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Learning Models of Plant Behavior for Anomaly
Detection and Condition Monitoring

A. J. Brown, V. M. Catterson, M. Fox, D. Long, and S. D. J. McArthur, Senior Member, IEEE

Abstract—Providing engineers and asset managers with a tool
which can diagnose faults within transformers can greatly assist
decision making on such issues as maintenance, performance
and safety. However, the onus has always been on personnel to
accurately decide how serious a problem is and how urgently
maintenance is required. In dealing with the large volumes of
data involved, it is possible that faults may not be noticed until
serious damage has occurred.

This paper proposes the integration of a newly developed
anomaly detection technique with an existing diagnosis system.
By learning a Hidden Markov Model of healthy transformer
behavior, unexpected operation, such as when a fault develops,
can be flagged for attention. Faults can then be diagnosed using
the existing system and maintenance scheduled as required, all at
a much earlier stage than would previously have been possible.

Index Terms—Cooperative systems, Decision support systems,
Hidden Markov models, Intelligent systems, Learning systems,
Monitoring, Partial discharges, Power systems, Power transform-
ers.

I. INTRODUCTION

Condition monitoring of electrical plant equipment is im-
portant for safely prolonging the life of costly assets such
as power transformers. However, many condition monitoring
systems produce too much data for engineers to view and
assess, leading to useful indicators of health being overlooked.
This could be solved with a condition monitoring architecture
capable of anomaly detection, diagnosis, and prognosis, ex-
tracting as much information as possible from condition data.

Multi-agent systems (MAS) technology offers a way of cre-
ating such an architecture, capable of linking disparate sensors
and analysis techniques in a flexible, extensible way. Agents
have previously been used for power engineering applications
such as feeder automation [1], substation automation [2], and
microgrid control [3].

Previous work resulted in the COndition Monitoring Multi-
Agent System (COMMAS) [4], a system which uses classifiers
trained on a set of known defects to identify partial discharge
causing faults. It was developed as a multi-agent system,
in part to facilitate future extensibility, and its diagnostic
capabilities would be enhanced by the inclusion of anomaly
detection and prognostic ability.

Different transformers can display very different behavior
while still being classed as healthy. As an example, some trans-
formers may display low levels of partial discharge which are
of no concern. A disadvantage of the classification approach is
that a system which has been trained to recognize defects will
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be unable to differentiate between these differing behaviors
and so may provide misleading results.

If normal operating behavior were learned on a per-
transformer basis, then anomalous behavior of individual
transformers could be detected and flagged. This would pro-
vide the first stage in diagnosing a previously unseen fault
and would also provide an immediate form of monitoring, in
anomaly detection, when retrofitting equipment. Classification
attempts could follow based on the assumption that a defect
is then present.

Several authors have described methods for learning abstract
behavior classifications from sensed data. Littman et Al. [5]
showed how to learn human behavior classifications on the
basis of accelerometer data. Koenig et al [6] and Fox et al. [7]
showed how robot behaviors can be learned using the robots
ability to sense the structure of its environment.

The remainder of this paper is structured as follows: Sec-
tion II describes an approach to learning normal behavior of
a transformer, based on the work described in [7], and how
this model of behavior can be used for detecting anomalies.
Section 3 follows with a description of the previous operation
of COMMAS, and how anomaly detection can integrate with
this functionality. Section IV details an experiment showing
how this works in practice, using data and a model from an in-
service transformer. Finally, Section V explains how prognos-
tic abilities can follow from the learned model of transformer
behavior, and how future work will seek to integrate this within
the condition monitoring system.

II. LEARNING A BEHAVIORAL MODEL

The first step towards detecting anomalous behavior is to
understand normal operation for a particular transformer. This
can be done by learning a model, using data collected from the
plant in question for training. The data used for this system is
partial discharge data.

A. Partial Discharge Data

A partial discharge (PD) is caused by an electric field sur-
rounding a conductor exceeding the dielectric strength of the
conductor’s insulation. This results in an electrical discharge
that does not fully bridge the gap between conductors.

Defects causing partial discharge can be introduced during
manufacture or may be the result of degradation over time.
In the latter case, normal aging of a transformer may cause a
low level of discharge activity, which may occur regularly over
a number of years. This would not be classified as defective
or abnormal behavior until the pattern of activity alters and
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Fig. 1. The 3-dimensional phase-resolved graph

it reaches a damaging level. However, six broad classes of
partial discharge-causing defect have been identified: bad
contacts, floating components, protrusions, rolling particles,
surface discharges, and suspended particles [8].

