78 research outputs found
Association of five Austrodanthonia species (family Poaceae) with large and small scale environmental features in central western New South Wales
Twenty-eight natural populations of Wallaby Grasses, Austrodanthonia species, in central western New South Wales were sampled and species presence related to a suite of environmental characteristics. An average of 12 plants were selectively sampled from each population; most populations consisted of at least four out of five species, Austrodanthonia bipartita, A. caespitosa, A. eriantha, A. fulva and A. setacea. Numerous ecological factors allowed the widespread co-occurrence of these closely-related species. Large-scale rainfall and climatic factors were correlated with species-presence but no universal small-scale site environmental variables were important for all species. The most widespread species was Austrodanthonia caespitosa and environmental variations at a local site scale, depending on exposure to solar radiation, may at least partially overcome regional rainfall and climate influences
Diversity, Trends, Opportunities and Challenges in Australian Grasslands–Meeting the Sustainability and Productivity Imperatives of the Future?
Grassland production systems contribute 40% to Australia’s gross agricultural production value and utilise over 50% of its land area. Across this area a broad diversity of systems exist, but these can be broadly classified into four main production systems: 1. Pastoral grazing of mainly cattle at low intensity (i.e. \u3c 0.4 DSE/ha) on relatively unimproved native rangelands in the arid and semi-arid regions of northern and central Australia; 2. Crop-livestock systems in the semi-arid zone where livestock graze a mixture of pastures and crops which are often integrated; 3. High rainfall permanent pasture zone in the coastal hinterland and highlands and; 4. Dairy systems covering a broad range of environments and production intensities. A notable trend across these systems has been the replacement of wool sheep with beef cattle or meat sheep breeds, which has been driven by low wool prices. Although there is evidence that most of these systems have lifted production efficiencies over the past 30 years, total factor productivity growth has failed to match the decline in terms of trade. This has renewed attention on how research and development can help increase productivity. In addition, these industries are facing increasing scrutiny to improve their environmental performance and develop sustainable production practices. We propose several areas in which grasslands research and development might help provide gains in system productivity and sustainability. In particular, pasture productivity might be improved by filling gaps in the array of pastures available either through exploring new species or improving the adaptation and agronomic characteristics of species currently sown. Meanwhile there is a need to maintain efforts to overcome persistent and emerging constraints to pasture productivity. Improving livestock forage feed systems and more precise and lower cost management of grasslands would translate into improved utilisation and conversion of forage produced into livestock products. There is significant scope to capture value from the ecological services grasslands provide and mitigate greenhouse gas emissions from livestock production. Multi-purpose grasslands provide not only grazing for livestock but produce other food products such as grain which may also have potential to integrate livestock with cropping. However, reduced human research capacity in pasture science will challenge our ability to realise these potential opportunities unless efforts are made to attract and support a new generation of pasture scientists
Trade-offs and Optimisation of Land-Use for Pastoralism and Carbon in Southeastern Australia
Globally, pressure to ensure future food security is being challenged by competing needs for multiple land-uses in agricultural systems. Rangelands are both a source of greenhouse gas emissions as well as providing opportunities for emissions reduction. Carbon farming is a new land-use option that sequesters carbon in vegetation and soils. National incentive programs in Australia for this option have resulted in significant recent land-use change across Australian rangelands.
Beyond the mitigation benefits, the potential for carbon farming income to enhance socio-ecological resilience in rangelands has been identified. However, there are major uncertainties about the impacts of climate change on sequestration rates and trade-offs between land-use for carbon and pastoral production. The AUD2 billion over the next 10 years, coupled with a fast-growing secondary carbon market is continuing to drive demand for carbon credits. The ability to supply these carbon credits and meet international emissions reduction obligations but limit the trade-offs with pastoral production can be supported through an identification of spatial prioritisation and optimisation at a landscape scale.
