9 research outputs found

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological systematic review of health technology assessments

    Get PDF
    Background: Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. Methods: We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. Results: The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. Conclusions: The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Effect of Amoxicillin dose and treatment duration on the need for antibiotic re-treatment in children with Community-Acquired Pneumonia: The CAP-IT randomized clinical trial

    No full text
    Importance: The optimal dose and duration of oral amoxicillin for children with community-acquired pneumonia (CAP) are unclear. Objective: To determine whether lower-dose amoxicillin is noninferior to higher dose and whether 3-day treatment is noninferior to 7 days. Design, Setting, and Participants: Multicenter, randomized, 2 × 2 factorial noninferiority trial enrolling 824 children, aged 6 months and older, with clinically diagnosed CAP, treated with amoxicillin on discharge from emergency departments and inpatient wards of 28 hospitals in the UK and 1 in Ireland between February 2017 and April 2019, with last trial visit on May 21, 2019. Interventions: Children were randomized 1:1 to receive oral amoxicillin at a lower dose (35-50 mg/kg/d; n = 410) or higher dose (70-90 mg/kg/d; n = 404), for a shorter duration (3 days; n = 413) or a longer duration (7 days; n = 401). Main Outcomes and Measures: The primary outcome was clinically indicated antibiotic re-treatment for respiratory infection within 28 days after randomization. The noninferiority margin was 8%. Secondary outcomes included severity/duration of 9 parent-reported CAP symptoms, 3 antibiotic-related adverse events, and phenotypic resistance in colonizing Streptococcus pneumoniae isolates. Results: Of 824 participants randomized into 1 of the 4 groups, 814 received at least 1 dose of trial medication (median [IQR] age, 2.5 years [1.6-2.7]; 421 [52%] males and 393 [48%] females), and the primary outcome was available for 789 (97%). For lower vs higher dose, the primary outcome occurred in 12.6% with lower dose vs 12.4% with higher dose (difference, 0.2% [1-sided 95% CI -∞ to 4.0%]), and in 12.5% with 3-day treatment vs 12.5% with 7-day treatment (difference, 0.1% [1-sided 95% CI -∞ to 3.9]). Both groups demonstrated noninferiority with no significant interaction between dose and duration (P =.63). Of the 14 prespecified secondary end points, the only significant differences were 3-day vs 7-day treatment for cough duration (median 12 days vs 10 days; hazard ratio [HR], 1.2 [95% CI, 1.0 to 1.4]; P =.04) and sleep disturbed by cough (median, 4 days vs 4 days; HR, 1.2 [95% CI, 1.0 to 1.4]; P =.03). Among the subgroup of children with severe CAP, the primary end point occurred in 17.3% of lower-dose recipients vs 13.5% of higher-dose recipients (difference, 3.8% [1-sided 95% CI, -∞ to10%]; P value for interaction =.18) and in 16.0% with 3-day treatment vs 14.8% with 7-day treatment (difference, 1.2% [1-sided 95% CI, -∞ to 7.4%]; P value for interaction =.73). Conclusions and Relevance: Among children with CAP discharged from an emergency department or hospital ward (within 48 hours), lower-dose outpatient oral amoxicillin was noninferior to higher dose, and 3-day duration was noninferior to 7 days, with regard to need for antibiotic re-treatment. However, disease severity, treatment setting, prior antibiotics received, and acceptability of the noninferiority margin require consideration when interpreting the findings. Trial Registration: ISRCTN Identifier: ISRCTN76888927

    Erratum to: Methods for evaluating medical tests and biomarkers

    No full text
    The original MEMTAB Abstracts in Diagnostic and Prognostic Research contains the incorrect year on individual abstracts in the PDF [1].“Diagnostic and Prognostic Research 2016” under the correspondence line should therefore have been written as “Diagnostic and Prognostic Research 2017” as the journal did not launch until 2017
    corecore