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Abstract 

Dynamic headspace extraction is frequently used in gas sensors measurements. Although the distortion of 

headspace composition is a possible artefact, its influence in sensors signals interpretation has not been deeply 

studied. In this paper, taking advantage of the on-line combination of a quartz microbalance gas sensor array 

with a proton transfer reaction mass spectrometer, we have been able to track the evolution of the concentration 

of volatile compounds along 60 seconds of extraction of the headspace of differently treated tomato paste.  

An electric equivalent circuit model of the dynamic headspace sampling has been introduced. Proton transfer 

reaction mass spectrometer signals show that VOCs are characterized by a large diversity of the evolution of the 

concentration in the sensors cell.  

Sensors signals do not follow the concentration of volatile compounds but they grow approaching a steady 

value. The contrasting behaviour between sensors and the concentration of most of VOCs is explained 

considering that water is the dominant component in the tomato paste sample and that water is one of those 

compounds whose concentration in the sensor cell steadily grows. Analysis of variance demonstrates that in this 

experiment the largest separation between classes occurs when the concentration of compounds in the sensor 

cell reached its peak. Thus, although the sensor signals continue to rise, the information content of the signals 

decay. This finding suggests that measurement protocols need to be adjusted according to the properties of the 
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sample and that the actual measurement time could be much shorter than predicted from the behaviour of sensor 

signal and typically used.  

 

Keywords: Dynamic Headspace; Quartz microbalance; Porphyrins; Proton Transfer Reaction Mass 

Spectrometry 

 

Introduction 

The optimization of measurement protocols is a preeminent element of gas sensors applications. However, in 

spite of this evident importance, topics such as sample conditioning and uptake are seldom investigated. In most 

of the cases, procedures previously optimized for analytical methods, such as gas-chromatography and mass 

spectrometry, are uncritically transferred to gas sensors with little consideration of the peculiar properties of 

these devices [1]. 

The standard arrangement of sensors in closed cells requires the transfer of the gaseous sample typically mixed 

with a carrier gas. In case of liquid or solid samples, the measurement procedure is typically based on dynamic 

headspace extraction. This method is directly derived by gas-chromatography practice where samples (either 

liquid or solid) are enclosed in sealed vials endowed with a pierceable septum [2]. Vials are kept at constant 

temperature in order to establish the equilibrium composition of the headspace; then, the headspace is sampled 

by a flow of a carrier gas (typically N2) and transferred to the sensors cell. The extraction of the headspace 

disrupts the equilibrium between gas and liquid/solid phase and a competition between the extraction of volatile 

compounds and the evaporation of molecules occurs after the extraction of the first quota of volatile molecules. 

In gas-chromatography the injected volumes are small and the extraction time is short, thus it is reasonable to 

assume that it does not affect the actual concentration of volatile compounds [3]. On the other hand, the 

response times of sensors are usually longer and the perturbation of the headspace composition cannot be 

neglected. 

Most of the attention in the past literature has been given to the reproducibility of sample extraction methods 

[1]. This is a very important concern: although nominally similar, differently extracted samples are likely to be 

perceived by the sensors as belonging to distinct classes. In comparison, one of the most striking properties of 

natural olfaction is the capability to identify samples disregarding the modality in which the odour occurs, and it 

is common experience that odours can be identified even against variable background or at variable 

concentration [4]. Artificial olfaction systems are still quite distant from this abstraction capability; rather, 

sensors provide signals linked to sample composition. Furthermore, in complex matrices the evaporation 

enthalpies proper of each compound, combined with the effects of non-ideal behaviour of real mixtures, make 

the modification of headspace unpredictable. 

In this paper, the effects of sampling time on sensors response have been investigated and a three-class 

experiment has been designed. The experiment was aimed at classifying samples in three classes of tomato 

paste: pristine, inoculated with Penicillium expansum then stored at 8°C for one week, and inoculated with 

Penicillium expansum stored for one week at 8°C under exposure to vapours of thyme essential oil. Thyme 

essential oil is known to inhibit the growth of microorganisms and thus to protect food from spoilage [5,6]. 

