528 research outputs found

    Which solar neutrino data favour the LMA solution?

    Full text link
    Assuming neutrino oscillations, global analyses of solar data find that the LOW solution is significantly disfavoured, leaving LMA as the best solution. But the preference for LMA rests on three weak hints: the spectrum of earth matter effects (Super-Kamiokande sees an overall day/night asymmetry only at 1 sigma), the Cl rate (but LMA and LOW predictions are both above the measured value), the Ga rate (newer data decrease towards the LOW predictions both in GNO and SAGE). Only new data will tell us if LMA is the true solution.Comment: 4 pages, 2 figure

    Evolutionary History and Attenuation of Myxoma Virus on Two Continents

    Get PDF
    The attenuation of myxoma virus (MYXV) following its introduction as a biological control into the European rabbit populations of Australia and Europe is the canonical study of the evolution of virulence. However, the evolutionary genetics of this profound change in host-pathogen relationship is unknown. We describe the genome-scale evolution of MYXV covering a range of virulence grades sampled over 49 years from the parallel Australian and European epidemics, including the high-virulence progenitor strains released in the early 1950s. MYXV evolved rapidly over the sampling period, exhibiting one of the highest nucleotide substitution rates ever reported for a double-stranded DNA virus, and indicative of a relatively high mutation rate and/or a continually changing selective environment. Our comparative sequence data reveal that changes in virulence involved multiple genes, likely losses of gene function due to insertion-deletion events, and no mutations common to specific virulence grades. Hence, despite the similarity in selection pressures there are multiple genetic routes to attain either highly virulent or attenuated phenotypes in MYXV, resulting in convergence for phenotype but not genotype. © 2012 Kerr et al

    Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    Full text link
    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m_beta by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m_2beta from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on Sigma from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the 2 degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-alpha forest data from the Sloan Digital Sky Survey (SDSS), in models with a non-zero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m_beta,m_2beta,Sigma) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between Sigma and m_2beta constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and non-oscillatory) can further probe the currently allowed regions.Comment: 17 pages (RevTeX) + 7 figures (PostScript). Minor changes in text; references added; results unchanged. To appear in PR

    Setup of cryogenic front-end electronic systems for germanium detectors read-out

    Get PDF
    Front-end electronic devices for the read-out of ionizing radiation detectors must operate in many cases at cryogenic temperatures. In this work we focus in particular on front-end read-out systems for High-Purity Germanium (HPGe) detectors, which are usually operated at Liquid Nitrogen (LN) temperature. We analyze the strong effects that the changed characteristics of the electronic active and passive devices have on the charge preamplifier performance when operated in LN, while taking into account the particularly challenging requirements that the circuit has to meet: radio-purity, physical reliability under thermal cycling, low noise (0.1–0.2% resolutions) and fast rise time (~20 ns) needed for pulse shape analysis applications. The developed circuit consists of an external silicon JFET (Junction Field Effect Transistor), an external feedback network, and an ASIC (Application Specific Integrated Circuit) realized in a 5V 0.8μm CMOS technology. This work has been carried on in the framework of the GERDA experiment (GERmanium Detector Array). We will focus in particular on the effects that this challenging cryogenic setup has on the preamplifier performances

    Beta decay of 115-In to the first excited level of 115-Sn: Potential outcome for neutrino mass

    Full text link
    Recent observation of beta decay of 115-In to the first excited level of 115-Sn with an extremely low Q_beta value (Q_beta ~ 1 keV) could be used to set a limit on neutrino mass. To give restriction potentially competitive with those extracted from experiments with 3-H (~2 eV) and 187-Re (~15 eV), atomic mass difference between 115-In and 115-Sn and energy of the first 115-Sn level should be remeasured with higher accuracy (possibly of the order of ~1 eV).Comment: 9 pages, 3 figures; talk at the NANP'05 Conferenc

    Earth Matter Effects at Very Long Baselines and the Neutrino Mass Hierarchy

    Full text link
    We study matter effects which arise in the muon neutrino oscillation and survival probabilities relevant to atmospheric neutrino and very long baseline beam experiments. The inter-relations between the three probabilities P_{\mu e}, P_{\mu \tau} and P_{\mu \mu} are examined. It is shown that large and observable sensitivity to the neutrino mass hierarchy can be present in P_{\mu \mu} and P_{\mu \tau}. We emphasize that at baselines of > 7000 Km, matter effects in P_{\mu \tau} can be large under certain conditions. The muon survival rates in experiments with very long baselines thus depend on matter effects in both P_{\mu \tau} and P_{\mu e}. We indicate where these effects are sensitive to \theta_{13}, and identify ranges of E and L where the event rates increase with decreasing \theta_{13}, providing a handle to probe small \theta_{13}. The effect of parameter degeneracies in the three probabilities at these baselines and energies is studied in detail. Realistic event rate calculations are performed for a charge discriminating 100 kT iron calorimeter which demonstrate the possibility of realising the goal of determining the neutrino mass hierarchy using atmospheric neutrinos. It is shown that a careful selection of energy and baseline ranges is necessary in order to obtain a statistically significant signal, and that the effects are largest in bins where matter effects in both P_{\mu e} and P_{\mu \tau} combine constructively. Under these conditions, upto a 4\sigma signal for matter effects is possible (for \Delta_{31}>0) within a timescale appreciably shorter than the one anticipated for neutrino factories.Comment: 40 pages, 27 figures, version to match the published versio

    Future Precision Neutrino Oscillation Experiments and Theoretical Implications

    Full text link
    Future neutrino oscillation experiments will lead to precision measurements of neutrino mass splittings and mixings. The flavour structure of the lepton sector will therefore at some point become better known than that of the quark sector. This article discusses the potential of future oscillation experiments on the basis of detailed simulations with an emphasis on experiments which can be done in about ten years. In addition, some theoretical implications for neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott, Enkoping, Sweden, 19-24 Aug 200

    Treatment of heart failure with autologous skeletal myoblasts

    Get PDF
    The management of patients with heart failure is a daily challenge for cardiologists and cardiac surgeons. Pharmacotherapy, atrio-biventricular resynchronization, myocardial revascularization, valve repair techniques, latissimus dorsi cardiomyoplasty, acorn cardiac support device, heart transplantation and mechanical assist devices do not cover all the needs. The recent progress in cellular and molecular biology allows the development of new therapies for heart failure. Transplantation of Autologous Cells: One of the most innovative consists in the transplantation of autologous ex-vivo expanded cells into the myocardium for heart muscle regeneration. This approach is called “cellular cardiomyoplasty”

    Searches for neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of 136^{136}Xe. The sensitivities of the different proposals are reviewed.Comment: 8 pages, prepared for TAUP 201

    Searches for neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of 136^{136}Xe. The sensitivities of the different proposals are reviewed.Comment: 8 pages, prepared for TAUP 201
    corecore