A partial discharge radiates EM energy in the ultra-high
frequency (UHF) range, meaning PD activity can be detected
by mounting UHF sensors on the transformer. Graphing each
discharge in terms of voltage cycle number and phase position
of occurrence gives a phase-resolved plot, generally showing
one second of discharge activity (see Figure 1).

The particular monitoring hardware being used for this
work records phase-resolved discharge data to files. One file
contains a single day’s activity as separate events. Discharges
within a second of each other are counted as the same event,
while a period of no activity between two discharges would
cause two separate events to be recorded. A day’s file may
contain hundreds of events, such as that shown in Figure 1.

B. The Automatic Construction of a Behavioral Model
In any physical system there is a gap between its actual

operation in the physical world and its behavioral state as
perceived through its sensors. The consequence is that, in
reality, the system moves through states that are hidden from
direct perception. Furthermore, because of the inability of the
system to accurately perceive its state, and the uncertainty
in the physical world, the transitions between these hidden
states are probabilistic and there is a probabilistic association
between states and observations.

A convenient target representation for learned behavioral
models, based on these physical systems, is the Hidden
Markov Model (HMM) [9], the structure of which is defined
below.

A stochastic state transition model is a 5-tuple, λ =
(Ψ, ξ, π, δ, θ), with:

• Ψ = {s1, s2, . . . , sn}, a finite set of states;
• ξ = {e1, e2, . . . , em}, a finite set of evidence items;
• π : Ψ → [0, 1], the prior probability distributions over Ψ;
• δ : Ψ2 → [0, 1], the transition model of λ such that

δi,j = Prob[qt+1 = sj |qt = si] is the probability of
transitioning from state si to state sj at time t (qt is the
actual state at time t);

• θ : Ψ × ξ → [0, 1], the sensor model of λ such that
θi,k = Prob[ek|si] is the probability of seeing evidence
ek in state si.

A fundamental step in constructing a HMM is to determine
the set of observations and states that describe the causal
structure of the system. A key novelty in the work of Fox et
al [7]. is the construction of these sets through unsupervised
learning. First, feature vectors are obtained from the raw sensor
data. These are then clustered into an observation space using a
clustering technique based on the well-known Self-Organizing
Map principle (SOM) [10]. The clustering process discretizes
the data into a finite set of observations to which a second
clustering stage is applied. This uses vector scalar product as
a similarity metric and simply groups together observations
with a scalar product below a specified threshold.

The choice of feature vectors is an important step. The work
described here uses the phase-resolved UHF-signal amplitude
measurements, as shown in Figure 1. Phase-resolved plots are
divided into 6 segments, coinciding with the rising positive
segment of the voltage cycle, the peak positive segment, the
falling positive segment and then the same 3 segments for
the negative half-cycle. Calculations are made of the mean,
standard deviation and kurtosis for the signal in each of
these segments. Data is not collected continuously, but in
bursts following triggering discharges, so the density of phase-
resolved plots varies in time according to the amount of
PD activity. The relative density is reflected by also creating
features representing the numbers of events in an interval to
the left and to the right of each phase-resolved plot.

Having identified the observation and state sets, the final
stage in the process is the re-estimation of the probability dis-
tributions of the HMM by applying Expectation Maximization
(EM) [11], [12]. Learning is based on observation histories,
presented as sequences. In the experiment presented in this
paper individual days of data taken from a healthy transformer
are individually presented to the EM learning process.

The EM process is seeded with an initial transition model
in which it is assumed that there is an equal probability of
the system transitioning from any state into any state acces-
sible from it. This initial next state probability distribution is
improved by re-estimation. Figure 2 shows an example of a
model learned from data generated by a healthy transformer,
the EM process having converged. In the figure it can be seen
that there are two states which are darker colored: these are
artificial states representing the start and end of any trajectory.