Beside their intrinsic potential interest, the three groups of samples are supposed to be sufficiently different to 
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provide the basis to study the influence of measurement time and the evolution of volatile compounds during the 

direct headspace extraction. 

Gaseous samples were analysed by an array of quartz microbalances coated with porphyrinoids [7] connected in 

series with a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) [8].  

Such a setup enables the simultaneous measurement of the same sample with both techniques. The combination 

of electronic nose and PTR-ToF-MS has been recently demonstrated to be an effective methodology to study 

complex mixtures such as the culture media of red blood cells infected with plasmodium falciparum [9].  

Results show that the concentration of volatile organic compounds (VOCs) in the headspace quickly reaches a 

peak followed by a progressive depletion of compounds in the carrier. The interpretation of signals has been 

corroborated by an equivalent circuit model of dynamic headspace sampling which shows that the ratio between 

the speed of filling of sensor cell and the rate of the evaporation of the VOC is crucial to determine the 

behaviour of concentration of VOCs. The use of equivalent circuits to describe sensor responses has been 

recently demonstrated in case of Langmuir isotherm adsorption [10]. 

However, due to the abundance of water vapour and the non-negligible sensitivity of sensors to humidity, the 

variation of VOCs content is not immediately visible in sensor signals. Here it is shown that, in spite of the 

progressive increase of sensor signal that demonstrates an accumulation of molecules onto the sensor surface, 

the information content measured by variance analysis shows a synchronous peak with the VOCs content in the 

headspace. Tomato paste inoculated/not-inoculated with a common spoiling microorganism and treated/non-

treated with thyme oil as possible inhibitor has been chosen as relevant case study.  

These results provide an input to the design of gas sensors arrays in experiments where dynamic headspace 

extraction is used. 

 

Materials and methods 

Tomato paste samples 

Samples were prepared from commercial tomato paste, same brand bought over the counter. Samples were 

inoculated with Penicillium expansum (106 UFC/ml) and stored at 8°C for a week. A part of samples was 

exposed to a proper concentration of vapours of essential oil of thyme (Thymus vulgaris) during the storage, 

with the aim of inhibiting the fungus growth. After one week storage at 8°C, the inhibition effect of thyme 

vapour was verified by visual inspection and confirmed by microbiological measurements: inoculated samples 

showed between 4 and 5 times the original fungal load while samples stored under thyme vapours had only 

between two and three times the original fungal load [7]. Eventually three groups of samples were prepared: 

pristine tomato paste, inoculated tomato paste and inoculated tomato paste stored under thyme oil vapours. Ten 

samples were prepared for each group, to be analysed simultaneously by e-nose and PTR-ToF-MS. 

 

Headspace analysis 

Samples were handled by a multipurpose GC automatic sampler (Autosampler, Gerstel GmbH, Mulheim am 

Ruhr, Germany). Headspace VOCs from the samples were delivered by a nitrogen carrier to the gas sensors 

measurement cell and to the PTR-ToF-MS connected in series. VOC measurements were performed in 20 mL 

vials. Samples were stored at 4°C then, before analysis, they were incubated for 30 min at 37°C and measured 

for 70 s in direct mode. A constant flow of 150 sccm of zero air produced by the gas calibration unit (Ionicon 
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Analytik GmbH, Innsbruck, Austria) was applied for the dilution of the headspace and preventing the memory 

effects between measurements. 

 

Proton Transfer Reaction Mass Spectrometry 

The headspace of tomato paste samples was analysed by direct injection in a PTR-ToF-MS 8000 apparatus 

(Ionicon Analytik GmbH, Innsbruck, Austria) after passing a Gas Sensor Array. The instrumental conditions in 

the drift tube were as follows: drift voltage 538 V, drift temperature 110°C, drift pressure 2.80 mbar, producing 

a reduced electric field E/N=130 Td (1 Td = 10-17 Vcm2), where E is the electric field and N is the gas number 

density (molecules/cm3). In order to increase the sensitivity, an ion funnel was operated at the end of the drift 

tube [11]. The sampling time per channel of ToF acquisition was 0.1 ns, amounting to 350,000 channels for a 

mass spectrum ranging up to m/z = 350. Every single spectrum is the sum of 30030 acquisitions lasting 33 μs 

each, resulting in a time resolution of 1 s. 