We use a case study of New South Wales where ~3 million ha of traditional rangeland pastoralism is currently delivering ~27% of the national land sector abatement. Priority areas and optimisation of land-use for carbon farming and production under current and future climates were determined by developing a Carbon Optimisation Model (COM). This high-resolution integrated environmental-economic model provides predictions of spatiotemporal dynamics of land-use options for variations of incentive payment levels and policy settings. Regional downscaling of an ensemble of global circulation models (GCMs) were used to predict the climate impacts on future sequestration rates derived from 3PG forest growth model to quantify carbon supply under future climates. The COM can be used to produce spatial maps to underpin strategic prioritisation abatement activities and allow abatement opportunities to be incorporated into regional NRM planning
Grazing Behaviour of Dorper Sheep and Farmed Goats and Their Implications for Natural Resource Management in Western NSW
The introduction of exotic herbivores into the semi-arid and arid zones of Australia resulted in dramatic change in the native vegetation (e.g. Noble and Tongway 1986; Friedel et al. 1990). Overgrazing and trampling reduced ground cover and changed species composition from dominance by perennial grasses and shrubs to dominance by annual species over extensive areas (e.g. Gunn 1986), or assisted the encroachment of woody species (Wilcox and Cunningham 1994).
It is particularly in this context that the recent introduction of new sheep breeds, reputedly hardier than traditional Merinos, and the increasing trend to farming or re-domestication of feral goats, poses serious questions for the ecological sustainability of the region. This ongoing project aims to combine information from laboratory experiments, field studies and producer experience to develop practical management strategies that are supportive of regional and national ground cover targets aimed at reducing wind erosion and maintaining biodiversity values. We report the preliminary results and recommend management strategies
Impact of Tumour Epithelial Subtype on Circulating MicroRNAs in Breast Cancer Patients
While a range of miRNAs have been shown to be dysregulated in the circulation of patients with breast cancer, little is known about the relationship between circulating levels and tumour characteristics. The aim of this study was to analyse alterations in circulating miRNA expression during tumour progression in a murine model of breast cancer, and to detemine the clinical relevance of identified miRNAs at both tissue and circulating level in patient samples. Athymic nude mice received a subcutaneous or mammary fat pad injection of MDA-MB-231 cells. Blood sampling was performed at weeks 1, 3 and 6 following tumour induction, and microRNA extracted. MicroRNA microArray analysis was performed comparing samples harvested at week 1 to those collected at week 6 from the same animals. Significantly altered miRNAs were validated across all murine samples by RQ-PCR (n = 45). Three miRNAs of interest were then quantified in the circulation(n = 166) and tissue (n = 100) of breast cancer patients and healthy control individuals. MicroArray-based analysis of murine blood samples revealed levels of 77 circulating microRNAs to be changed during disease progression, with 44 demonstrating changes .2-fold. Validation across all samples revealed miR-138 to be significantly elevated in the circulation of animals during disease development, with miR-191 and miR-106a levels significantly decreased. Analysis of patient tissue and blood samples revealed miR-138 to be significantly up-regulated in the circulation of patients with breast cancer, with no change observed in the tissue setting. While not significantly changed overall in breast cancer patients compared to controls, circulating miR-106a and miR-191 were significantly decreased in patients with basal breast cancer. In tissue, both miRNAs were significantly elevated in breast cancer compared to normal breast tissue. The data demonstrates an impact of tumour epithelial subtype on circulating levels of miRNAs, and highlights divergent miRNA profiles between tissue and blood samples from breast cancer patients
Minimising soil organic carbon erosion by wind is critical for land degradation neutrality
The Land Degradation-Neutrality (LDN) framework of the United Nations Convention to Combat Desertification (UNCCD) is underpinned by three complementary interactive indicators (metrics: vegetation cover, net primary productivity; NPP and soil organic carbon; SOC) as proxies for change in land-based natural capital. The LDN framework assumes that SOC changes slowly primarily by decomposition and respiration of CO2 to the atmosphere. However, there is growing evidence that soil erosion by wind, water and tillage also reduces SOC stocks rapidly after land use and cover change. Here we modify a physically-based sediment transport model to estimate wind erosion and better represent the vegetation cover (using land surface aerodynamic roughness; that is the plant canopy coverage, stone cover, soil aggregates, etc. that protects the soil surface from wind erosion) and quantify the contribution of wind erosion to global SOC erosion (2001-2016). We use the wind erosion model to identify global dryland regions where SOC