C. Detecting Anomalies

The identification of anomalies depends on characterizing
the pattern of typical trajectories through the learned model
and comparing the trajectories of new data sets with those
characteristics. Trajectories of data can be mapped to the most
likely sequence of states visited in the learned HMM using
the Viterbi algorithm [13]. This algorithm identifies both the
most likely sequence of states and the associated probability
that the model assigns to the sequence as an explanation of
the input observations. This probability becomes very small as
sequences grow longer (simply because the space of possible
sequences grows exponentially as the sequence length grows).
Therefore, the probability is usually mentioned using the log of
the actual value. This value is referred to as the log-likelihood.
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Fig. 2. A transition model learned from the training data

Work performed by Gough [14] has demonstrated that an
important characteristic of typical trajectories is the trend in
log-likelihood of the evolving sequence. Here, this is refined,
and the mean gradient of the decreasing log-likelihood is
focused upon. Specifically, anomalous behavior usually results
in the Viterbi algorithm finding unusual state sequences to
explain the atypical observation sequences. These often have
atypical gradients in their log-likelihood curves. The reason
for this is that either unlikely transitions are required to
explain unusual sequences of otherwise likely observations,
or very unlikely observations are made which lead the Viterbi
algorithm to identify the most likely self-transitions on single
states as good explanations (see state 3 in Figure 2). In the
former case, the trajectories tend to have faster decreasing log-
likelihood than normal, while in the latter case they tend to
have slower decreasing log-likelihood.

Therefore incremental changes in log-likelihood for the new
data are compared with the mean change in the learned data.
Alerts are raised when these values deviate significantly from
the mean (the sensitivity can be adjusted), but full alarms
are triggered when a sequence of n consecutive observations
includes at least k that lie on the same side of the mean.
The choice of n and k is made in order to set sensitivity.
Most interestingly, it is possible to report the points in time at
which the significant changes in gradient occur, because the
observations are associated with specific time points.

III. CONDITION MONITORING MULTI-AGENT SYSTEM

The original set of diagnostic modules, collectively called
the COndition Monitoring Multi-Agent System (COMMAS),
focused on classifying the type of defect causing partial
discharge activity. It operated on the assumption that a defect
was present, with an engineer having performed the task of
anomaly detection by identifying transformers with potential
problems.

The system was designed as an agent system, to take
advantage of benefits such as flexible communications between
agents and system extensibility, as it was anticipated that
the system’s functionality would increase over time. Any
new tasks, such as a new method of data interpretation,
could easily integrate into the system by developing it as an
agent which uses the Directory Facilitator’s standard service
location facilities [15] to find other appropriate agents. This is
important for a condition monitoring system, which may be
required to handle various types of data across different types
of plant and still produce reliable information.

A. The Diagnostic Agents

Originally, the COMMAS diagnostic agents would pick up
and process all recorded partial discharge data. This was split
into four stages: data monitoring, interpretation, corroboration,
and information, shown in Figure 3.

The data monitoring stage comprised two separate agents:
a Data Formatting Agent and a Feature Extraction Agent. The
first detects updates to the current day’s file of PD activity, and
reads the latest data from it. The Data Formatting Agent then
passes this to the Feature Extraction Agent, which calculates
101 features of the data. These include basic, deduced, and
statistical features which have been shown to relate to the type
of the causing defect [16].

Feature Vectors are then passed to the interpretation agents
for classification. Three different classifiers are used: K-
Means clustering, C5.0 rule induction, and a back propagation
neural network. Each of the classifiers produces a defect type
and probability, as well as historical information about their
accuracies. All this information is collected by the Diagnosis
Agent, which employs a Bayesian Belief Network to combine
all the evidence and determine the most likely existing defect.

Agents within multi-agent systems can be distributed across
various locations. This capability is exploited to keep the
majority of data processing close to the data source. Thus
the data monitoring, interpretation and corroboration stages
described above are located on-site at the substation. Only
transformer information of interest to the user need enter
the communication network for transmission to the display-
handling Engineering Assistant Agent located off-site.

B. Combining Anomaly Detection and Diagnostics

The integration of an anomaly detection system with COM-
MAS would make the system much more practical and benefi-
cial. This addition would mean that operation would continue
until an unusual behavior was detected in a transformer
being monitored. Assuming that this change was caused by
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Fig. 3. The Agent Architecture of COMMAS with Anomaly Detection

a previously unseen defect within the transformer, COMMAS
could then attempt the classify the problem.

The MAS architecture on which COMMAS was designed
makes the combination of the two separate systems straight-
forward. Wrapping the anomaly detection system within an
agent enables communication between this and the existing
COMMAS framework. This new agent shall henceforth be
referred to as the Anomaly Detection Agent (see Figure 3).