 

Sensor Array 

The gas sensor array was an ensemble of six quartz microbalances (QMB). In these sensors, a mass change 

(Δm) on the quartz surface results in a frequency change (Δf) of the electrical output signal of an oscillator 

circuit at which each sensor is connected. In the low-perturbation regime, Δm and Δf are linearly proportional 

[12]. QMBs had a fundamental frequency of 20 MHz, corresponding to a mass resolution of the order of a few 

nanograms. The six sensors were functionalized with molecular films of 5,10,15,20-tetrakis-(4-

butyloxyphenyl)porphyrins, but differentiated by the metal complexed at the molecular core: copper, cobalt, 

zinc, magnesium, manganese chloride, and iron chloride. Metalloporphyrins were synthesized following 

literature methods [13]. 

The sensors were used with an in-house designed and manufactured sensor system where the gas sensors are 

complemented by temperature and relative humidity sensors. Each QMB is connected to an oscillator circuit, 

and the frequency of the oscillators outputs are measured respect to a temperature compensated reference quartz 

that allows for a frequency resolution of 0.1 Hz. Digital electronics is implemented in a Field Programmable 

Gate Array. A single USB connection provides both the power supply and the data connection. Functions and 

data acquisition are controlled with a software running in Matlab. 

 

Data processing and statistical analysis  

Data processing of PTR-ToF-MS spectra included dead time correction, external calibration and peak extraction 

steps performed according to a procedure described elsewhere [14]. The baseline of the mass spectra was 

removed after averaging the whole measurement, and peak detection and peak area extraction were performed 

by using a modified Gaussian to fit the data [15]. To determine the concentrations of volatile compounds in 

ppbv (part per billion by volume) the formulas described by Lindinger et al.  [16] were used assuming a constant 

reaction rate coefficient (k=2×10−9 cm3/s) for H3O+ as primary ion. 

The statistical significance of PTR-MS peaks and sensors signals was evaluated with the non-parametric 

Kruskal-Wallis rank sum test followed by Bonferroni correction in case of multiple comparisons. 

Variance analysis and multivariate analysis were performed in Matlab R2020a. 

 



 5 

Results and discussion. 

Ten samples for each of three classes (pristine tomato paste, inoculated tomato paste, and inoculated tomato 

paste treated with thyme oil) were closed in vials. Measurements were taken with an autosampler keeping the 

sample at the constant temperature of 40°C and using nitrogen as gas carrier.  

The headspace was sampled for 70 s and delivered to the electronic nose and the PTR connected in series. 

In dynamic sampling the headspace of a vial containing the sample is extracted by  a carrier flow and transferred 

into a cell where the detector, either sensors or mass spectrometer injector, are placed. During the transfer, the 

concentration in the vial is diluted by the carrier flow. The time behaviour of the VOCs concentration in the 

sensor cell depends on several factors including the evaporation of VOCs inside the vial, the dilution of the 

headspace in the carrier and the filling of the sensor cell. The whole process can be adequately represented by a 

RC circuit made of three blocks, each representing one of the factors previously mentioned. The model is shown 

in Figure 1. The capacitors in the circuit represent the volumes of vial and sensor cell, the voltage is the 

saturation pressure of the volatile compound and the resistors define the transfer of molecules into the different 

compartments. The complete and detailed analysis of circuit in Figure 1A and the dimensioning of circuit 

elements to the real case are out of the scope of this paper. Here we are interested to qualitatively study the 

behaviour of the output voltage which represents the pressure of the VOC in the chamber. The shape of the 

dynamic concentration at which sensors and PTR are exposed depends on the balance between the three above 

mentioned processes. Carrier flow and sensor cell filling are maintained constant, while the evaporation rate of 

different VOCs may be extremely variable. To study the different time evolution of VOCs, we calculated Vcell at 

different ratio between the time constant of sensor chamber filling (Rcell*Ccell) and the time constant of 

headspace formation  (Revap*Cvial). The carrier is activated, closing the switch, only after the charge of Cvial is 

completed. In practice, it corresponds to start the measure of the headspace after the headspace reached the 

equilibrium condition. The circuit in figure 1A was simulated in MATLAB 2020b/Simscape Electrical 

environment. 

