206 research outputs found

    Programmazione e progettazione di una scuola materna a Ponzano(PO) con particolare attenzione alle scelte impiantistiche per soddisfare le esigenze di ventilazione con ridotto costo energetico

    Get PDF
    La tesi qui presentata tratta della Programmazione e della Progettazione di una scuola per l’infanzia sita in Ponzano (PO). L’intento della committenza è quello di dare al comune di Prato un nuovo edificio scolastico che accolga 180 utenze con età compresa tra i 3 e i 6 anni. Il progetto è il risultato di un iter conoscitivo che prende avvio dallo studio dell’evoluzione storica delle scuole per i bambini in età prescolare e dallo studio omnicomprensivo del sistema luogo – ambiente – paesaggio – territorio - costruito. Fondamentali in fase informativa anche lo studio delle normative ambientali ed energetiche in funzione della redazione degli studi di fattibilità nel Dpp. L’obiettivo della tesi è giungere ad un optimum progettuale avvalendosi del metodo AV che analizza in fase preliminare le esigenze della committenza attraverso le sette classi di esigenze - Sicurezza, Benessere, Fruibilità, Aspetto, Gestione, Integrabilità, Salvaguardia dell’Ambiente - per definire la valutazione delle diverse soluzioni attraverso la determinazione dell’indice di valore per ognuna di essa. Fili conduttori del progetto sono l’integrazione con l’ambiente e il risparmio energetico. Da qui nasce l’idea di dotare il nuovo edificio di un sistema innovativo di geotermazione che vada a soddisfare le esigenze di benessere interno attraverso un corretto ed abbondante ricambio d’aria che utilizzi l’energia geotermica per riscaldare gli ambienti in inverno e raffreddarli in estate e che sfrutti come unico fluido vettore l’aria esterna. Ad integrare l’impiantistica viene in aiuto anche una facciata a brise-soleil in vetro fotovoltaico che forniscono l’energia necessaria all’alimentazione del ventilatore alla base dell’impianto

    Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder : focus on biological pathways and epigenetic mechanisms

    Get PDF
    When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies

    Amygdalar MicroRNA-15a Is Essential for Coping with Chronic Stress.

    Get PDF
    MicroRNAs are important regulators of gene expression and associated with stress-related psychiatric disorders. Here, we report that exposing mice tochronic stress led to a specific increase in microRNA-15a levels in the amygdala-Ago2 complex and a concomitant reduction in the levels of its predicted target, FKBP51, which is implicated in stress-related psychiatric disorders. Reciprocally, mice expressing reduced levels of amygdalar microRNA-15a following exposure to chronic stress exhibited increased anxiety-like behaviors. In humans, pharmacological activation of the glucocorticoid receptor, as well as exposure to childhood trauma, was associated with increased microRNA-15a levels in peripheral blood. Taken together, our results support an important role for microRNA-15ain stress adaptation and the pathogenesis of stress-related psychopathologies

    Depression, obesity and their comorbidity during pregnancy : effects on the offspring's mental and physical health

    Get PDF
    Depression and obesity represent two of the most common complications during pregnancy and are associated with severe health risks for both the mother and the child. Although several studies have analysed the individual effects of depression or obesity on the mothers and their children, the effects associated with the co-occurrence of both disorders have so far been poorly investigated. The relationship between depression and obesity is very complex and it is still unclear whether maternal depression leads to obesity or vice versa. It is well known that the intrauterine environment plays an important role in mediating the effects of both depression and obesity in the mother on the fetal programming, increasing the child's risk to develop negative outcomes.Peer reviewe

    Identification of a miRNAs signature associated with exposure to stress early in life and enhanced vulnerability for schizophrenia: New insights for the key role of miR-125b-1-3p in neurodevelopmental processes