When anomalies are observed in a transformer’s behavior,
the detection software generates a time-stamp. This indicates
the point at which the change in behavior was first identified.
When such a change is recognized a message, containing the
time-stamp, will be sent from the Anomaly Detection Agent
to the Data Formatting Agent, informing it to begin sending
data to COMMAS for diagnosis of the fault which may now
exist. Upon receiving this trigger message, the Data Formatting
Agent will first search through previously examined raw data
files to find those which represent events occurring after the
time-stamp. These will be formatted and the data sent in
turn to the Feature Extraction Agent. From this point on
COMMAS will function as before, attempting to identify the
defect which has caused each of these files to be produced.
Future partial discharge data can be sent directly to COMMAS
for diagnosis under the assumption that a fault now exists
within the transformer.

This adapted system makes the supervision of transformer
operation much easier for engineers. Previously unseen faults
are generally detected by the detailed study of formats of the
raw sensor data, for instance the phase-resolved format shown
in Figure 1. This requires many hours of analysis for even a
short period of a transformer’s activity and, with numerous
transformers to monitor, defects can exist for a prolonged

period of time before being discovered. Hence, serious damage
can occur before maintenance takes place, previously having
resulted in catastrophic failure. This new approach will alert
those concerned to changes within monitored transformers in
a timely fashion. A warning message can be sent to the EAA
when anomalies are discovered flagging that the behavior of
the relevant transformer has changed from its normal. The
detailed diagnosis of COMMAS would then follow once the
relevant data files had been analyzed.

This rapid detection of changes in behavior will allow
problems to be identified quickly and necessary maintenance
to be carried out at a much earlier stage reducing the risk of
severe damage to equipment. The input of the diagnosis from
COMMAS will help to decide how immediate the maintenance
should be and where it should be targeted, making the pro-
cedure more efficient. The anomaly detection also means that
transformers that are deemed to be behaving normally can be
allowed to continue operating without periodic maintenance
which can often be unnecessary.

IV. TESTING THE ANOMALY DETECTION

The goal of this experiment was to show that a learned
HMM can be used to detect anomalies in a system on which
it has been trained.

A. Data

UHF data was captured from a transformer displaying low
levels of partial discharge, deemed non-damaging by experts,
and used to learn a model of healthy behavior.

Two known defects were created in the laboratory: a bad
contact between a loose nut and bolt (labeled BC), and
a metallic particle rolling across the surface of insulation
(labeled RP). A voltage was applied to each defect in turn
until they started discharging, and UHF data was captured.
This created two sets of known defective partial discharge data:
one set from the BC defect, and one from the RP defect.

To create data for testing the anomaly detection, discharge
events from the known defective data were inserted into 14
previously unseen files of good behavior captured from the
transformer. Runs of 200–250 discharge events from each of
the defects were inserted into each day’s data, creating a test
set of 28 files (14 with the BC defect and 14 with the RP
defect). The initiation of the defective events varied from the
200th event in the file to the 690th event.

B. Experiment

The experiment entailed presenting the runs of events
containing serious discharges to the Viterbi Algorithm, given
the learned model of healthy behavior. Anomalies would be
detected if the log-likelihood of a sequence deviated signifi-
cantly from those of the sequences of normal behavior. In this
experiment, the values of n and k, discussed in Section II, are
set to n = 30 and k = 25.
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Fig. 4. The envelope of Viterbi sequence probabilities for the training data
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Fig. 5. The Viterbi sequence probabilities for the broken contact error data

C. Results

The envelope of log-likelihood for the training data is shown
in Figure 4. The x-axis indicates the observation number, while
the y-axis represents the log-likelihood of the sequence so
far having been seen given the model. The linearity of the
curve is striking: the narrowness of the envelope highlights
the consistency in the input data reflected in the model.

The error data log-likelihood is shown plotted in figures 5
and 6, for bad contact errors and rolling particle errors respec-
tively. It can be seen that the bad contact errors consistently
generate shallow gradient curves from the point at which the
errors are injected, while the rolling particle errors generate
less pronounced deviations and all of these are steeper gradient
curves. This is due to the bad contact errors leading to a
sequence of uncommon observations which rapidly drive the
transition model into state 3 in Figure 2, so that the low
observation probability is compensated by the high probability
of self-transition. The rolling particle errors produce a different
(but more likely) observation that leads to a lower probability
path through the states.