Figure 1B shows the behaviour of Vcell for different ratio of time constants. When the cell filling is faster than 

the evaporation rate, the behaviour is non-linear characterized by an overshoot. On the other hand, when the 

evaporation rate is faster than the filling of the cell the concentration at which sensors are exposed, it grows 

progressively.  

In a mixture of compounds, such as in the tomato paste, we expect a diversity of behaviours. 
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Figure 1: A: electric equivalent model of the evolution of volatile compounds in a sensor (or detector) cell. B: 

output voltage, representing the concentration in the sensor’s cell, as a function of the time constant ratio 

between the sensor cell filling (Rcell*Ccell) and the time constant of headspace formation  (Revapl*Cvial). (metterei 

nome e unità nella legenda) 

 

 

The real time response of PTR-ToF-MS data gives the chance to better study the evolution of the concentration 

of compounds in the sensors or the detector cell. PTR-ToF-MS detected 131 different peaks. For each peak the 

average in the 30 measurements was evaluated. To understand the different time behaviour of the peaks, the 

time evolution has been clustered by a k-means algorithm in 6 classes. For the scope we were interested to study 

the shape of the signal evolution. The time evolution of the 131 peaks was analyzed with principal component 

analysis to evidence the differences between the peaks. Figure 2 shows the scores plot of the PCA. For each 

group the peaks signal evolution is also shown. To focus the attention on the shape of the behaviour, the peaks 

signals was normalized in the [0-1] interval.  
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Figure 2: PCA of peaks time evolution reveals the different time constant of evaporation process of the different 

VOCs. Groups have been defined by k-means…etc (see text) 

2 

 

 

 

Sensors signals on the other hand do not show the behaviour of PTR-ToF-MS peaks. Figure 3 shows the sensors 

signals recorded during the exposure to all samples. The signals are scaled for the frequency at the time of 

sample injection, so the frequency shift to the adsorption of molecules in the sample is considered.  

Sensors signals are rather reproducible, and considering the working mechanism of quartz microbalances, the 

sensors signals suggest a progressive increase of the amount of absorbed molecules. The end of exposure and 

the beginning of cleaning with a stream of technical air is also visible in Figure 3 and it shows a prompt start of 

the desorption process.  
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Figure 3: Evolution of sensors signals during the exposure to samples. In each plot the signals of the same sensor are 

compared. A certain tendency to separate the three classes can be observed. Samples treated with thyme oil show higher 

signals which make them clearly identifiable respect to the other two classes. 

 

 

In this experiment we were interested in studying the variation in the information content of the sensor signal 

during the exposure. The interpretation of adsorption processes suggests that the information of sensor signal 

increases during the exposure to the sample. Indeed, the behaviour of sensors in figure 3 shows a progressive 

increase of the signals and an apparent increase of the differences between classes. This is immediately 

perceived for class 3 (samples added with thyme oil), while the differences between the other two classes are 

less recognizable from a visual comparison of the signals.  

Sensors signals seem to be more influenced by the compounds lying in the right side of the plot in Figure 2. 

However, a more accurate appraisal of the evolution of sensors signals can be acquired calculating, by variance 

analysis, the probability of class separation as a function of time.  

The probability of null hypothesis (p-value) was calculated with data collected at different experimental times 

from the first second after the beginning of the exposure up to 75 seconds later, immediately before to switch 

the inlet flow to the technical air background. The p-value has been calculated with the non-parametric Kruskal-

Wallis rank sum test. 

Figure 4 shows the behaviour of the p-value respect to the exposure time. 
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Figure 4: time evolution of the p-value calculated for the mutual separation between classes, for each sensor, as a function 

of the time from the beginning of exposure. 

 

 

 

The analysis of variance shows that, except sensor 3, all sensors separate oil-thyme treated samples respect to 

the others. Largest difference between classes is captured about 10 s after the beginning of exposure. This 

behaviour is similar with the concentration evolution of the slowly evaporating compounds plotted at the left 

side of Figure 2. Thus, it may be interpreted as a clear consequence of the evolution of the headspace during its 

dynamic extraction. Moreover, the evolution of the differences between classes are also rather variable 

suggesting that the composition of the headspace also changes during the headspace extraction. 