    Get PDF
    Epidemiological and clinical studies have provided evidence for a role of both genetic and environmental factors, such as stressful experiences early in life, in the pathogenesis of Schizophrenia (SZ) and microRNAs (miRNAs) have been suggested to play a key role in the interplay between the environment and our genome. In this study, we conducted a miRNOme analysis in different samples (blood of adult subjects exposed to childhood trauma, brain (hippocampus) of rats exposed to prenatal stress and human hippocampal progenitor cells treated with cortisol) and we identified miR-125b-1-3p as a down-regulated miRNA in all the three datasets. Interestingly, a significant down-regulation was observed also in SZ patients exposed to childhood trauma. To investigate the biological systems targeted by miR-125b-1-3p and also involved in the effects of stress, we combined the list of biological pathways modulated by predicted and validated target genes of miR-125b-1-3p, with the biological systems significantly regulated by cortisol in the in vitro model. We found, as common pathways, the CXCR4 signaling, the G-alpha signaling, and the P2Y Purigenic Receptor Signaling Pathway, which are all involved in neurodevelopmental processes. Our data, obtained from the combining of miRNAs datasets across different tissues and species, identified miR-125b-1-3p as a key marker associated with the long-term effects of stress early in life and also with the enhanced vulnerability of developing SZ. The identification of such a miRNA biomarker could allow the early detection of vulnerable subjects for SZ and could provide the basis for the development of preventive therapeutic strategies

    The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders

    Get PDF
    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels

    Childhood and adulthood severe stressful experiences and biomarkers related to glucose metabolism: a possible association?

    Get PDF
    Background: No study investigated the association between stress exposure in different stages of life and metabolic dysfunction.Aim: We explore the association between stress exposure and several biomarkers related to glucose metabolism (insulin, c-peptide, GIP, GLP-1, glucagon) in a group of 72 healthy individuals.Method: We used the Childhood Experience of Care and Abuse-Questionnaire (CECA-Q) and a modified version of the Life Events Scale to define exposure to stress, according to four categories: no exposure to childhood trauma (CT) nor to stressful life events (SLEs) (46%), only to CT (25%), only to SLEs (21%), to both (8%).Results: We found that c-peptide (p = 0.006) and insulin (p = 0.002) levels differed among the four categories: 0.77 ng/ml (SD 0.27) and 0.21 ng/ml (SD 0.06) for none, 0.77 (SD 0.37) and 0.20 (SD 0.08) for only SLEs, 0.88 (SD 0.39) and 0.27 (SD 0.12) for only CT, 1.33 (SD 0.57) and 0.40 (SD 0.28) for both, respectively. The highest levels of biomarkers were found in subjects exposed to both CT and SLEs.Conclusion: Our preliminary results seem to suggest that CT might be specifically associated with a dysfunction of glucose metabolism, which might increase the risk of poorer health outcomes in adulthood. This association seems to be even stronger in individuals additionally exposed to SLEs in adulthood. In conclusion, if confirmed in other studies, subjects exposed to both CT and SLEs appear the most vulnerable individuals, for whom preventative interventions, such as healthy lifestyle education programs, might ameliorate the risk of developing metabolic abnormalities

    Proteasome system dysregulation and treatment resistance mechanisms in major depressive disorder

    Get PDF
    Several studies have demonstrated that allelic variants related to inflammation and the immune system may increase the risk for major depressive disorder (MDD) and reduce patient responsiveness to antidepressant treatment. Proteasomes are fundamental complexes that contribute to the regulation of T-cell function. Only one study has shown a putative role of proteasomal PSMA7, PSMD9 and PSMD13 genes in the susceptibility to an antidepressant response, and sparse data are available regarding the potential alterations in proteasome expression in psychiatric disorders such as MDD. The aim of this study was to clarify the role of these genes in the mechanisms underlying the response/resistance to MDD treatment. We performed a case-control association study on 621 MDD patients, of whom 390 were classified as treatment-resistant depression (TRD), and we collected peripheral blood cells and fibroblasts for mRNA expression analyses. The analyses showed that subjects carrying the homozygous GG genotype of PSMD13 rs3817629 had a twofold greater risk of developing TRD and exhibited a lower PSMD13 mRNA level in fibroblasts than subjects carrying the A allele. In addition, we found a positive association between PSMD9 rs1043307 and the presence of anxiety disorders in comorbidity with MDD, although this result was not significant following correction for multiple comparisons. In conclusion, by confirming the involvement of PSMD13 in the MDD treatment response, our data corroborate the hypothesis that the dysregulation of the complex responsible for the degradation of intracellular proteins and potentially controlling autoimmunity- and immune tolerance–related processes may be involved in several phenotypes, including the TRD

    image du livre (L\u27)

    Get PDF

    FoxO1, A2M, and TGF-beta 1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses

    Get PDF
    To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-beta 1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-beta 1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets
    • …
    corecore