Table I shows, for the trajectories used as test data, the
observation number at which the error data was introduced
(and which type of error was used), the observation number at
which the anomaly detection proposed the error first occurred
and the time lag between the introduction of the error and
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Fig. 6. The Viterbi sequence probabilities for the rolling particle error data

the time at which it was first detected. Since the detection
of an anomaly requires a window of 30 readings, there is
necessarily a lag between the point at which an anomaly occurs
and the point at which it is detected, but the time of the start
of that window can then be identified as the time at which the
anomaly is first present. Furthermore, only 25 out of the last
30 observations must lie on one side of the mean in order to
trigger an alarm. This explains why, in a few cases, anomalies
appear to be detected at an observation earlier than the one
at which the error was actually injected: the consistency in
the data following the anomaly outweighs the small sample of
normal data that is included in the start of the window.

V. FUTURE WORK

A. Retraining Classifiers

Experiments were carried out with the SOM of the HMM
learning code to determine if an additional classification
technique for COMMAS could be derived from this. Since
this is an unsupervised technique, none of the learned states
were labeled with responsible defects automatically, so these
labels had to be added manually after clustering. This proved
to be relatively straightforward as, in most cases, each cluster
could be associated with a particular defect with a reasonable
level of certainty.

As described in Section II, the features used in learning
a HMM are not of the same format of those used for
classification and diagnosis in COMMAS. Both formats of
feature vector were presented to the SOM for classification.
The cluster landscapes formed using the smaller set of features
were able to separate the various defects from each other with
a comparable accuracy to those formed with the features more
traditionally used in representing partial discharge [16].

This result may point towards a less statistical feature set
capable of representing partial discharge. Fewer features would
be advantageous as they could provide greater generality,
thereby increasing the accuracy of future classifiers. In order
to test this theory, the classification agents of COMMAS will
be retrained using feature vectors of the shorter format. If
COMMAS can then provide a similar standard of results
to its current operation, it will be possible to conjoin the
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TABLE I
RESULTS SHOWING THE TIME TAKEN TO DETECT ANOMALIES

ID Type Error Detected Alarm Time
Oct24.ed1 BC 300 301 Full 155s
Oct24.ed2 BC 250 252 Full 160s
Oct25.ed1 BC 600 601 Full 155s
Oct25.ed2 BC 600 602 Full 160s
Oct26.ed1 BC 650 643 Full 115s
Oct26.ed2 BC 650 652 Full 160s
Oct27.ed1 BC 690 692 Full 160s
Oct27.ed2 BC 680 682 Full 160s
Oct28.ed1 BC 600 601 Full 155s
Oct28.ed2 BC 600 601 Full 155s
Oct29.ed1 BC 620 618 Full 140s
Oct29.ed2 BC 620 621 Full 155s
Oct30.ed1 BC 300 289 Full 95s
Oct30.ed2 BC 200 202 Full 160s
Oct24.ed1 RP 300 333 Warn 165s

415 Full 12m5s
Oct24.ed2 RP 250 283 Warn 165s

365 Full 12m5s
Oct25.ed1 RP 600 633 Warn 165s

715 Full 12m5s
Oct25.ed2 RP 600 633 Warn 165s

715 Full 12m5s
Oct26.ed1 RP 650 683 Warn 165s

765 Full 12m5s
Oct26.ed2 RP 650 683 Warn 165s

765 Full 12m5s
Oct27.ed1 RP 690 723 Warn 165s

805 Full 12m5s
Oct27.ed2 RP 680 713 Warn 165s

795 Full 12m5s
Oct28.ed1 RP 600 633 Warn 165s

715 Full 12m5s
Oct28.ed2 RP 600 633 Warn 165s

715 Full 12m5s
Oct29.ed1 RP 620 653 Warn 165s

644 Full 270s
Oct29.ed2 RP 620 653 Warn 165s

645 Full 275s
Oct30.ed1 RP 300 333 Warn 165s

415 Full 12m5s
Oct30.ed2 RP 200 233 Warn 165s

315 Full 12m5s

previously discussed anomaly detection and diagnosis compo-
nents further, with the original feature vectors simply passing
onwards from the anomaly detection agent to COMMAS when
deviances from normal behavior are observed.