Variance analyses of PTR-ToF-MS mass peaks, similar to those reported for sensors, showed the largest 

difference between classes in correspondence of the peak of concentration shown in Figure 2. Since the main 

interest of this study is to compare PTR-ToF-MS signals with those of sensors, the analysis was restricted to the 

most abundant mass peaks. In particular, 29 mass peaks whose average abundance was above 10 ppb were 

selected for further analysis. The list of the selected mass peaks is shown in Table 1. Most of these compounds 

are characterized by a non linear evolution of the PTR-ToF-MS signal, labelled as groups 2, 3 and 4 in figure 2. 

Few compounds show a progressive increase of the concentration (groups 1 and 6 in fig. 2). 

 

 m/z Chemical formula Concentration 

behaviour (group 

in fig. 2) 

Largest 

abundance 

[ppbv] 

Smallest  

abundance 

[ppbv] 

Average 

abundance 

[ppbv] 

1 31.018 CH2O.H+ 2 224.78 2.09 162.51 

2 34.037 C13H3OH.H+  3 272.25 0.38 196.45 

3 39.023 C3H3
+ 2 62.92 1.21 32.52 

4 41.039 C3H5
+ 3 338.59 3.45 184.09 

5 43.018 C2H3O
+ 3 110.42 4.10 65.84 
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6 43.029 CH2N2.H
+ 2 111.06 0.72 73.92 

7 43.054 C3H7+ 3 266.07 1.33 123.69 

8 45.990 NO2+?? 4 31.67 3.59 16.35 

9 46.037 C13CH4O.H+  2 85.40 1.31 35.52 

10 48.053 C2H5O.H+  3 202.82 0.40 72.70 

11 55.038 (H2O)3.H
+  6 72.28 37.44 58.55 

12 55.054 C4H7
+ 3 41.58 2.66 15.24 

13 57.070 C4H9
+ 3 339.48 2.04 146.84 

14 59.049 C3H6O.H+ 2 1186.09 13.36 629.43 

15 61.012 C2H4S.H+ 4 33.86 0.14 17.95 

16 61.028 C2H4O2.H
+ 3 186.63 6.22 97.58 

17 64.029 C13CCH6S.H+  4 256.18 0.10 138.80 

18 67.055 C5H7
+ 1 67.45 0.31 15.26 

19 71.086 C5H11
+ 3 59.06 0.32 18.62 

20 73.065 C4H8O.H+ 2 277.46 0.80 112.65 

21 75.044 C3H6O2.H
+ 2 96.07 0.65 63.00 

22 87.081 C5H10O.H+ 2 28.53 0.24 14.26 

23 89.060 C4H8O2.H
+ 3 26.53 0.37 17.57 

24 91.056 C4H10S.H+ 1 156.64 0.34 31.70 

25 97.029 C5H4O2.H
+ 1 36.70 0.43 18.41 

26 119.086 C9H11
+ 1 83.87 0.11 17.74 

27 135.116 C10H15
+ 1 604.84 0.16 119.48 

28 138.136 C9
13CH17

+  1 222.87 0.09 50.01 

29 153.128 C10H16O.H+ 6 82.01 0.12 20.38 

 

Table 1. List of selected mass peaks whose mean abundance is larger than 10 ppb. The time behaviour of the PTR-ToF-MS 

signals is attributed to one of the 6 classes shown in figure 2. For each mass smallest and largest abundances are also listed. 

 

 

Kruskal-Wallis test was performed for each mass peak at each time of measurement. Figure 5 shows the 

evolution of the p-value with time for each selected mass peak. 
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Figure 5: Time evolution of the p-value calculated for the mutual separation between classes and for each PTR-ToF-MS 

mass peak whose mean abundance is larger than 10 ppb.  

 

 

 

It is interesting to observe that different mass peaks showed a different behaviour of p-value. Moreover, for the 

same mass peak the behaviour of p-values with respect to the separation between different classes may be 

different too. This result is rather expected considering that each volatile compound is characterized by a proper 

evaporation rate, and contributes differently to the separation between the classes. In addition, it should be taken 

into consideration that a PTR-ToF-MS mass peak could consist of different monomers with different 

physicochemical properties. 