erosion by wind may be a significant problem for achieving LDN. Selected sites in global drylands show SOC erosion by wind accelerating over time. Without targeting and reducing SOC erosion, management practices in these regions will fail to sequester SOC and reduce land degradation. We describe the interrelated nature of the LDN indicators, the importance of including SOC erosion by wind erosion and how by explicitly accounting for wind erosion processes, we can better represent the physical effects of changing land cover on land degradation. Our results for Earth’s drylands show that modelling SOC stock reduction by wind erosion is better than using land cover and SOC independently. Furthermore, emphasising the role of wind erosion in UNCCD and Intergovernmental Panel on Climate Change (IPCC) reporting will better support LDN and climate change mitigation and adaptation globall
Automatisierte Planung von digitalen Hochgeschwindigkeitsnetzen
Der Ausbau von digitalen Hochgeschwindigkeitsnetzen ist gekennzeichnet durch neuartige Anforderungen an den Planungsprozess. Diese Anforderungen erfordern wiederum den Einsatz von neuartigen Paradigmen, die eine effiziente und zugleich genaue Planung von flächendeckenden Glasfasernetzen ermöglichen. Hierbei können wiederkehrende Planungsaufgaben durch eine gezielte computergestützte Automatisierung effizienter und genauer ausgeführt, als es mit bisherigen Planungskonzepten möglich ist. Dieses Arbeitspapier beschreibt die computergestützte Ausführung eines Planungsprozesses auf Basis von fünf grundlegenden, iterativen Planungsschritten und gibt Empfehlungen für eine effiziente und genaue Planung von Glasfasernetzen. Der hier vorgestellte Ansatz ermöglicht es Netzbetreibern und Investoren, den Ausbau beliebiger Siedlungs- und Gewerbegebiete auf der zuverlässigen Basis von belastbarem Faktenwissen wirtschaftlich zu priorisieren
Extreme fire weather is the major driver of severe bushfires in southeast Australia
In Australia, the proportion of forest area that burns in a typical fire season is less than for other vegetation types. However, the 2019–2020 austral spring-summer was an exception, with over four times the previous maximum area burnt in southeast Australian temperate forests. Temperate forest fires have extensive socio-economic, human health, greenhouse gas emissions, and biodiversity impacts due to high fire intensities. A robust model that identifies driving factors of forest fires and relates impact thresholds to fire activity at regional scales would help land managers and fire-fighting agencies prepare for potentially hazardous fire in Australia. Here, we developed a machine-learning diagnostic model to quantify nonlinear relationships between monthly burnt area and biophysical factors in southeast Australian forests for 2001–2020 on a 0.25° grid based on several biophysical parameters, notably fire weather and vegetation productivity. Our model explained over 80% of the variation in the burnt area. We identified that burnt area dynamics in southeast Australian forest were primarily controlled by extreme fire weather, which mainly linked to fluctuations in the Southern Annular Mode (SAM) and Indian Ocean Dipole (IOD), with a relatively smaller contribution from the central Pacific El Nino Southern Oscillation (ENSO). Our fire diagnostic model and the non-linear relationships between burnt area and environmental covariates can provide useful guidance to decision-makers who manage preparations for an upcoming fire season, and model developers working on improved early warning systems for forest fires
Recommended from our members
Interpretation of ambiguity: differences between children and adolescents with and without an anxiety disorder
Background: Theory and treatment of anxiety disorders in young people are commonly based on the premise that interpretation biases found in anxious adults are also found in children and adolescents. Although there is some evidence that this may be the case, studies have not typically taken age into account, which is surprising given the normative changes in cognition that occur throughout childhood. The aim of the current study was to identify whether associations between anxiety disorder status and interpretation biases differed in children and adolescents.
Methods: The responses of children (7-10 years) and adolescents (13-16 years) with and without anxiety disorders (n = 120) were compared on an ambiguous scenarios task.
Results: Children and adolescents with an anxiety disorder showed significantly higher levels of threat interpretation and avoidant strategies than non-anxious children and adolescents. However, age significantly moderated the effect of anxiety disorder status on interpretation of ambiguity, in that adolescents with anxiety disorders showed significantly higher levels of threat interpretation and associated negative emotion than non-anxious adolescents, but a similar relationship was not observed among children.
Conclusions: The findings suggest that theoretical accounts of interpretation biases in anxiety disorders in children and adolescents should distinguish between different developmental periods. For both ages, treatment that targets behavioral avoidance appears warranted. However, while adolescents are likely to benefit from treatment that addresses interpretation biases, there may be limited benefit for children under the age of ten
- …