69 research outputs found
Room Temperature CO Detection by Hybrid Porphyrin-ZnO Nanoparticles
AbstractPorphyrins are the natural candidates to the detection of carbon monoxide however the physical properties of solid-state layers of porphyrins limit their use as gas sensors mainly with mass and optical transducers. Recently we shown that the photonic properties of porphyrins, brilliantly exploited in organic solar cells, can lead to a new class of photo-activated sensors made by porphyrins coated metal oxides. Here we investigate the sensitivity to carbon monoxide of resistive sensors made by zinc oxide nanoparticles coated by a porphyrin layer. Sensors were prepared following two different routes and tested, at room temperature and in various light conditions, to CO and few volatile compounds. Results show a significant sensitivity and selectivity to CO
Optimization of gas sensors measurements by dynamic headspace analysis supported by simultaneous direct injection mass spectrometry
Dynamic headspace extraction is frequently used in gas sensors measurements. The procedure may introduce artefacts but its influence in sensor signals interpretation is rarely considered. In this paper, taking advantage of the on-line combination of a quartz microbalance gas sensor array with a proton transfer reaction mass spectrometer, we have been able to track the evolution of the concentration of volatile compounds along 75 s of extraction of the headspace of differently treated tomato pastes. Proton transfer reaction mass spectrometer signals show that VOCs are characterized by a large diversity of the evolution of the concentration. VOCs kinetics has been described by an electric equivalent circuit model. On the other hand, sensor signals continuously grow approaching a steady value. The contrasting behaviour between sensors signals and the concentration of most of VOCs is explained considering that water is the dominant component in the tomato paste sample and that water is one of those compounds whose concentration in the sensor cell steadily grows. Analysis of variance show that sensors signals achieve the largest separation between classes when the concentration of VOCs in the sensor cell reached its peak. Thus, although the sensor signals continue to rise their information content decays. This finding suggests that measurement protocols need to be adjusted according to the properties of the sample and that the actual measurement times could be much shorter than those predicted from the behaviour of sensor signal
Simultaneous Proton Transfer Reaction-Mass Spectrometry and electronic nose study of the volatile compounds released by Plasmodium falciparum infected red blood cells in vitro
The discovery that Volatile Organic Compounds (VOCs) can be biomarkers for several diseases has led to the conception of their possible application as diagnostic tools. In this study, we aimed at defining of diagnostic signatures for the presence of malaria transmissible stages in infected individuals. To do this, we compared VOCs released by asexual and sexual stage cultures of Plasmodium falciparum, the deadliest species of malaria, with those emitted by uninfected red blood cells (RBCs). VOC analysis was carried out with an innovative set-up, where each sample was simultaneously analysed by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) and an electronic nose. PTR-Tof-MS results show that sexual stages are characterized by a larger emission of hexanal, compared with uninfected or asexual stage-infected RBCs, which makes them clearly identifiable. PTR-Tof-MS analysis also detected differences in VOC composition between asexual stages and uninfected RBCs. These results have been substantially replicated by the electronic nose analysis and may open the possibility to develop sensitive and easy-to-use devices able to detect sexual parasite stages in infected individuals. This study also demonstrates that the combination of mass spectrometry with electronic noses is a useful tool to identify markers of diseases and to support the development of optimized sensors
Investigation of VOCs associated with different characteristics of breast cancer cells
The efficacy of breath volatile organic compounds (VOCs) analysis for the screening of patients bearing breast cancer lesions has been demonstrated by using gas chromatography and artificial olfactory systems. On the other hand, in-vitro studies suggest that VOCs detection could also give important indications regarding molecular and tumorigenic characteristics of tumor cells. Aim of this study was to analyze VOCs in the headspace of breast cancer cell lines in order to ascertain the potentiality of VOCs signatures in giving information about these cells and set-up a new sensor system able to detect breast tumor-associated VOCs. We identified by Gas Chromatography-Mass Spectrometry analysis a VOCs signature that discriminates breast cancer cells for: i) transformed condition; ii) cell doubling time (CDT); iii) Estrogen and Progesterone Receptors (ER, PgR) expression, and HER2 overexpression. Moreover, the signals obtained from a temperature modulated metal oxide semiconductor gas sensor can be classified in order to recognize VOCs signatures associated with breast cancer cells, CDT and ER expression. Our results demonstrate that VOCs analysis could give clinically relevant information about proliferative and molecular features of breast cancer cells and pose the basis for the optimization of a low-cost diagnostic device to be used for tumors characterization
The Gas Sensing Properties of Porphyrins-coated Laterally Grown ZnO Nanorods
AbstractPorphyrins coated ZnO is an interesting material where the exposure to light and gas may cooperate to modulate the respective sensitivities. In this work, the gas sensing properties of porphyrins functionalized laterally grown ZnO nanorods are introduced. The porphyrin layer incompletely coats the semiconductor surface in order to keep both ZnO and porphyrins in contact with analyte. It is known that UV light may prompt the chemical sensitivity of ZnO replacing the high temperature condition. Here we demonstrate that because of the photo-injection of electrons from porphyrin to the ZnO, the same impact could be acquired with visible light
The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth
Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeleto ns. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology
- …