The consequences of the headspace variable composition to sensors and PTR-ToF-MS signals can be efficiently 

studied by multivariate analysis of the datasets. The number of samples does not enable a reliable classification 

of data, and on the other hand a classifier might also hide the changes occurring along the time. Rather, it is 

more useful and convenient to study the correlation among variables (either sensors or PTR-ToF-MS mass 

peaks) and to display the variation of the relationship between data, and Principal Component Analysis (PCA) is 

an adequate tool for this scope. 

Figures 6 and 7 show the plots of the first two principal components calculated with the data of sensors and 

most abundant PTR-ToF-MS mass peaks. PCA was calculated on standardized data where each variable is 

normalized to zero mean and unitary variance. 
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The scores plots of sensors data (Figures 6A and 6B) show that the separation of the three classes achieved at 10 

s is almost completely lost at 60 s. This is particularly evident for inoculated and thyme oil treated samples. In 

contrast, the data of pristine paste are closely clustered even after 60 s. The different effect of time on the three 

classes suggests that also the qualitative composition of headspace changes during the measurement. A further 

demonstration is offered by the radically different loadings plots (Figures 6C and 6D). To correctly interpret the 

loadings plot it is necessary to consider that the sensors signals are negative, thus a larger response means a 

larger negative signal. 

The scores plot at 10 s is dominated by sensors 3, 5, and 2, where each of these sensors points towards a 

different class. At 60 s the relationship between sensors and classes is almost lost and only sensor 2 retains its 

correlation with the group of thyme oil treated samples. 

Rather than the changes of scores plot, the variations in loadings plots indicate the changes of the headspace 

composition. Figures 6C and 6D show that for some sensors the relationship between sensors and classes  at 

short and long time changes.  

PTR-ToF-MS data scores plots are less affected by the decrease of concentration of VOCs. The scores plots 

calculated with data taken at after 10 and 60 seconds are indeed rather similar (Figures 7A and 7B). More 

evident are the changes in the loadings plots (Figures 7C and 7D). At 10 s all masses contribute either to thyme 

oil treated or to pristine paste samples, except variable 23, corresponding to m/z 89.060 attributed to C4H8O2.H+. 

At 60 s the role of variable 16 respect to inoculated samples emerges; this variable corresponds to m/z 61.028 

whose formula is (C2H4O2.H+).  
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Figure 6: PCA of sensors data. A) scores plot with data at t=10 s; B) scores plot with data at t= 60 s; C) loadings plot with 

data at t=10 s; D) loadings plot with data at t=60 s. 

 

 

 

Figure 7: PCA of PTR-ToF-MS data. Analysis has been restricted to those masses whose mean abundance is larger than 10 

ppb (Table 1). A) scores plot with data at t=10 s; B) scores plot with data at t= 60 s; C) loadings plot with data at t=10 s; 

D)  loadings plot with data at t=60 s. 

 

 

Sensors and PTR-ToF-MS data were differently affected by the variation of headspace abundance. The 

behaviour of sensors data was unexpected because, as shown in figure 3, in spite of the variable headspace 

composition, sensors signals are characterized by a progressive increase of the amount of absorbed molecules. 

This behaviour can be explained considering that the measured samples are characterized by a non-negligible 

amount of water. Indeed, as typical in many foodstuffs, water is by far the more abundant component of the 

matrix. 

Due to its large concentration in the food matrix, water vapour, instead of decreasing as the other VOCs, 

steadily increased during the measurement. The relative humidity of the sample was measured by a humidity 

sensor placed in the sensors cell. Humidity sensors data correlate with the m/z 55.038, that is identified as water 

cluster and is related to headspace humidity. 
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Figure 8: Evolution of relative humidity (panel A) and abundance of m/z 55.038, identified as water cluster (panel B) in all 

measured samples. Curves are coloured according to their class.  

