 
examples of 3% and 5% THD (from the waveforms described 
in Figure 1) as well as an accurately trained function with the 
potential to interpolate to an unseen 4% THD sample. 

Two methods of regression were tried, each from a 
different family of techniques. A multi-layer perceptron 
(MLP) artificial neural network (ANN) was chosen for its 
ability to approximate non-linear functions [12]. Training 
consisted of iteratively updating the weights of each neuron in 
the network. Secondly, the K* algorithm was selected as an 
instance-based learning approach [13]. Training here involved 
clustering the (training) samples, using entropy as a distance 
measure between clusters. 

The accuracies of these techniques were approximately 
similar with K* performing moderately better, as outlined in 
Table II. Both were trained using 10-fold cross validation. The 
feature vector included two binary attributes indicating the 
presence of the 5th harmonic and the presence of the 7th 
harmonic, since previous work suggested this could be 
accurately identified [3]. It was assumed this information 
would aid THD identification. This was subsequently 
confirmed by training K* with and without these two features.  

 
Table II.  Accuracy of various regression techniques evaluated 

 

Technique Correlation 
coefficient 

Mean absolute 
error 

MLP with harmonics 0.6352 3.88 
K* without harmonics 0.6379 2.97 
K* with harmonics 0.6896 2.68 

 
The most accurate technique was K* with harmonic order 

features. However, even in this case the accuracy was not 
particularly impressive. For example, the mean absolute error 
of 2.7 meant in the average case the THD estimate is ± 2.7%. 
For a utility interested in monitoring THD levels, this level of 
discrimination is not very good. 

On the other hand, from a utility’s perspective the exact 
figure is somewhat less important than a judgment on whether 

THD is low or high, acceptable or unacceptable and whether it 
is likely to impact partial discharge data. As an alternative to 
regression techniques, THD levels were labeled and grouped 
into sets, and a classifier trained to identify the label.  Table III 
shows the selected THD labels to train a C4.5 classifier tree. 
The best feature vector was only 16 features long, and the 
overall accuracy was 67.7%. The confusion matrix for the 
classification labels is also given in Table III.  
 

Table III. Confusion matrix for the classification of THD labels 
 

THD Classified as 
Level (%) Label Low Moderate High Very High 

0,3 Low 457 53 36 16 
5,8 Moderate 51 395 121 30 

10,15 High 40 123 403 88 
18 Very High 15 37 84 199 
 

IV. DISCUSSION 
While not directly comparable, the mean absolute error of 

the K* classifier and the number of misclassifications of the 
C4.5 tree suggested the decision tree is most practical for 
utility monitoring. On average, the error produced by K* gives 
a wide range of possibilities for THD, whereas the confusion 
matrix for C4.5 shows better than average THD label accuracy 
(approximately two in three).  

A deeper analysis into the accuracy information of Table III 
further reveals some interesting results. Accuracy comparison 
of the three polluted waveform harmonic groupings is shown 
approximately equal in Table IV. However, the unpolluted 
fundamental frequency yields 100% accuracy: all 294 partial 
discharge patterns were correctly classified as “low”.  

 
Table IV. Approximately equivalent accuracy for recognition of the three 

harmonic groups evaluated. 
 

Harmonic Orders  
5th 7th 5th and 7th 

Accuracy (%) 61.52 63.43 62.88 
 
It may be expected that higher levels of distortion would be 

easier to identify improving accuracy with the corresponding 
label ordering. However, the plots depicted in Figure 3 do not 
suggest such a relationship.  

 
 

Figure 3. Accuracy of classifier split by harmonic orders and labels. 



The 5th harmonic group showed a linear opposite trend, 
displaying highest accuracy for “low” THD and least on “very 
high” THD. There were varied results for the 7th (individually) 
as well as, the 5th and 7th (combined) harmonic orders. 
However, there was no strong trend to draw firm conclusions 
identifying THD using these harmonic orders and magnitudes. 
While this classifier shows 67.7% accuracy overall, it is still 
incorrect approximately one third of the time and mitigation 
approaches should be explored. 

A common approach is to re-examine the feature vector 
used. However, through the feature selection procedure 
outlined above, a variety of feature vectors have already been 
tested, and the results reported here correspond to the feature 
set with highest accuracy. 

A second approach is to examine different classification 
algorithms from various technique families. Using the THD 
labels, classifiers were trained using K* (classification rather 
than regression) and a second instance-based learner called 
IB1. Accuracies were no better than C4.5, at 66.8% and 61.1% 
respectively. Other families, including the Radial Basis 
Function ANN and the Naïve Bayes Bayesian classifier gave 
significantly poorer results. Consequently, it is unlikely these 
results can be significantly improved by using a technique 
other than the C4.5 tree reported here. 

Taking into account the engineering context of the problem 
suggests a third route. Thus far, classification of THD (and 
harmonic content before that [3]) has been based on individual 
phase-resolved partial discharge patterns. Partial discharge 
monitoring of plant in the field tends to take place over a 
period of time, resulting in a set of patterns taken over a few 
minutes, hours, or even days.  

It may be possible to improve THD and harmonic content 
identification accuracies by classifying a set of patterns 
captured chronologically and comparing the results. This 
comparison would involve a second level of reasoning 
considering the likelihood that step changes in THD and 
harmonic content may occur at the same time. At its simplest, 
this could mean taking the majority opinion on three 
successive partial discharge patterns. Since the THD classifier 
is accurate two thirds of the time, this should improve the 
overall accuracy. Further investigations will consider the 
number of consecutive patterns required to determine 
confidence levels, in addition to the most appropriate method 
of evidence combination for this task. 

V. CONCLUSIONS 
This work has illustrated THD levels can be identified 

independently of knowing the specific harmonic attributes 
polluting the excitation voltage wave. In the case presented 
here, knowledge of whether the 5th and 7th harmonics are 
present can improve classification. The K* regression 
technique was used to identify the THD level from test data. 
These results while acceptable were not as dependable as 
anticipated. This led to THD identification in groups clustered 
around four defined THD levels and labels. A classifier was 

trained to identify the appropriate label, giving 67.7% 
accuracy. Future work will investigate the application of this 
technique into a practical system for online monitoring of 
harmonics, and its use in interpreting partial discharge data in 
the presence of harmonics. 
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