B. Prognosis

So far, only a HMM for normal behavior has been discussed.
However, it is equally possible to learn models based upon
other types of behavior. Models can be learnt to represent
operation with various known defects. This would allow a
more relevant model to be substituted for the previous model
of normal behavior when anomalous behavior is detected and a
responsible defect diagnosed. This updated model would then
allow a form of prognosis for future events if activity were
allowed to continue without intervention.

If particular states or state sequences are known to be
failure modes it is possible, using the Viterbi Algorithm, to
predict the likelihood of the transformer entering these failure

modes if the current internal fault is not repaired. This
could greatly aid decisions on the priority of future
maintenance tasks.

VI. CONCLUSIONS

This paper has described a method of anomaly detection
which is appropriate for identifying changes in behavior within
transformer units. The technique begins by learning a HMM of
normal behavior from UHF sensor data which is then used to
determine whether future behavior is in sync with this model.
By encapsulating the technique within an agent, messages
can then easily be sent to COMMAS for the identification
of underlying faults which may be causing these behavioral
changes.

The overall system will alert engineers to unfamiliar be-
havior and greatly reduce the time needed to detect newly
formed defects. It will also guide maintenance by identifying
the fault, allowing decisions to be made on its seriousness and
maintenance schedules to be adjusted accordingly.

REFERENCES

[1] D. M. Staszesky, D. Craig, and C. Befus, “Advanced Feeder Automation
is Here,” IEEE Power and Energy Magazine, vol. 3, no. 5, pp. 56–63,
Sept./Oct. 2005.

[2] Q. H. Wu, D. P. Buse, P. Sun, and J. Fitch, “An Architecture for E-
Automation,” IEE Computing and Control Engineering Journal, vol. 14,
no. 2, pp. 38–43, Apr./May 2003.

[3] A. L. Dimeas and N. D. Hatziargyriou, “Operation of a Multiagent
System for Microgrid Control,” IEEE Transactions on Power Systems,
vol. 20, no. 3, pp. 1447–1455, Aug. 2005.

[4] S. D. J. McArthur, S. M. Strachan, and G. Jahn, “The Design of a Multi-
Agent Transformer Condition Monitoring System,” IEEE Transactions
on Power Systems, vol. 19, no. 4, pp. 1845–1852, Nov. 2004.

[5] N. Ravi, N. Dandekar, P. Mysore, and M. Littman, “Activity recognition
from accelerometer data,” in Proc. of 17th Conf. on Innovative Appli-
cations of AI (IAAI), 2005.

[6] S. Koenig and R. G. Simmons, “Unsupervised Learning of Probabilistic
Models for Robot Navigation,” in Proceedings of the International
Conference on Robotics and Automation, 1996, pp. 2301–2308.

[7] M. Fox, M. Ghallab, G. Infantes, and D. Long, “Robot Introspection
through Learned Hidden Markov Models,” Artificial Intelligence, vol.
170, no. 2, pp. 59–113, 2006.

[8] G. P. Cleary and M. D. Judd, “An Investigation of Discharges in Oil
Insulation using UHF PD Detection,” in Proceedings of the 14th IEEE
Int. Conf. on Dielectric Liquids (GRAZ), July 2002, pp. 341–344.

[9] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, February 1989.

[10] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” in Readings in Machine Learning, J. W. Shavlik and T. G.
Dietterich, Eds. San Mateo, CA: Kaufmann, 1990, pp. 326–336.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM algorithm,” Journal of the Royal
Statistics Society, vol. 39, no. 1, pp. 1–38, 1977.

[12] L. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov
chains,” Ann. Math. Statist., vol. 41, no. 1, pp. 164–171, 1970.

[13] G. D. Forney, “The Viterbi Algorithm,” Proceedings of the IEEE,
vol. 61, pp. 268–278, 1973.

[14] J. Gough, “Opportunistic plan execution monitoring and control,” Ph.D.
dissertation, University of Strathclyde, UK, 2006.

[15] Foundation for Intelligent Physical Agents, “FIPA Agent Management
Specification,” 2004, available from http://fipa.org/specs/fipa00023.

[16] E. Gulski, “Computer-Aided Recognition of Partial Discharges using
Statistical Tools,” Ph.D. dissertation, Delft University, Delft, The Nether-
lands, 1991.