 

 

Figure 8 shows the relative humidity as measured by the humidity sensor of the electronic nose (Figure 8A) and 

the abundance of m/z 55.038 measured by PTR-ToF-MS (Figure 8B). The two signals are obviously 

proportional to each other: the linear correlation coefficient between the two sets is larger than 0.99. No 

relationship between the humidity of the sample and any class was found in Figure 8. The absence of 

relationship between humidity and classes is also visible in Figure 5, where m/z 55.038 is a variable with the 

largest p-value and that in practice does not discriminate the different classes. 

Even if the sensitivity to water, in terms of Hz/ppm, may be small respect to that towards other VOCs, the actual 

concentration of water can well exceed that of VOCs. In these samples the contribution of water in the sensors 

signal is not negligible and after the peak of VOCs concentration, sensors surface continues to accumulate water 

molecules and the sensor signal keeps increasing. 

Eventually, the  analysis of variance at different times provides a valid methodology to determine the optimal 

measurement time respect to the subtraction of relative humidity contribution which requires a long exposure of 

sensors. Short exposures, besides maximizing the information content of sensor signals, also reduce the burden 

of unwanted absorbed water molecules that could also induce drift effects in sensor signals. 

  

 

Conclusions 

In gas sensors it is common opinion that optimal sensor response is obtained when the sensor signal reaches a 

steady value. In this paper it has been shown that although the sensor signal progressively increases during the 

exposure to the sample, the information content of the signal itself, here represented by classes separation, may 

decrease. Thus, the behaviour of sensor signals is not always completely representative of the phenomena 

underlying the sensor response. This behaviour may be simply explained by the fact that these sensors are 

sensitive to volatile compounds and to humidity. In high humidity samples, such as many food products, the 

concentration of water vapour may continuously grow during head-space extraction while volatile compounds, a 
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minor component in the sample, quickly reach a maximum concentration and possibly decrease if sampled from 

a finite volume. 

Taking advantage of the on-line connection of gas sensors and PTR-ToF-MS, the sensor response has been 

directly compared with the sample composition at the same time. An electric equivalent circuit of the dynamic 

headspace sampling has been introduced. VOCs concentration in sensors and detector cells follows different 

evolutions depending on the evaporation rate of the volatile compounds.  

For most of the compounds, the concentration at which the sensors are exposed shows a peak a few seconds 

after the beginning of the measurement. It has been shown here that the sensor response at the time of maximum 

concentration corresponds to the largest information content, allowing for a clear separation of the three classes. 

Among the compounds whose concentration in the sensor cells is monotonically growing we found humidity. 

Thus a simple explanation of sensor response has been provided where sensor are considered sensitive to the 

total volatile compounds and the relative humidity.  

Eventually, this study suggests that in electronic nose experiments an optimal measurement time may exist at 

which the information content of sensors signals is largest. If the sample is not homogeneous but it includes 

compounds with different evaporation enthalpies, the optimal time may be, in principle, different for each class. 

The use of a PTR-ToF-MS in series with gas-sensor cells is a valuable tool to better understand and support the 

optimisation of gas-sensors arrays. Because of cost and size, it is obviously not an alternative to gas sensors. 

However, photoionization detectors (PIDs) which are fast, sensitive and non-selective can efficiently 

complement gas sensors applications by providing the information about the time evolution of total VOCs and 

thus the time at which the sensor signal could be most informative and reliable. Recent improvements in PID 

design are expected to result in low-cost miniaturized devices that could be easily implemented in gas sensor 

arrays [17]. 

  

 

References 

 

[1] K. Burlachenko, J.; Kruglenko, I.; Snopok, B.; Persaud, Sample handling for electronic nose 

technology: State of the art and future trends, TrAC - Trends Anal. Chem. 82 (2016) 222–236. 

[2] N.H. Snow, G.C. Slack, Head-space analysis in modern gas chromatography, TrAC - Trends Anal. 

Chem. 21 (2002) 608–617. https://doi.org/10.1016/S0165-9936(02)00802-6. 

[3] B. Kolb, L.S. Ettre, Static Headspace-Gas Chromatography: Theory and Practice, Second Edition, 2006. 

https://doi.org/10.1002/0471914584. 

[4] D.A. Storace, L.B. Cohen, Measuring the olfactory bulb input-output transformation reveals a 

contribution to the perception of odorant concentration invariance, Nat. Commun. 8 (2017). 

https://doi.org/10.1038/s41467-017-00036-2. 

[5] B. Salehi, A.P. Mishra, I. Shukla, M. Sharifi-Rad, M.D.M. Contreras, A. Segura-Carretero, H. Fathi, 

N.N. Nasrabadi, F. Kobarfard, J. Sharifi-Rad, Thymol, thyme, and other plant sources: Health and 

potential uses, Phyther. Res. 32 (2018) 1688–1706. https://doi.org/10.1002/ptr.6109. 

[6] F.D. Gonelimali, J. Lin, W. Miao, J. Xuan, F. Charles, M. Chen, S.R. Hatab, Antimicrobial properties 

and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms, 



 16 

Front. Microbiol. 9 (2018). https://doi.org/10.3389/fmicb.2018.01639. 

[7] R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, C. Di Natale, Porphyrinoids for Chemical Sensor 

Applications, Chem. Rev. 117 (2017). https://doi.org/10.1021/acs.chemrev.6b00361. 

[8] R.S. Blake, P.S. Monks, A.M. Ellis, Proton-transfer reaction mass spectrometry, Chem. Rev. 109 (2009) 

861–896. https://doi.org/10.1021/cr800364q. 

[9] R. Capuano, I. Khomenko, F. Grasso, V. Messina, A. Olivieri, L. Cappellin, R. Paolesse, A. Catini, M. 

Ponzi, F. Biasioli, F. Biasioli, C. Di Natale, Simultaneous Proton Transfer Reaction-Mass Spectrometry 

and electronic nose study of the volatile compounds released by Plasmodium falciparum infected red 

blood cells in vitro, Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-48732-x. 

[10] A. D’Amico, C. Di Natale, C. Falconi, G. Pennazza, M. Santonico, I. Lundstrom, Equivalent electric 

circuits for chemical sensors in the Langmuir regime, Sensors Actuators, B Chem. 238 (2017) 214–220. 

https://doi.org/10.1016/j.snb.2016.07.011. 

[11] P.A. Brown, S.M. Cristescu, S.J. Mullock, D.F. Reich, C.S. Lamont-Smith, F.J.M. Harren, 

Implementation and characterization of an RF ion funnel ion guide as a proton transfer reaction 

chamber, Int. J. Mass Spectrom. 414 (2017) 31–38. https://doi.org/10.1016/j.ijms.2017.01.001. 

[12] U. Oprea, A.; Weimar, Gas sensors based on mass-sensitive transducers part 1: transducers and 

receptors—basic understanding, Anal. Bioanal. Chem. 411 (2019) 1761–1787. 

[13] J.W. Buchler, Synthesis and properties of metalloporphyrins, in: D. Dolphin (Ed.), Porphyrins Vol. 1, 

Academic Press, 1978. 

[14] L. Cappellin, F. Biasioli, A. Fabris, E. Schuhfried, C. Soukoulis, T.D. Märk, F. Gasperi, Improved mass 

accuracy in PTR-TOF-MS: Another step towards better compound identification in PTR-MS, Int. J. 

Mass Spectrom. 290 (2010) 60–63. https://doi.org/10.1016/j.ijms.2009.11.007. 

[15] L. Cappellin, F. Biasioli, E. Schuhfried, C. Soukoulis, T.D. Mark, F. Gasperi, Extending the dynamic 

range of proton transfer reaction time-of-flight mass spectrometers by a novel dead time correction, 

Rapid Commun. Mass Spectrom. 25 (2011) 179–183. https://doi.org/10.1002/rcm.4819. 

[16] W. Lindinger, A. Hansel, A. Jordan, On-line monitoring of volatile organic compounds at pptv levels by 

means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) Medical applications, food control 

and environmental research, Int. J. Mass Spectrom. Ion Process. 173 (1998) 191–241. 

https://doi.org/10.1016/s0168-1176(97)00281-4. 

[17] S. Pyo, K. Lee, T. Noh, E. Jo, J. Kim, Sensitivity enhancement in photoionization detector using 

microelectrodes with integrated 1D nanostructures, Sensors Actuators, B Chem. 288 (2019) 618–624. 

https://doi.org/10.1016/j.snb.2019.03.045. 

 


